

Lecture 4: Numerical Solution of SDEs, Itô–Taylor Series, Gaussian Approximations

Simo Särkkä

Aalto University, Finland

Contents

- 1 Introduction
- 2 Gaussian approximations of non-linear SDEs
- 3 Itô-Taylor series of SDEs
- 4 Itô-Taylor series based numerical methods
- 5 Summary

Overview of Numerical Methods

- Gaussian approximations:
 - Approximations of mean and covariance equations.
 - Gaussian assumed density approximations.
 - Statistical linearization.
- Numerical simulation of SDEs:
 - Itô–Taylor series.
 - Euler–Maruyama method and Milstein’s method.
 - Stochastic Runge–Kutta (next week).
- Other methods (not covered in lectures):
 - Approximations of higher order moments.
 - Approximations of Fokker–Planck–Kolmogorov PDE.

Theoretical mean and covariance equations

- Consider the **stochastic differential equation (SDE)**

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t) dt + \mathbf{L}(\mathbf{x}, t) d\beta.$$

- The **mean and covariance differential equations** are

$$\frac{d\mathbf{m}}{dt} = E[\mathbf{f}(\mathbf{x}, t)]$$

$$\begin{aligned} \frac{d\mathbf{P}}{dt} &= E\left[\mathbf{f}(\mathbf{x}, t)(\mathbf{x} - \mathbf{m})^T\right] + E\left[(\mathbf{x} - \mathbf{m})\mathbf{f}^T(\mathbf{x}, t)\right] \\ &\quad + E\left[\mathbf{L}(\mathbf{x}, t) \mathbf{Q} \mathbf{L}^T(\mathbf{x}, t)\right] \end{aligned}$$

- Note that the **expectations** are w.r.t. $p(\mathbf{x}, t)$!

Gaussian approximations [1/5]

- The mean and covariance equations explicitly:

$$\frac{d\mathbf{m}}{dt} = \int \mathbf{f}(\mathbf{x}, t) p(\mathbf{x}, t) d\mathbf{x}$$

$$\begin{aligned}\frac{d\mathbf{P}}{dt} = & \int \mathbf{f}(\mathbf{x}, t) (\mathbf{x} - \mathbf{m})^\top p(\mathbf{x}, t) d\mathbf{x} + \int (\mathbf{x} - \mathbf{m}) \mathbf{f}^\top(\mathbf{x}, t) p(\mathbf{x}, t) d\mathbf{x} \\ & + \int \mathbf{L}(\mathbf{x}, t) \mathbf{Q} \mathbf{L}^\top(\mathbf{x}, t) p(\mathbf{x}, t) d\mathbf{x}.\end{aligned}$$

- In Gaussian assumed density approximation we assume

$$p(\mathbf{x}, t) \approx \mathcal{N}(\mathbf{x} | \mathbf{m}(t), \mathbf{P}(t)).$$

Gaussian approximation I

Gaussian approximation to SDE can be obtained by integrating the following differential equations from the initial conditions $\mathbf{m}(0) = \mathbb{E}[\mathbf{x}(0)]$ and $\mathbf{P}(0) = \text{Cov}[\mathbf{x}(0)]$ to the target time t :

$$\begin{aligned}\frac{d\mathbf{m}}{dt} &= \int \mathbf{f}(\mathbf{x}, t) \mathcal{N}(\mathbf{x} | \mathbf{m}, \mathbf{P}) d\mathbf{x} \\ \frac{d\mathbf{P}}{dt} &= \int \mathbf{f}(\mathbf{x}, t) (\mathbf{x} - \mathbf{m})^T \mathcal{N}(\mathbf{x} | \mathbf{m}, \mathbf{P}) d\mathbf{x} \\ &\quad + \int (\mathbf{x} - \mathbf{m}) \mathbf{f}^T(\mathbf{x}, t) \mathcal{N}(\mathbf{x} | \mathbf{m}, \mathbf{P}) d\mathbf{x} \\ &\quad + \int \mathbf{L}(\mathbf{x}, t) \mathbf{Q} \mathbf{L}^T(\mathbf{x}, t) \mathcal{N}(\mathbf{x} | \mathbf{m}, \mathbf{P}) d\mathbf{x}.\end{aligned}$$

Gaussian approximation I (cont.)

If we denote the **Gaussian expectation** as

$$E_N[g(x)] = \int g(x) N(x | m, P) dx$$

the **mean and covariance equations** can be written as

$$\frac{dm}{dt} = E_N[f(x, t)]$$

$$\begin{aligned} \frac{dP}{dt} &= E_N[(x - m) f^T(x, t)] + E_N[f(x, t) (x - m)^T] \\ &\quad + E_N[L(x, t) Q L^T(x, t)]. \end{aligned}$$

Theorem

Let $\mathbf{f}(\mathbf{x}, t)$ be differentiable with respect to \mathbf{x} and let $\mathbf{x} \sim \mathcal{N}(\mathbf{m}, \mathbf{P})$. Then the following identity holds:

$$\begin{aligned} & \int \mathbf{f}(\mathbf{x}, t) (\mathbf{x} - \mathbf{m})^\top \mathcal{N}(\mathbf{x} | \mathbf{m}, \mathbf{P}) \, d\mathbf{x} \\ &= \left[\int \mathbf{F}_x(\mathbf{x}, t) \mathcal{N}(\mathbf{x} | \mathbf{m}, \mathbf{P}) \, d\mathbf{x} \right] \mathbf{P}, \end{aligned}$$

where $\mathbf{F}_x(\mathbf{x}, t)$ is the Jacobian matrix of $\mathbf{f}(\mathbf{x}, t)$ with respect to \mathbf{x} .

Gaussian approximation II

Gaussian approximation to SDE can be obtained by integrating the following differential equations from the **initial conditions** $\mathbf{m}(0) = E[\mathbf{x}(0)]$ and $\mathbf{P}(0) = \text{Cov}[\mathbf{x}(0)]$ to the **target time t** :

$$\frac{d\mathbf{m}}{dt} = E_N[\mathbf{f}(\mathbf{x}, t)]$$

$$\frac{d\mathbf{P}}{dt} = \mathbf{P} E_N[\mathbf{F}_x(\mathbf{x}, t)]^T + E_N[\mathbf{F}_x(\mathbf{x}, t)] \mathbf{P} + E_N[\mathbf{L}(\mathbf{x}, t) \mathbf{Q} \mathbf{L}^T(\mathbf{x}, t)],$$

where $E_N[\cdot]$ denotes the expectation with respect to $\mathbf{x} \sim N(\mathbf{m}, \mathbf{P})$.

Classical Linearization [1/2]

- We need to compute following kind of **Gaussian integrals**:

$$E_N[\mathbf{g}(\mathbf{x}, t)] = \int \mathbf{g}(\mathbf{x}, t) \ N(\mathbf{x} \mid \mathbf{m}, \mathbf{P}) \ d\mathbf{x}$$

- We can borrow methods from **filtering theory**.
- **Linearize** the **drift** $\mathbf{f}(\mathbf{x}, t)$ around the mean \mathbf{m} as follows:

$$\mathbf{f}(\mathbf{x}, t) \approx \mathbf{f}(\mathbf{m}, t) + \mathbf{F}_x(\mathbf{m}, t) (\mathbf{x} - \mathbf{m}),$$

- Approximate the expectation of the **diffusion part** as

$$\mathbf{L}(\mathbf{x}, t) \approx \mathbf{L}(\mathbf{m}, t).$$

Classical Linearization [2/2]

Linearization approximation of SDE

Linearization based approximation to SDE can be obtained by integrating the following differential equations from the initial conditions $\mathbf{m}(0) = E[\mathbf{x}(0)]$ and $\mathbf{P}(0) = \text{Cov}[\mathbf{x}(0)]$ to the target time t :

$$\frac{d\mathbf{m}}{dt} = \mathbf{f}(\mathbf{m}, t)$$

$$\frac{d\mathbf{P}}{dt} = \mathbf{P} \mathbf{F}_x^T(\mathbf{m}, t) + \mathbf{F}_x(\mathbf{m}, t) \mathbf{P} + \mathbf{L}(\mathbf{m}, t) \mathbf{Q} \mathbf{L}^T(\mathbf{m}, t).$$

- Used in extended Kalman filter (EKF).

Cubature integration [1/3]

- Gauss–Hermite cubatures:

$$\int \mathbf{f}(\mathbf{x}, t) \mathcal{N}(\mathbf{x} \mid \mathbf{m}, \mathbf{P}) d\mathbf{x} \approx \sum_i W^{(i)} \mathbf{f}(\mathbf{x}^{(i)}, t).$$

- The **sigma points (abscissas)** $\mathbf{x}^{(i)}$ and **weights** $W^{(i)}$ are determined by the integration rule.
- In **multidimensional Gauss-Hermite integration, unscented transform, and cubature integration** we select:

$$\mathbf{x}^{(i)} = \mathbf{m} + \sqrt{\mathbf{P}} \boldsymbol{\xi}_i.$$

- The **matrix square root** is defined by $\mathbf{P} = \sqrt{\mathbf{P}} \sqrt{\mathbf{P}}^T$ (typically Cholesky factorization).
- The **vectors** $\boldsymbol{\xi}_i$ are determined by the integration rule.

Cubature integration [2/3]

- In **Gauss–Hermite integration** the vectors and weights are selected as **cartesian products** of 1d Gauss–Hermite integration.
- **Unscented transform** uses:

$$\xi_0 = 0$$

$$\xi_i = \begin{cases} \sqrt{\lambda + n} e_i & , \quad i = 1, \dots, n \\ -\sqrt{\lambda + n} e_{i-n} & , \quad i = n + 1, \dots, 2n, \end{cases}$$

and $W^{(0)} = \lambda/(n + \kappa)$, and $W^{(i)} = 1/[2(n + \kappa)]$ for $i = 1, \dots, 2n$.

- **Cubature method** (spherical 3rd degree):

$$\xi_i = \begin{cases} \sqrt{n} e_i & , \quad i = 1, \dots, n \\ -\sqrt{n} e_{i-n} & , \quad i = n + 1, \dots, 2n, \end{cases}$$

and $W^{(i)} = 1/(2n)$ for $i = 1, \dots, 2n$.

Sigma-point approximation of SDE

Sigma-point based approximation to SDE:

$$\frac{d\mathbf{m}}{dt} = \sum_i W^{(i)} \mathbf{f}(\mathbf{m} + \sqrt{\mathbf{P}} \boldsymbol{\xi}_i, t)$$

$$\frac{d\mathbf{P}}{dt} = \sum_i W^{(i)} \mathbf{f}(\mathbf{m} + \sqrt{\mathbf{P}} \boldsymbol{\xi}_i, t) \boldsymbol{\xi}_i^T \sqrt{\mathbf{P}}^T$$

$$+ \sum_i W^{(i)} \sqrt{\mathbf{P}} \boldsymbol{\xi}_i \mathbf{f}^T(\mathbf{m} + \sqrt{\mathbf{P}} \boldsymbol{\xi}_i, t)$$

$$+ \sum_i W^{(i)} \mathbf{L}(\mathbf{m} + \sqrt{\mathbf{P}} \boldsymbol{\xi}_i, t) \mathbf{Q} \mathbf{L}^T(\mathbf{m} + \sqrt{\mathbf{P}} \boldsymbol{\xi}_i, t).$$

- Use in (continuous-time) **unscented Kalman filter (UKF)** and (continuous-time) cubature-based Kalman filters (GHKF, CKF, etc.).

Taylor series of ODEs vs. Itô-Taylor series of SDEs

- Taylor series expansions (in time direction) are classical methods for approximating solutions of deterministic ordinary differential equations (ODEs).
- Largely superseded by Runge–Kutta type of derivative free methods (whose theory is based on Taylor series).
- Itô-Taylor series can be used for approximating solutions of SDEs—direct generalization of Taylor series for ODEs.
- Stochastic Runge–Kutta methods are not as easy to use as their deterministic counterparts
- It is easier to understand Itô-Taylor series by understanding Taylor series (for ODEs) first.

Taylor series of ODEs [1/5]

- Consider the following **ordinary differential equation (ODE)**:

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{f}(\mathbf{x}(t), t), \quad \mathbf{x}(t_0) = \text{given},$$

- Integrating** both sides gives

$$\mathbf{x}(t) = \mathbf{x}(t_0) + \int_{t_0}^t \mathbf{f}(\mathbf{x}(\tau), \tau) \, d\tau.$$

- If the function \mathbf{f} is differentiable, we can also write $t \mapsto \mathbf{f}(\mathbf{x}(t), t)$ as the solution to the **differential equation**

$$\begin{aligned} \frac{d\mathbf{f}(\mathbf{x}(t), t)}{dt} &= \frac{\partial \mathbf{f}}{\partial t}(\mathbf{x}(t), t) + \sum_i \frac{dx_i}{dt} \frac{\partial \mathbf{f}}{\partial x_i}(\mathbf{x}(t), t) \\ &= \frac{\partial \mathbf{f}}{\partial t}(\mathbf{x}(t), t) + \sum_i f_i(\mathbf{x}(t), t) \frac{\partial \mathbf{f}}{\partial x_i}(\mathbf{x}(t), t) \end{aligned}$$

Taylor series of ODEs [2/5]

- The **integral form** of this is

$$\mathbf{f}(\mathbf{x}(t), t) = \mathbf{f}(\mathbf{x}(t_0), t_0) + \int_{t_0}^t \left[\frac{\partial \mathbf{f}}{\partial t}(\mathbf{x}(\tau), \tau) + \sum_i f_i(\mathbf{x}(\tau), \tau) \frac{\partial \mathbf{f}}{\partial x_i}(\mathbf{x}(\tau), \tau) \right] d\tau$$

- Let's define the **linear operator**

$$\mathcal{L}\mathbf{g} = \frac{\partial \mathbf{g}}{\partial t} + \sum_i f_i \frac{\partial \mathbf{g}}{\partial x_i}$$

- We can now rewrite the **integral equation** as

$$\mathbf{f}(\mathbf{x}(t), t) = \mathbf{f}(\mathbf{x}(t_0), t_0) + \int_{t_0}^t \mathcal{L}\mathbf{f}(\mathbf{x}(\tau), \tau) d\tau.$$

Taylor series of ODEs [3/5]

- By **substituting** this into the original integrated ODE gives

$$\begin{aligned}\mathbf{x}(t) &= \mathbf{x}(t_0) + \int_{t_0}^t \mathbf{f}(\mathbf{x}(\tau), \tau) \, d\tau \\ &= \mathbf{x}(t_0) + \int_{t_0}^t [\mathbf{f}(\mathbf{x}(t_0), t_0) + \int_{t_0}^{\tau} \mathcal{L} \mathbf{f}(\mathbf{x}(\tau), \tau) \, d\tau] \, d\tau \\ &= \mathbf{x}(t_0) + \mathbf{f}(\mathbf{x}(t_0), t_0) (t - t_0) + \int_{t_0}^t \int_{t_0}^{\tau} \mathcal{L} \mathbf{f}(\mathbf{x}(\tau), \tau) \, d\tau \, d\tau.\end{aligned}$$

- The term $\mathcal{L} \mathbf{f}(\mathbf{x}(t), t)$ solves the **differential equation**

$$\begin{aligned}\frac{d[\mathcal{L} \mathbf{f}(\mathbf{x}(t), t)]}{dt} &= \frac{\partial[\mathcal{L} \mathbf{f}(\mathbf{x}(t), t)]}{\partial t} + \sum_i f_i(\mathbf{x}(t), t) \frac{\partial[\mathcal{L} \mathbf{f}(\mathbf{x}(t), t)]}{\partial x_i} \\ &= \mathcal{L}^2 \mathbf{f}(\mathbf{x}(t), t).\end{aligned}$$

Taylor series of ODEs [4/5]

- In **integral form** this is

$$\mathcal{L} \mathbf{f}(\mathbf{x}(t), t) = \mathcal{L} \mathbf{f}(\mathbf{x}(t_0), t_0) + \int_{t_0}^t \mathcal{L}^2 \mathbf{f}(\mathbf{x}(\tau), \tau) \, d\tau.$$

- **Substituting** into the equation of $\mathbf{x}(t)$ then gives

$$\begin{aligned}\mathbf{x}(t) &= \mathbf{x}(t_0) + \mathbf{f}(\mathbf{x}(t_0), t_0) (t - t_0) \\ &\quad + \int_{t_0}^t \int_{t_0}^{\tau} [\mathcal{L} \mathbf{f}(\mathbf{x}(t_0), t_0) + \int_{t_0}^{\tau} \mathcal{L}^2 \mathbf{f}(\mathbf{x}(\tau), \tau) \, d\tau] \, d\tau \, d\tau \\ &= \mathbf{x}(t_0) + \mathbf{f}(\mathbf{x}(t_0), t_0) (t - t_0) + \frac{1}{2} \mathcal{L} \mathbf{f}(\mathbf{x}(t_0), t_0) (t - t_0)^2 \\ &\quad + \int_{t_0}^t \int_{t_0}^{\tau} \int_{t_0}^{\tau} \mathcal{L}^2 \mathbf{f}(\mathbf{x}(\tau), \tau) \, d\tau \, d\tau \, d\tau\end{aligned}$$

Taylor series of ODEs [5/5]

- If we continue this procedure ad infinitum, we obtain the following **Taylor series expansion** for the solution of the ODE:

$$\begin{aligned}\mathbf{x}(t) = \mathbf{x}(t_0) + \mathbf{f}(\mathbf{x}(t_0), t_0)(t - t_0) + \frac{1}{2!} \mathcal{L} \mathbf{f}(\mathbf{x}(t_0), t_0)(t - t_0)^2 \\ + \frac{1}{3!} \mathcal{L}^2 \mathbf{f}(\mathbf{x}(t_0), t_0)(t - t_0)^3 + \dots\end{aligned}$$

where

$$\mathcal{L} = \frac{\partial}{\partial t} + \sum_i f_i \frac{\partial}{\partial x_i}$$

- The **Taylor series** for a given **function** $\mathbf{x}(t)$ can be obtained by setting $\mathbf{f}(t) = d\mathbf{x}(t)/dt$.

Itô-Taylor series of SDEs [1/5]

- Consider the following SDE

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}(t), t) dt + \mathbf{L}(\mathbf{x}(t), t) d\beta.$$

- In integral form this is

$$\mathbf{x}(t) = \mathbf{x}(t_0) + \int_{t_0}^t \mathbf{f}(\mathbf{x}(\tau), \tau) d\tau + \int_{t_0}^t \mathbf{L}(\mathbf{x}(\tau), \tau) d\beta(\tau).$$

- Applying Itô formula to $\mathbf{f}(\mathbf{x}(t), t)$ gives

$$\begin{aligned} d\mathbf{f}(\mathbf{x}(t), t) &= \frac{\partial \mathbf{f}(\mathbf{x}(t), t)}{\partial t} dt + \sum_u \frac{\partial \mathbf{f}(\mathbf{x}(t), t)}{\partial x_u} f_u(\mathbf{x}(t), t) dt \\ &+ \sum_u \frac{\partial \mathbf{f}(\mathbf{x}(t), t)}{\partial x_u} [\mathbf{L}(\mathbf{x}(t), t) d\beta(\tau)]_u \\ &+ \frac{1}{2} \sum_{uv} \frac{\partial^2 \mathbf{f}(\mathbf{x}(t), t)}{\partial x_u \partial x_v} [\mathbf{L}(\mathbf{x}(t), t) \mathbf{Q} \mathbf{L}^\top(\mathbf{x}(t), t)]_{uv} dt \end{aligned}$$

Itô-Taylor series of SDEs [2/5]

- Similarly for $\mathbf{L}(\mathbf{x}(t), t)$ we get via **Itô formula**:

$$\begin{aligned} d\mathbf{L}(\mathbf{x}(t), t) &= \frac{\partial \mathbf{L}(\mathbf{x}(t), t)}{\partial t} dt + \sum_u \frac{\partial \mathbf{L}(\mathbf{x}(t), t)}{\partial x_u} f_u(\mathbf{x}(t), t) dt \\ &+ \sum_u \frac{\partial \mathbf{L}(\mathbf{x}(t), t)}{\partial x_u} [\mathbf{L}(\mathbf{x}(t), t) d\beta(\tau)]_u \\ &+ \frac{1}{2} \sum_{uv} \frac{\partial^2 \mathbf{L}(\mathbf{x}(t), t)}{\partial x_u \partial x_v} [\mathbf{L}(\mathbf{x}(t), t) \mathbf{Q} \mathbf{L}^\top(\mathbf{x}(t), t)]_{uv} dt \end{aligned}$$

Itô-Taylor series of SDEs [3/5]

- In **integral form** these can be written as

$$\mathbf{f}(\mathbf{x}(t), t) = \mathbf{f}(\mathbf{x}(t_0), t_0) + \int_{t_0}^t \frac{\partial \mathbf{f}(\mathbf{x}(\tau), \tau)}{\partial t} d\tau + \int_{t_0}^t \sum_u \frac{\partial \mathbf{f}(\mathbf{x}(\tau), \tau)}{\partial x_u} f_u(\mathbf{x}(\tau), \tau) d\tau$$

$$+ \int_{t_0}^t \sum_u \frac{\partial \mathbf{f}(\mathbf{x}(\tau), \tau)}{\partial x_u} [\mathbf{L}(\mathbf{x}(\tau), \tau) d\beta(\tau)]_u$$

$$+ \int_{t_0}^t \frac{1}{2} \sum_{uv} \frac{\partial^2 \mathbf{f}(\mathbf{x}(\tau), \tau)}{\partial x_u \partial x_v} [\mathbf{L}(\mathbf{x}(\tau), \tau) \mathbf{Q} \mathbf{L}^\top(\mathbf{x}(\tau), \tau)]_{uv} d\tau$$

$$\mathbf{L}(\mathbf{x}(t), t) = \mathbf{L}(\mathbf{x}(t_0), t_0) + \int_{t_0}^t \frac{\partial \mathbf{L}(\mathbf{x}(\tau), \tau)}{\partial t} d\tau + \int_{t_0}^t \sum_u \frac{\partial \mathbf{L}(\mathbf{x}(\tau), \tau)}{\partial x_u} f_u(\mathbf{x}(\tau), \tau) d\tau$$

$$+ \int_{t_0}^t \sum_u \frac{\partial \mathbf{L}(\mathbf{x}(\tau), \tau)}{\partial x_u} [\mathbf{L}(\mathbf{x}(\tau), \tau) d\beta(\tau)]_u$$

$$+ \int_{t_0}^t \frac{1}{2} \sum_{uv} \frac{\partial^2 \mathbf{L}(\mathbf{x}(\tau), \tau)}{\partial x_u \partial x_v} [\mathbf{L}(\mathbf{x}(\tau), \tau) \mathbf{Q} \mathbf{L}^\top(\mathbf{x}(\tau), \tau)]_{uv} d\tau$$

Itô-Taylor series of SDEs [4/5]

- Let's define **operators**

$$\begin{aligned}\mathcal{L}_t \mathbf{g} &= \frac{\partial \mathbf{g}}{\partial t} + \sum_u \frac{\partial \mathbf{g}}{\partial x_u} f_u + \frac{1}{2} \sum_{uv} \frac{\partial^2 \mathbf{g}}{\partial x_u \partial x_v} [\mathbf{L} \mathbf{Q} \mathbf{L}^\top]_{uv} \\ \mathcal{L}_{\beta,v} \mathbf{g} &= \sum_u \frac{\partial \mathbf{g}}{\partial x_u} \mathbf{L}_{uv}, \quad v = 1, \dots, n.\end{aligned}$$

- Then we can **conveniently write**

$$\mathbf{f}(\mathbf{x}(t), t) = \mathbf{f}(\mathbf{x}(t_0), t_0) + \int_{t_0}^t \mathcal{L}_t \mathbf{f}(\mathbf{x}(\tau), \tau) \, d\tau + \sum_v \int_{t_0}^t \mathcal{L}_{\beta,v} \mathbf{f}(\mathbf{x}(\tau), \tau) \, d\beta_v(\tau)$$

$$\mathbf{L}(\mathbf{x}(t), t) = \mathbf{L}(\mathbf{x}(t_0), t_0) + \int_{t_0}^t \mathcal{L}_t \mathbf{L}(\mathbf{x}(\tau), \tau) \, d\tau + \sum_v \int_{t_0}^t \mathcal{L}_{\beta,v} \mathbf{L}(\mathbf{x}(\tau), \tau) \, d\beta_v(\tau)$$

Itô-Taylor series of SDEs [5/5]

- If we now **substitute** these into equation of $\mathbf{x}(t)$, we get

$$\begin{aligned}\mathbf{x}(t) &= \mathbf{x}(t_0) + \mathbf{f}(\mathbf{x}(t_0), t_0)(t - t_0) + \mathbf{L}(\mathbf{x}(t_0), t_0)(\beta(t) - \beta(t_0)) \\ &+ \int_{t_0}^t \int_{t_0}^{\tau} \mathcal{L}_t \mathbf{f}(\mathbf{x}(\tau), \tau) \, d\tau \, d\tau + \sum_v \int_{t_0}^t \int_{t_0}^{\tau} \mathcal{L}_{\beta, v} \mathbf{f}(\mathbf{x}(\tau), \tau) \, d\beta_v(\tau) \, d\tau \\ &+ \int_{t_0}^t \int_{t_0}^{\tau} \mathcal{L}_t \mathbf{L}(\mathbf{x}(\tau), \tau) \, d\tau \, d\beta(\tau) + \sum_v \int_{t_0}^t \int_{t_0}^{\tau} \mathcal{L}_{\beta, v} \mathbf{L}(\mathbf{x}(\tau), \tau) \, d\beta_v(\tau) \, d\beta(\tau).\end{aligned}$$

- This can be seen to have the **form**

$$\mathbf{x}(t) = \mathbf{x}(t_0) + \mathbf{f}(\mathbf{x}(t_0), t_0)(t - t_0) + \mathbf{L}(\mathbf{x}(t_0), t_0)(\beta(t) - \beta(t_0)) + \mathbf{r}(t)$$

- Ignoring the **remainder term $\mathbf{r}(t)$** gives **Euler–Maruyama method**.
- We can **expand more the terms** to get higher order methods –

Euler-Maruyama method

Draw $\hat{\mathbf{x}}_0 \sim p(\mathbf{x}_0)$ and divide time $[0, t]$ interval into K steps of length Δt . At each step k do the following:

- 1 Draw random variable $\Delta\beta_k$ from the distribution (where $t_k = k \Delta t$)

$$\Delta\beta_k \sim \mathbf{N}(\mathbf{0}, \mathbf{Q} \Delta t).$$

- 2 Compute

$$\hat{\mathbf{x}}(t_{k+1}) = \hat{\mathbf{x}}(t_k) + \mathbf{f}(\hat{\mathbf{x}}(t_k), t_k) \Delta t + \mathbf{L}(\hat{\mathbf{x}}(t_k), t_k) \Delta\beta_k.$$

Order of convergence

- **Strong** order of convergence γ :

$$\mathbb{E} [|\mathbf{x}(t_n) - \hat{\mathbf{x}}(t_n)|] \leq K \Delta t^\gamma$$

- **Weak** order of convergence α :

$$|\mathbb{E} [g(\mathbf{x}(t_n))] - \mathbb{E} [g(\hat{\mathbf{x}}(t_n))]| \leq K \Delta t^\alpha,$$

for any function g .

- **Euler–Maruyama method** has strong order $\gamma = 1/2$ and weak order $\alpha = 1$.
- The reason for $\gamma = 1/2$ is the following **term in the remainder**:

$$\sum_v \int_{t_0}^t \int_{t_0}^\tau \mathcal{L}_{\beta, v} \mathbf{L}(\mathbf{x}(\tau), \tau) \, d\beta_v(\tau) \, d\beta(\tau).$$

Milstein's method [1/4]

- If we now **expand** the problematic term using **Itô formula**, we get

$$\begin{aligned}\mathbf{x}(t) = & \mathbf{x}(t_0) + \mathbf{f}(\mathbf{x}(t_0), t_0)(t - t_0) + \mathbf{L}(\mathbf{x}(t_0), t_0)(\beta(t) - \beta(t_0)) \\ & + \sum_v \mathcal{L}_{\beta, v} \mathbf{L}(\mathbf{x}(t_0), t_0) \int_{t_0}^t \int_{t_0}^{\tau} d\beta_v(\tau) d\beta(\tau) + \text{remainder.}\end{aligned}$$

- Notice the **iterated Itô integral** appearing in the equation:

$$\int_{t_0}^t \int_{t_0}^{\tau} d\beta_v(\tau) d\beta(\tau).$$

- Computation of general iterated Itô integrals is **non-trivial**.
- We usually also need to **approximate the iterated Itô integrals** – different ways for strong and weak approximations.

Milstein's method [2/4]

Milstein's method

Draw $\hat{\mathbf{x}}_0 \sim p(\mathbf{x}_0)$, and at each step k do the following:

- 1 Jointly draw the following:

$$\begin{aligned}\Delta\beta_k &= \beta(t_{k+1}) - \beta(t_k) \\ \Delta\chi_{v,k} &= \int_{t_k}^{t_{k+1}} \int_{t_k}^{\tau} d\beta_v(\tau) d\beta(\tau).\end{aligned}$$

- 2 Compute

$$\begin{aligned}\hat{\mathbf{x}}(t_{k+1}) &= \hat{\mathbf{x}}(t_k) + \mathbf{f}(\hat{\mathbf{x}}(t_k), t_k) \Delta t + \mathbf{L}(\hat{\mathbf{x}}(t_k), t_k) \Delta\beta_k \\ &\quad + \sum_v \left[\sum_u \frac{\partial \mathbf{L}}{\partial x_u}(\hat{\mathbf{x}}(t_k), t_k) \mathbf{L}_{uv}(\hat{\mathbf{x}}(t_k), t_k) \right] \Delta\chi_{v,k}.\end{aligned}$$

Milstein's method [3/4]

- The **strong and weak orders** of the above method are both 1.
- The difficulty is in drawing the **iterated stochastic integral** jointly with the Brownian motion.
- If the noise is **additive**, that is, $\mathbf{L}(\mathbf{x}, t) = \mathbf{L}(t)$ then Milstein's algorithm **reduces to Euler–Maruyama**.
- Thus in **additive noise** case, the strong order of **Euler–Maruyama** is 1 as well.
- In **scalar case** we can compute the **iterated stochastic integral**:

$$\int_{t_0}^t \int_{t_0}^{\tau} d\beta(\tau) d\beta(\tau) = \frac{1}{2} [(\beta(t) - \beta(t_0))^2 - q(t - t_0)]$$

Scalar Milstein's method

Draw $\hat{x}_0 \sim p(x_0)$, and at each step k do the following:

- 1 Draw random variable $\Delta\beta_k$ from the distribution (where $t_k = k \Delta t$)

$$\Delta\beta_k \sim N(0, q \Delta t).$$

- 2 Compute

$$\begin{aligned}\hat{x}(t_{k+1}) &= \hat{x}(t_k) + f(\hat{x}(t_k), t_k) \Delta t + L(x(t_k), t_k) \Delta\beta_k \\ &+ \frac{1}{2} \frac{\partial L}{\partial x}(\hat{x}(t_k), t_k) L(\hat{x}(t_k), t_k) (\Delta\beta_k^2 - q \Delta t).\end{aligned}$$

- By taking **more terms** into the expansion, can form methods of arbitrary order.
- The high order **iterated Itô integrals** will be increasingly hard to simulate.
- However, if \mathbf{L} does not depend on the state, we can get up to **strong order 1.5** without any iterated integrals.
- For that purpose we need to **expand** the following terms using the Itô formula (see the lecture notes):

$$\begin{aligned}\mathcal{L}_t \mathbf{f}(\mathbf{x}(t), t) \\ \mathcal{L}_{\beta, \nu} \mathbf{f}(\mathbf{x}(t), t).\end{aligned}$$

Strong Order 1.5 Itô–Taylor Method

Strong Order 1.5 Itô–Taylor Method

When \mathbf{L} and \mathbf{Q} are constant, we get the following algorithm. Draw $\hat{\mathbf{x}}_0 \sim p(\mathbf{x}_0)$, and at each step k do the following:

- 1 Draw random variables $\Delta\zeta_k$ and $\Delta\beta_k$ from the joint distribution

$$\begin{pmatrix} \Delta\zeta_k \\ \Delta\beta_k \end{pmatrix} \sim N \left(\begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}, \begin{pmatrix} \mathbf{Q} \Delta t^3/3 & \mathbf{Q} \Delta t^2/2 \\ \mathbf{Q} \Delta t^2/2 & \mathbf{Q} \Delta t \end{pmatrix} \right).$$

- 2 Compute

$$\hat{\mathbf{x}}(t_{k+1}) = \hat{\mathbf{x}}(t_k) + \mathbf{f}(\hat{\mathbf{x}}(t_k), t_k) \Delta t + \mathbf{L} \Delta\beta_k + \mathbf{a}_k \frac{(t - t_0)^2}{2} + \sum_v \mathbf{b}_{v,k} \Delta\zeta_k$$

$$\mathbf{a}_k = \frac{\partial \mathbf{f}}{\partial t} + \sum_u \frac{\partial \mathbf{f}}{\partial x_u} f_u + \frac{1}{2} \sum_{uv} \frac{\partial^2 \mathbf{f}}{\partial x_u \partial x_v} [\mathbf{L} \mathbf{Q} \mathbf{L}^T]_{uv}$$

$$\mathbf{b}_{v,k} = \sum_u \frac{\partial \mathbf{f}}{\partial x_u} \mathbf{L}_{uv}.$$

Weak Approximations

- If we are only interested in the **statistics** of SDE solutions, **weak** approximations are enough.
- In weak approximations **iterated Itô integrals** can be replaced with **simpler approximations** with right statistics.
- These approximations are typically **non-Gaussian** – e.g., a **simple weak Euler–Maruyama scheme** is

$$\hat{\mathbf{x}}(t_{k+1}) = \hat{\mathbf{x}}(t_k) + \mathbf{f}(\hat{\mathbf{x}}(t_k), t_k) \Delta t + \mathbf{L}(\hat{\mathbf{x}}(t_k), t_k) \Delta \hat{\beta}_k,$$

where

$$P(\Delta \hat{\beta}_k^j = \pm \sqrt{\Delta t}) = \frac{1}{2}.$$

- For details, see Kloeden and Platen (1999) – and the next lecture.

- Gaussian approximations of SDEs can be formed by assuming Gaussianity in the mean and covariance equations.
- The resulting equations can be numerically solved using linearization or cubature integration (sigma-point methods).
- Itô–Taylor series is a stochastic counterpart of Taylor series for ODEs.
- With first order truncation of Itô–Taylor series we get Euler–Maruyama method.
- Including additional stochastic term leads to Milstein's method.
- Computation/approximation of iterated Itô integrals is hard and is needed for implementing the methods.
- In additive noise case we get a simple 1.5 strong order method.
- Weak approximations are simpler and enough for approximating the statistics of SDEs.