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Overview of Numerical Methods

Gaussian approximations:
Approximations of mean and covariance equations.
Gaussian assumed density approximations.
Statistical linearization.

Numerical simulation of SDEs:
Itô–Taylor series.
Euler–Maruyama method and Milstein’s method.
Stochastic Runge–Kutta (next week).

Other methods (not covered in lectures):
Approximations of higher order moments.
Approximations of Fokker–Planck–Kolmogorov PDE.
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Theoretical mean and covariance equations

Consider the stochastic differential equation (SDE)

dx = f(x, t) dt + L(x, t) dβ.

The mean and covariance differential equations are

dm
dt

= E [f(x, t)]

dP
dt

= E
[
f(x, t) (x−m)T

]
+ E

[
(x−m) fT(x, t)

]
+ E

[
L(x, t) Q LT(x, t)

]
Note that the expectations are w.r.t. p(x, t)!
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Gaussian approximations [1/5]

The mean and covariance equations explicitly:

dm
dt

=

∫
f(x, t) p(x, t) dx

dP
dt

=

∫
f(x, t) (x−m)T p(x, t) dx +

∫
(x−m) fT(x, t) p(x, t) dx

+

∫
L(x, t) Q LT(x, t) p(x, t) dx.

In Gaussian assumed density approximation we assume

p(x, t) ≈ N(x |m(t),P(t)).
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Gaussian approximations [2/5]

Gaussian approximation I
Gaussian approximation to SDE can be obtained by integrating the
following differential equations from the initial conditions
m(0) = E[x(0)] and P(0) = Cov[x(0)] to the target time t :

dm
dt

=

∫
f(x, t) N(x |m,P) dx

dP
dt

=

∫
f(x, t) (x−m)T N(x |m,P) dx

+

∫
(x−m) fT(x, t) N(x |m,P) dx

+

∫
L(x, t) Q LT(x, t) N(x |m,P) dx.
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Gaussian approximations [3/5]

Gaussian approximation I (cont.)
If we denote the Gaussian expectation as

EN[g(x)] =

∫
g(x) N(x |m,P) dx

the mean and covariance equations can be written as

dm
dt

= EN[f(x, t)]

dP
dt

= EN[(x−m) fT(x, t)] + EN[f(x, t) (x−m)T]

+ EN[L(x, t) Q LT(x, t)].
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Gaussian approximations [4/5]

Theorem
Let f(x, t) be differentiable with respect to x and let x ∼ N(m,P). Then
the following identity holds:∫

f(x, t) (x−m)T N(x |m,P) dx

=

[∫
Fx (x, t) N(x |m,P) dx

]
P,

where Fx (x, t) is the Jacobian matrix of f(x, t) with respect to x.
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Gaussian approximations [5/5]

Gaussian approximation II
Gaussian approximation to SDE can be obtained by integrating the
following differential equations from the initial conditions
m(0) = E[x(0)] and P(0) = Cov[x(0)] to the target time t :

dm
dt

= EN[f(x, t)]

dP
dt

= P EN[Fx (x, t)]T + EN[Fx (x, t)] P + EN[L(x, t) Q LT(x, t)],

where EN[·] denotes the expectation with respect to x ∼ N(m,P).

Simo Särkkä (Aalto) Lecture 4: Numerical Solution of SDEs 11 / 40



Classical Linearization [1/2]

We need to compute following kind of Gaussian integrals:

EN[g(x, t)] =

∫
g(x, t) N(x |m,P) dx

We can borrow methods from filtering theory.
Linearize the drift f(x, t) around the mean m as follows:

f(x, t) ≈ f(m, t) + Fx (m, t) (x−m),

Approximate the expectation of the diffusion part as

L(x, t) ≈ L(m, t).
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Classical Linearization [2/2]

Linearization approximation of SDE
Linearization based approximation to SDE can be obtained by
integrating the following differential equations from the initial conditions
m(0) = E[x(0)] and P(0) = Cov[x(0)] to the target time t :

dm
dt

= f(m, t)

dP
dt

= P FT
x (m, t) + Fx (m, t) P + L(m, t) Q LT(m, t).

Used in extended Kalman filter (EKF).
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Cubature integration [1/3]

Gauss–Hermite cubatures:∫
f(x, t) N(x |m,P) dx ≈

∑
i

W (i) f(x(i), t).

The sigma points (abscissas) x(i) and weights W (i) are
determined by the integration rule.
In multidimensional Gauss-Hermite integration, unscented
transform, and cubature integration we select:

x(i) = m +
√

P ξi .

The matrix square root is defined by P =
√

P
√

P
T

(typically
Cholesky factorization).
The vectors ξi are determined by the integration rule.
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Cubature integration [2/3]

In Gauss–Hermite integration the vectors and weights are
selected as cartesian products of 1d Gauss–Hermite integration.
Unscented transform uses:

ξ0 = 0

ξi =

{ √
λ+ n ei , i = 1, . . . ,n
−
√
λ+ n ei−n , i = n + 1, . . . ,2n,

and W (0) = λ/(n + κ), and W (i) = 1/[2(n + κ)] for i = 1, . . . ,2n.
Cubature method (spherical 3rd degree):

ξi =

{ √
n ei , i = 1, . . . ,n
−
√

n ei−n , i = n + 1, . . . ,2n,

and W (i) = 1/(2n) for i = 1, . . . ,2n.
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Cubature integration [3/3]

Sigma-point approximation of SDE
Sigma-point based approximation to SDE:

dm
dt

=
∑

i

W (i) f(m +
√

P ξi , t)

dP
dt

=
∑

i

W (i) f(m +
√

P ξi , t) ξ
T
i

√
P

T

+
∑

i

W (i)
√

P ξi fT(m +
√

P ξi , t)

+
∑

i

W (i) L(m +
√

P ξi , t) Q LT(m +
√

P ξi , t).

Use in (continuous-time) unscented Kalman filter (UKF) and
(continuous-time) cubature-based Kalman filters (GHKF, CKF,
etc.).
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Taylor series of ODEs vs. Itô-Taylor series of SDEs

Taylor series expansions (in time direction) are classical methods
for approximating solutions of deterministic ordinary differential
equations (ODEs).
Largely superseded by Runge–Kutta type of derivative free
methods (whose theory is based on Taylor series).
Itô-Taylor series can be used for approximating solutions of
SDEs—direct generalization of Taylor series for ODEs.
Stochastic Runge–Kutta methods are not as easy to use as their
deterministic counterparts
It is easier to understand Itô-Taylor series by understanding Taylor
series (for ODEs) first.
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Taylor series of ODEs [1/5]

Consider the following ordinary differential equation (ODE):

dx(t)
dt

= f(x(t), t), x(t0) = given,

Integrating both sides gives

x(t) = x(t0) +

∫ t

t0
f(x(τ), τ) dτ.

If the function f is differentiable, we can also write t 7→ f(x(t), t) as
the solution to the differential equation

df(x(t), t)
dt

=
∂f
∂t

(x(t), t) +
∑

i

dxi

dt
∂f
∂xi

(x(t), t)

=
∂f
∂t

(x(t), t) +
∑

i

fi(x(t), t)
∂f
∂xi

(x(t), t)
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Taylor series of ODEs [2/5]

The integral form of this is

f(x(t), t) = f(x(t0), t0)+

∫ t

t0

[
∂f
∂t

(x(τ), τ) +
∑

i

fi(x(τ), τ)
∂f
∂xi

(x(τ), τ)

]
dτ.

Let’s define the linear operator

Lg =
∂g
∂t

+
∑

i

fi
∂g
∂xi

We can now rewrite the integral equation as

f(x(t), t) = f(x(t0), t0) +

∫ t

t0
L f(x(τ), τ) dτ.
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Taylor series of ODEs [3/5]

By substituting this into the original integrated ODE gives

x(t) = x(t0) +

∫ t

t0
f(x(τ), τ) dτ

= x(t0) +

∫ t

t0
[f(x(t0), t0) +

∫ τ

t0
L f(x(τ), τ) dτ ] dτ

= x(t0) + f(x(t0), t0) (t − t0) +

∫ t

t0

∫ τ

t0
L f(x(τ), τ) dτ dτ.

The term L f(x(t), t) solves the differential equation

d[L f(x(t), t)]

dt
=
∂[L f(x(t), t)]

∂t
+
∑

i

fi(x(t), t)
∂[L f(x(t), t)]

∂xi

= L2 f(x(t), t).
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Taylor series of ODEs [4/5]

In integral form this is

L f(x(t), t) = L f(x(t0), t0) +

∫ t

t0
L2 f(x(τ), τ) dτ.

Substituting into the equation of x(t) then gives

x(t) = x(t0) + f(x(t0), t) (t − t0)

+

∫ t

t0

∫ τ

t0
[L f(x(t0), t0) +

∫ τ

t0
L2 f(x(τ), τ) dτ ] dτ dτ

= x(t0) + f(x(t0), t0) (t − t0) +
1
2
L f(x(t0), t0) (t − t0)2

+

∫ t

t0

∫ τ

t0

∫ τ

t0
L2 f(x(τ), τ) dτ dτ dτ
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Taylor series of ODEs [5/5]

If we continue this procedure ad infinitum, we obtain the following
Taylor series expansion for the solution of the ODE:

x(t) = x(t0) + f(x(t0), t0) (t − t0) +
1
2!
L f(x(t0), t0) (t − t0)2

+
1
3!
L2 f(x(t0), t0) (t − t0)3 + . . .

where
L =

∂

∂t
+
∑

i

fi
∂

∂xi

The Taylor series for a given function x(t) can be obtained by
setting f(t) = dx(t)/dt .
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Itô-Taylor series of SDEs [1/5]

Consider the following SDE

dx = f(x(t), t) dt + L(x(t), t) dβ.

In integral form this is

x(t) = x(t0) +

∫ t

t0
f(x(τ), τ) dτ +

∫ t

t0
L(x(τ), τ) dβ(τ).

Applying Itô formula to f(x(t), t) gives

df(x(t), t) =
∂f(x(t), t)

∂t
dt +

∑
u

∂f(x(t), t)
∂xu

fu(x(t), t) dt

+
∑

u

∂f(x(t), t)
∂xu

[L(x(t), t) dβ(τ)]u

+
1
2

∑
uv

∂2f(x(t), t)
∂xu ∂xv

[L(x(t), t) Q LT(x(t), t)]uv dt
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Itô-Taylor series of SDEs [2/5]

Similarly for L(x(t), t) we get via Itô formula:

dL(x(t), t) =
∂L(x(t), t)

∂t
dt +

∑
u

∂L(x(t), t)
∂xu

fu(x(t), t) dt

+
∑

u

∂L(x(t), t)
∂xu

[L(x(t), t) dβ(τ)]u

+
1
2

∑
uv

∂2L(x(t), t)
∂xu ∂xv

[L(x(t), t) Q LT(x(t), t)]uv dt
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Itô-Taylor series of SDEs [3/5]

In integral form these can be written as

f(x(t), t) = f(x(t0), t0) +
∫ t

t0

∂f(x(τ), τ)
∂t

dτ +

∫ t

t0

∑
u

∂f(x(τ), τ)
∂xu

fu(x(τ), τ) dτ

+

∫ t

t0

∑
u

∂f(x(τ), τ)
∂xu

[L(x(τ), τ) dβ(τ)]u

+

∫ t

t0

1
2

∑
uv

∂2f(x(τ), τ)
∂xu ∂xv

[L(x(τ), τ)Q LT(x(τ), τ)]uv dτ

L(x(t), t) = L(x(t0), t0) +
∫ t

t0

∂L(x(τ), τ)
∂t

dτ +

∫ t

t0

∑
u

∂L(x(τ), τ)
∂xu

fu(x(τ), τ) dτ

+

∫ t

t0

∑
u

∂L(x(τ), τ)
∂xu

[L(x(τ), τ) dβ(τ)]u

+

∫ t

t0

1
2

∑
uv

∂2L(x(τ), τ)
∂xu ∂xv

[L(x(τ), τ)Q LT(x(τ), τ)]uv dτ
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Itô-Taylor series of SDEs [4/5]

Let’s define operators

Lt g =
∂g
∂t

+
∑

u

∂g
∂xu

fu +
1
2

∑
uv

∂2g
∂xu ∂xv

[L Q LT]uv

Lβ,v g =
∑

u

∂g
∂xu

Luv , v = 1, . . . ,n.

Then we can conveniently write

f(x(t), t) = f(x(t0), t0) +

∫ t

t0
Lt f(x(τ), τ) dτ +

∑
v

∫ t

t0
Lβ,v f(x(τ), τ) dβv (τ)

L(x(t), t) = L(x(t0), t0) +

∫ t

t0
LtL(x(τ), τ) dτ +

∑
v

∫ t

t0
Lβ,v L(x(τ), τ) dβv (τ)
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Itô-Taylor series of SDEs [5/5]

If we now substitute these into equation of x(t), we get

x(t) = x(t0) + f(x(t0), t0) (t − t0) + L(x(t0), t0) (β(t)− β(t0))

+

∫ t

t0

∫ τ

t0
Lt f(x(τ), τ) dτ dτ +

∑
v

∫ t

t0

∫ τ

t0
Lβ,v f(x(τ), τ) dβv (τ) dτ

+

∫ t

t0

∫ τ

t0
LtL(x(τ), τ) dτ dβ(τ) +

∑
v

∫ t

t0

∫ τ

t0
Lβ,v L(x(τ), τ) dβv (τ) dβ(τ).

This can be seen to have the form

x(t) = x(t0) + f(x(t0), t0) (t − t0) + L(x(t0), t0) (β(t)− β(t0)) + r(t)

Ignoring the remainder term r(t) gives Euler–Maruyma method.
We can expand more the terms to get higher order methods –
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Euler–Maruyama method

Euler-Maruyama method
Draw x̂0 ∼ p(x0) and divide time [0, t ] interval into K steps of length
∆t . At each step k do the following:

1 Draw random variable ∆βk from the distribution (where tk = k ∆t)

∆βk ∼ N(0,Q ∆t).

2 Compute

x̂(tk+1) = x̂(tk ) + f(x̂(tk ), tk ) ∆t + L(x̂(tk ), tk ) ∆βk .
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Order of convergence

Strong order of convergence γ:

E [|x(tn)− x̂(tn)|] ≤ K ∆tγ

Weak order of convergence α:

|E [g(x(tn))]− E [g(x̂(tn))] | ≤ K ∆tα,

for any function g.
Euler–Maruyama method has strong order γ = 1/2 and weak
order α = 1.
The reason for γ = 1/2 is the following term in the remainder:

∑
v

∫ t

t0

∫ τ

t0
Lβ,v L(x(τ), τ) dβv (τ) dβ(τ).
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Milstein’s method [1/4]

If we now expand the problematic term using Itô formula, we get

x(t) = x(t0) + f(x(t0), t0) (t − t0) + L(x(t0), t0) (β(t)− β(t0))

+
∑

v

Lβ,v L(x(t0), t0)

∫ t

t0

∫ τ

t0
dβv (τ) dβ(τ) + remainder.

Notice the iterated Itô integral appearing in the equation:∫ t

t0

∫ τ

t0
dβv (τ) dβ(τ).

Computation of general iterated Itô integrals is non-trivial.
We usually also need to approximate the iterated Itô integrals –
different ways for strong and weak approximations.
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Milstein’s method [2/4]

Milstein’s method
Draw x̂0 ∼ p(x0), and at each step k do the following:

1 Jointly draw the following:

∆βk = β(tk+1)− β(tk )

∆χv ,k =

∫ tk+1

tk

∫ τ

tk
dβv (τ) dβ(τ).

2 Compute

x̂(tk+1) = x̂(tk ) + f(x̂(tk ), tk ) ∆t + L(x̂(tk ), tk ) ∆βk

+
∑

v

[∑
u

∂L
∂xu

(x̂(tk ), tk ) Luv (x̂(tk ), tk )

]
∆χv ,k .
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Milstein’s method [3/4]

The strong and weak orders of the above method are both 1.
The difficulty is in drawing the iterated stochastic integral jointly
with the Brownian motion.
If the noise is additive, that is, L(x, t) = L(t) then Milstein’s
algorithm reduces to Euler–Maruyama.
Thus in additive noise case, the strong order of Euler–Maruyama
is 1 as well.
In scalar case we can compute the iterated stochastic integral:∫ t

t0

∫ τ

t0
dβ(τ) dβ(τ) =

1
2

[
(β(t)− β(t0))2 − q (t − t0)

]
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Milstein’s method [4/4]

Scalar Milstein’s method
Draw x̂0 ∼ p(x0), and at each step k do the following:

1 Draw random variable ∆βk from the distribution (where tk = k ∆t)

∆βk ∼ N(0,q ∆t).

2 Compute

x̂(tk+1) = x̂(tk ) + f (x̂(tk ), tk ) ∆t + L(x(tk ), tk ) ∆βk

+
1
2
∂L
∂x

(x̂(tk ), tk ) L(x̂(tk ), tk ) (∆β2
k − q ∆t).
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Higher Order Methods

By taking more terms into the expansion, can form methods of
arbitrary order.
The high order iterated Itô integrals will be increasingly hard to
simulate.
However, if L does not depend on the state, we can get up to
strong order 1.5 without any iterated integrals.
For that purpose we need to expand the following terms using the
Itô formula (see the lecture notes):

Lt f(x(t), t)
Lβ,v f(x(t), t).
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Strong Order 1.5 Itô–Taylor Method

Strong Order 1.5 Itô–Taylor Method
When L and Q are constant, we get the following algorithm. Draw
x̂0 ∼ p(x0), and at each step k do the following:

1 Draw random variables ∆ζk and ∆βk from the joint distribution(
∆ζk
∆βk

)
∼ N

((
0
0

)
,

(
Q ∆t3/3 Q ∆t2/2
Q ∆t2/2 Q ∆t

))
.

2 Compute

x̂(tk+1) = x̂(tk ) + f(x̂(tk ), tk ) ∆t + L ∆βk + ak
(t − t0)2

2
+
∑

v

bv ,k ∆ζk

ak =
∂f
∂t

+
∑

u

∂f
∂xu

fu +
1
2

∑
uv

∂2f
∂xu ∂xv

[L Q LT]uv

bv ,k =
∑

u

∂f
∂xu

Luv .
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Weak Approximations

If we are only interested in the statistics of SDE solutions, weak
approximations are enough.
In weak approximations iterated Itô integrals can be replaced with
simpler approximations with right statistics.
These approximations are typically non-Gaussian – e.g., a simple
weak Euler–Maruyama scheme is

x̂(tk+1) = x̂(tk ) + f(x̂(tk ), tk ) ∆t + L(x̂(tk ), tk ) ∆β̂k ,

where
P(∆β̂ j

k = ±
√

∆t) =
1
2
.

For details, see Kloeden and Platen (1999) – and the next lecture.
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Summary

Gaussian approximations of SDEs can be formed by assuming
Gaussianity in the mean and covariance equations.
The resulting equations can be numerically solved using
linearization or cubature integration (sigma-point methods).
Itô–Taylor series is a stochastic counterpart of Taylor series for
ODEs.
With first order truncation of Itô–Taylor series we get
Euler–Maruyama method.
Including additional stochastic term leads to Milstein’s method.
Computation/approximation of iterated Itô integrals is hard and is
needed for implementing the methods.
In additive noise case we get a simple 1.5 strong order method.
Weak approximations are simpler and enough for approximating
the statistics of SDEs.
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