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Overview of Numerical Methods

@ Gaussian approximations:
o Approximations of mean and covariance equations.
o Gaussian assumed density approximations.
o Statistical linearization.
@ Numerical simulation of SDEs:
o t6—Taylor series.
o Euler—Maruyama method and Milstein’s method.
o Stochastic Runge—Kutta (next week).
@ Other methods (not covered in lectures):

o Approximations of higher order moments.
o Approximations of Fokker—Planck—Kolmogorov PDE.
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Theoretical mean and covariance equations

@ Consider the stochastic differential equation (SDE)
dx = f(x, t) dt + L(x, f) dB.

@ The mean and covariance differential equations are

dm
e E [f(x, t)]
% —E [f(x, 1) (x — m)T} +E [(x —m)fT(x, t)]

+E [L(x, HaLT(x, t)}

@ Note that the expectations are w.r.t. p(x, t)!
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Gaussian approximations [1/5]

@ The mean and covariance equations explicitly:
dm
Tl /f(x, t) p(x, t) dx
T = [t 0= m)Tpex, ) ax+ [ - m)fT(x.0)p(x. 1) ax
s / L(x,t)QLT(x, t) p(x, t) dx.

@ In Gaussian assumed density approximation we assume

p(x,t) =~ N(x|m(t),P(t)).
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Gaussian approximations [2/5]

Gaussian approximation |

Gaussian approximation to SDE can be obtained by integrating the
following differential equations from the initial conditions
m(0) = E[x(0)] and P(0) = Cov[x(0)] to the target time :

/fxt x| m,P) dx

_ /f(x, £) (x — m)T N(x|m, P) dx

+ /(x —m)fT(x,t) N(x|m,P) dx

= / L(x,t)QLT(x, ) N(x|m,P) dx
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Gaussian approximations [3/5]

Gaussian approximation | (cont.)
If we denote the Gaussian expectation as

Enlg(x)] = [ 9(x) N(x|m. P) ax
the mean and covariance equations can be written as
dm
G s = En[f(x, 1)]
dP T
af = Enlx—m)f(x, ] + En[f(x, £) (x ~ m)’]

+ En[L(x, 1) QLT(x, 1)].
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Gaussian approximations [4/5]

Letf(x,t) be differentiable with respect to x and let x ~ N(m, P). Then
the following identity holds:

/f(x, ) (x — m)T N(x|m,P) dx
= [/ Fx(x,t) N(x|m,P) dx] P,

where Fx(x, t) is the Jacobian matrix of f(x, t) with respect to x.
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Gaussian approximations [5/5]

Gaussian approximation Il

Gaussian approximation to SDE can be obtained by integrating the
following differential equations from the initial conditions
m(0) = E[x(0)] and P(0) = Cov[x(0)] to the target time f:

T = Enlf(x, 0]
= P ENF(x O] + En[Fe(x, 0] P + Ex[L(x, ) QLT (x, 1]

where Ey|[-] denotes the expectation with respect to x ~ N(m, P).
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Classical Linearization [1/2]

@ We need to compute following kind of Gaussian integrals:

EN[g(xt]—/g(xt x| m, P) dx

@ We can borrow methods from filtering theory.
@ Linearize the drift f(x, t) around the mean m as follows:

f(x,t) ~ f(m, t) + Fx(m,t) (x — m),
@ Approximate the expectation of the diffusion part as

L(x,t) ~ L(m, ).
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Classical Linearization [2/2]

Linearization approximation of SDE

Linearization based approximation to SDE can be obtained by
integrating the following differential equations from the initial conditions
m(0) = E[x(0)] and P(0) = Cov[x(0)] to the target time t:

dm

‘(11_': — PEI(m, {) + Fx(m, t) P+ L(m, t)QL"(m, t).

@ Used in extended Kalman filter (EKF).
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Cubature integration [1/3]

@ Gauss—Hermite cubatures:

/ f(x, 1) N(x|m,P) dx ~ Y " WO (x(), 1).
i

@ The sigma points (abscissas) x() and weights W() are
determined by the integration rule.

@ In multidimensional Gauss-Hermite integration, unscented
transform, and cubature integration we select:

x) =m+VP¢,.

@ The matrix square root is defined by P = v/P \/_ (typically
Cholesky factorization).

@ The vectors &; are determined by the integration rule.
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Cubature integration [2/3]

@ In Gauss—Hermite integration the vectors and weights are
selected as cartesian products of 1d Gauss—Hermite integration.

@ Unscented transform uses:

& =0
€ — VA+ne; , i=1,....n
"\ =vVA+ne_, , i=n+1,....2n,

and WO = \/(n+k),and W) =1/[2(n+ k)] fori=1,...,2n.
@ Cubature method (spherical 3rd degree):

{ﬁe,- , i=1,...,n
£ =

—vnei_, , i=n+1,...,2n,

and W) =1/(2n)fori=1,...,2n.
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Cubature integration [3/3]

Sigma-point approximation of SDE

Sigma-point based approximation to SDE:

dm ;
- = Z WO f(m + VP&, 1)
]

dP ; T
el (i) el
= EI:W fm+ VP&, 1) VP

+> WOVPET(m+VPE 1)

+> WOLmM+ VP, QL (m+ VP ¢, 1).

@ Use in (continuous-time) unscented Kalman filter (UKF) and
(continuous-time) cubature-based Kalman filters (GHKF, CKF,
etc.).
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Taylor series of ODEs vs. |t6-Taylor series of SDEs

@ Taylor series expansions (in time direction) are classical methods
for approximating solutions of deterministic ordinary differential
equations (ODEs).

@ Largely superseded by Runge—Kutta type of derivative free
methods (whose theory is based on Taylor series).

@ |t6-Taylor series can be used for approximating solutions of
SDEs—direct generalization of Taylor series for ODEs.

@ Stochastic Runge—Kutta methods are not as easy to use as their
deterministic counterparts

@ It is easier to understand It6-Taylor series by understanding Taylor
series (for ODEs) first.
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Taylor series of ODEs [1/5]

@ Consider the following ordinary differential equation (ODE):

dx(t)
dt
@ Integrating both sides gives

=f(x(t),t), x(ty) = given,

t
x(t) =x(to) + | f(x(7),7) dr.

)

@ If the function f is differentiable, we can also write t — f(x(t), t) as
the solution to the differential equation

df(x(), 1)  of dx; of
i~ a0+ DG 0.

_ %(x(t), 0+ S0, %(x(t)’ "
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Taylor series of ODEs [2/5]

@ The integral form of this is

t
H(x(1), 1) = f(X(to). o)+ /,

of of
7 X(7),7) + Z fi(x(7),T) a_x,-(x(T)’ T)]
@ Let’s define the linear operator

+Z 8x,

@ We can now rewrite the integral equation as

f(x(t), 1) = f(x(ko), o) + tcf(x(f), 7) dr.

)
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Taylor series of ODEs [3/5]

@ By substituting this into the original integrated ODE gives

t

x(t) =x() + [ f(x(7),7) dr

fo
t T
— X() + [f(x(to),t0)+/ LAX(r), 7) dr] dr
t o
t T
= Xx(ty) + f(x(), £ )(t—to)—i-/ LE(x(7),7) dr dr.
t i

@ The term Lf(x(?), t) solves the differential equation

d[Lf(x(?), 1)] 8[E f(X(t) )] 8[£ f(x(1), )]
dt Z e oX;

= £2f(x( 1), ).
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Taylor series of ODEs [4/5]

@ In integral form this is

t
LE(x(t),t) = LE(X(fp), to) + / L2§(x(7), ) dr.
)
@ Substituting into the equation of x(t) then gives
X(t) = x(to) + f(x(to), 1) (t — o

)
/t / [LH(X(t), bo) + T£2f(x(7),7) dr] dr dr
1

= X(to) + f(x(ko), 1) (t — o) + 5 L(x(to), o) (t — to)?

—l—/ / L2§(x(7),7) dr dr dr
th JIy Jiy
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Taylor series of ODEs [5/5]

@ If we continue this procedure ad infinitum, we obtain the following
Taylor series expansion for the solution of the ODE:

X(t) = X(t) + (X(to). o) (t ~ to) + 5y LHX(10), o) (t ~ t)°

" %52 f(X(fo), to) (t — 1) + ...

where 5 9
- fi—
C=att Z " ox
@ The Taylor series for a given function x(t) can be obtained by

setting f(t) = dx(t)/dt.
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It6-Taylor series of SDEs [1/5]

@ Consider the following SDE
dx = f(x(t),t) dt + L(x(t),t) dB
@ In integral form this is
t t
x(t) = x(fp) +/ f(x(7),7) dr —|—/ L(x(7),7) dB(7).
to to
@ Applying It6 formula to f(x(?), t) gives

df(x(t), t) = % at+3" (a(t) 0 ¢ x(t), 1) dt

n Z %X?’t) [L(x(1),t) dB(7)]u

924(x(1), 1)

E uv 8Xu 8Xv [L(X(t), t) Q LT(X(t)’ t)]UV dt
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It6-Taylor series of SDEs [2/5]

@ Similarly for L(x(t), t) we get via It6 formula:

dL(x(t),t) = % dt+> %}3’” fu(x(t), t) dt

+ 3 Oy ), 1) ap(r]

m OXy

2
#5320, 0 @UTR(0, Ot

Simo Sarkka (Aalto) Lecture 4: Numerical Solution of SDEs



It6-Taylor series of SDEs [3/5]

@ Inintegral form these can be written as

t
f(x(t), ) = £(x(t), o) + / t a'(x(a;)“) dr + /t 27‘9'("8(2’7) fu(x(r), 7) dr

/ > AT g (x(7),7) 4Bl

0 u

/, Z 0 ;(;(ng [L(x(7), 7) QLT (X(7), 7)]uw d7

L(x(1),t) = L(x(t), to) + 7‘9"("(,5?”) dr + /t tZ 76"(2(;”)’7) fu(x(7),7) dr

/t 5 2 "(T) ™) [L(x(r), 7) dB(r)]u

0 u

2
/t Z - gxt(g)z T) [L( ( ) )QLT(X(T)vT)]uv dr
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It6-Taylor series of SDEs [4/5]

@ Let’s define operators

£g—— Z #9_qLT
! 2 — OXy OXy w
0
Eﬁvg Z gLuv, V:1,,n
@ Then we can conveniently write

£(x(1). 1) = f(x(o), ) /m(xT) yar+3 | ﬁﬁv 7) dBy(7)

L(x(1), ) = L(X(t), o) + /t LL(x(r),7) dr + 3 /t L5 L(X(),7) dBy(7)
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It6-Taylor series of SDEs [5/5]

@ If we now substitute these into equation of x(t), we get
x(t) = ( 0) + f(x(t), o) (t — o) + L(x (to) t) (B(t) - B(t))
/t [ L)) ar ar+ Y /t [ 25, 4(x(7).7) a5(r) ar

/to/to LiL(x(7),7) dr dB(7 /to/to LsvL( ) dBy(r) dB(7).

@ This can be seen to have the form
X(t) = x() + f(x(t), bo) (t — o) + L(x(to), o) (B(t) — B(t)) + r(t)

@ Ignoring the remainder term r(t) gives Euler-Maruyma method.
@ We can expand more the terms to get higher order methods —
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Euler—Maruyama method

Euler-Maruyama method

Draw Xq ~ p(Xp) and divide time [0, t] interval into K steps of length
At. At each step k do the following:

@ Draw random variable A3, from the distribution (where t, = k At)
ABy ~ N(0,QAL).
©Q Compute

X(t1) = X(tk) + F(X(t), t) At + L(X(t), t) AB-
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Order of convergence

@ Strong order of convergence ~:
E[|x(t:) — X(tn)]] < K AtY
@ Weak order of convergence «:
|Elg(x(t))] — E[g(X(tn))] | < K At?,

for any function g.

@ Euler—-Maruyama method has strong order v = 1/2 and weak
order a = 1.

@ The reason for v = 1/2 is the following term in the remainder:

t pr
Z/t /t Eﬁ,vL(x(T)vT) dgy(7) dB(7).
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Milstein’s method [1/4]

@ If we now expand the problematic term using I1t6 formula, we get
X(t) = x(to) + f(x(%), bo) (t — to) + L(x(%), to) (B(t) — B(k))
t pT
37 L5 L(X(t), ) / / d8,(r) dB(r) + remainder.
v b /o

@ Notice the iterated It6 integral appearing in the equation:

/ t [ et e

@ Computation of general iterated It integrals is non-trivial.

@ We usually also need to approximate the iterated It6 integrals —
different ways for strong and weak approximations.
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Milstein’s method [2/4]

Milstein’s method

Draw Xq ~ p(Xp), and at each step k do the following:
@ Jointly draw the following:

ABy = B(tk+1) — B(tk)
ki1 [T
Ay = /t /t 48,() dB(7).

@ Compute
X(tk+1) = X(tc) + F(X(t), ti) At + L(X(t), t) DB

+ 30 | e /(0. 0 Lur (80, )

v

AXv,k'
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Milstein’s method [3/4]

@ The strong and weak orders of the above method are both 1.

@ The difficulty is in drawing the iterated stochastic integral jointly
with the Brownian motion.

@ If the noise is additive, that is, L(x, t) = L(f) then Milstein’s
algorithm reduces to Euler—Maruyama.

@ Thus in additive noise case, the strong order of Euler—Maruyama
is 1 as well.

@ In scalar case we can compute the iterated stochastic integral:

t pr
| [ a8) astr) = 5[50 - 5002 — a2~ )]
o Jlo
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Milstein’s method [4/4]

Scalar Milstein’s method

Draw Xo ~ p(Xp), and at each step k do the following:
@ Draw random variable Ay from the distribution (where tx = k At)

APk ~ N(0, g At).
©Q Compute
X(te1) = X(t) + F(X(t). ti) At + L(x (), t) DB

F 2O ({1, ) LRt 1) (AP — G L),
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Higher Order Methods

@ By taking more terms into the expansion, can form methods of
arbitrary order.

@ The high order iterated It6 integrals will be increasingly hard to
simulate.

@ However, if L does not depend on the state, we can get up to
strong order 1.5 without any iterated integrals.

@ For that purpose we need to expand the following terms using the
It6 formula (see the lecture notes):

LA(x(t), 1)
Lp A(x(1), 1).

Simo Sarkka (Aalto) Lecture 4: Numerical Solution of SDEs 36 /40



Strong Order 1.5 It6—Taylor Method

Strong Order 1.5 It6—Taylor Method

When L and Q are constant, we get the following algorithm. Draw
Xo ~ p(Xg), and at each step k do the following:

@ Draw random variables A¢, and A3, from the joint distribution
AC\ _n((O) (QA£/3 QAar/2
ABy 0)°\Qarr/2  Qat )]

(t

|
‘

©Q Compute

X(ties1) = X(t) + 1(X(t), t) At + L ABy + ak +vakACk

1 o°f T
Zaxu 2 —~ Xy OXy (LQL T
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Weak Approximations

@ If we are only interested in the statistics of SDE solutions, weak
approximations are enough.

@ In weak approximations iterated It6 integrals can be replaced with
simpler approximations with right statistics.

@ These approximations are typically non-Gaussian — e.g., a simple
weak Euler—Maruyama scheme is

R(tki1) = R(t) + F(X(t), t) At + L(X(t), t) DBy,

where

P(AB, = +VAL) =

~ N

@ For details, see Kloeden and Platen (1999) — and the next lecture.
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@ Gaussian approximations of SDEs can be formed by assuming
Gaussianity in the mean and covariance equations.

@ The resulting equations can be numerically solved using
linearization or cubature integration (sigma-point methods).

@ |t6—Taylor series is a stochastic counterpart of Taylor series for
ODEs.

@ With first order truncation of [t6—Taylor series we get
Euler-Maruyama method.

@ Including additional stochastic term leads to Milstein’s method.

@ Computation/approximation of iterated 1t integrals is hard and is
needed for implementing the methods.

@ In additive noise case we get a simple 1.5 strong order method.

@ Weak approximations are simpler and enough for approximating
the statistics of SDEs.
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