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Statistics of SDEs

@ Consider the stochastic differential equation (SDE)
dx = f(x, t) dt + L(x, t) d8.

@ Each x(t) is random variable, and we denote its probability density
with p(x, t) — or sometimes with p(x(f)).

@ The probability density is solution to a partial differential equation
called Fokker—Planck—Kolmogorov equation.

@ The mean m(t) and covariance P(t) are solutions of certain
ordinary differential equations (with a catch. . .).

@ For linear SDEs we get quite explicit results.
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Fokker-Planck-Kolmogorov PDE: Derivation [1/5]

@ Let ¢(x) be an arbitrary twice differentiable function.
@ The It6 differential of ¢(x(t)) is, by the It6 formula, given as follows:

dg = Za (X, t)dt+za—[Lx t) dgJ;

+2 (202

@ Taking expectations and formally dividing by df gives the following
equation, which we will transform into FPK:

it ZE[aas o)

Tz Z (s ) x. 00T
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Fokker-Planck-Kolmogorov PDE: Derivation [2/5]

@ The left hand side can now be written as follows:

dE[¢]
dt dt/¢x)px f)

B op(x, t)
@ Recall the multidimensional integration by parts formula

Cagi):)v(x)dx:/ac u(x) v(x)n; dS — /(

@ In this case, the boundary terms vanish and thus we have

821—5:) v(x) dx = — / u(x) ag—f(),() dx.

8v(x
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Fokker-Planck-Kolmogorov PDE: Derivation [3/5]

@ Currently, our equation looks like this:

/¢( ap“ dx _ZE[8¢ xt)]

[¢]

dt

22 K il >[L(x, fQLT(x, )];|.

@ For the first term on the right, we get via integration by parts:

E [g—jf A, t)} o () plx. 1) ix

/¢ [fi(x, t) p(x, )] dx

@ We now have only one term to go.
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Fokker-Planck-Kolmogorov PDE: Derivation [4/5]

@ For the remaining term we use integration by parts twice, which
gives

(& renavinn
-/ (aa,-zef ) [L(x, ) QLT(x, 1)l p(x, 1) dx
N /(a¢) ax; {[L(x AL (x,t)];p(x, t)} dx

é’xf

/¢ 8X, [L(X t)QLT(x )] p(X, t)} dx
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Fokker-Planck-Kolmogorov PDE: Derivation [5/5]

@ Our equation now looks like this:

/ P(x) 8p(8);, 2 Z / B(x f.(x, t) p(x, t)] dx
+32 [ oo

@ This can also be written as

/¢(x apxt Za—l[fxt p(x, )]

1 82
28

(x, 1) QLT(x, 1)]; p(X, 1)} dx

{[L(X QLT (x, 1)];p(x, 1)} | dx = 0.

@ But the function is ¢(x) arbitrary and thus the term in the brackets
must vanish = Fokker—Planck—Kolmogorov equation.
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Fokker-Planck-Kolmogorov PDE
Fokker—Planck—Kolmogorov equation

The probability density p(x, t) of the solution of the SDE
dx = f(x, t) dt + L(x, t) dg,

solves the Fokker—Planck—Kolmogorov partial differential equation

Z [fxt (x, )]

2 3 {[L(X ) QLT (x, 1] (X, t)}

@ In physics literature it is called the Fokker—Planck equation.
@ In stochastics it is the forward Kolmogorov equation.
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Fokker-Planck-Kolmogorov PDE: Example 1

8p(x t) _

(%, )i p0x, 1)}

8

| A\

FPK Example: Diffusion equation
Brownian motion can be defined as solution to the SDE

dx = dg.

If we set the diffusion constant of the Brownian motion to be g = 2 D,
then the FPK reduces to the diffusion equation

op 9?p

FF_p=~=

ot ox? |
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Fokker-Planck-Kolmogorov PDE: Example 2

8p(x f _ Zf{f, X.0p(x,0] + 1 ax o {[L(x HAL(x, ) p(x, 1)}

FPK Example: Benes SDE
The FPK for the SDE

dx = tanh(x) dt +dg

can be written as

ot 9 122p(x, 1)
at - ax (tanh(X) p(X7 t)) + 2 a 2

L CORREe )
2 o0x2

= (tanh?(x) — 1) p(x, t) — tanh(x)
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Mean and Covariance of SDE [1/2]

@ Using It6 formula for ¢(x, t), taking expectations and dividing by dt

gives
o -efa] e e
3 Z E [( x 8)(/_) [L(x,t)QLT(x, t)],‘/}
ff

@ If we select the function as ¢(x, t) = xy, then we get

dE[xy]
dt

@ In vector form this gives the differential equation for the mean:

= E[fu(x, 1)]

dm
i E [f(x, 1)]
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Mean and Covariance of SDE [2/2]

o If we select ¢(x, t) = xy x, — my(t) my(t), then we get differential
equation for the components of covariance:
d E[xy xy — my(t) my(1)]
dt
= E{(xy — my (1)) fu(x, )] + E[(xu — mu(t)) f(x, 1)]
+ [L(X, t) Q LT(X7 t)]uv-

@ The final mean and covariance differential equations are

dm
i = E[f(x,1)]

‘;': — E [0, 1) (x = m)T] + E |(x = m) 7(x, 1)

+E [L(x, HaLT(x, t)}

@ Note that the expectations are w.r.t. p(x, t)!
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Mean and Covariance of SDE: Notes

@ To solve the equations, we need to know p(x, t), the solution to
the FPK.

@ In linear-Gaussian case the first two moments indeed characterize
the solution.

@ Useful starting point for Gaussian approximations of SDEs.
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Mean and Covariance of SDE: Example

Example (Moments of an Ornstein—Uhlenbeck process)
The Ornstein—Uhlenbeck process is
dx = =\ x dt +dg, x(0) = xo,

We have f(x) = —\ x and thus the differential equations for the mean
and variance are thus given as

dm =-\m

dt

dP

— =-2\P

dt +q7

with m(0) = xp, P(0) = 0. The whole state distribution is

p(x, 1) = p(x(t)) = N(x(t) | m(t), P()).
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Higher Order Moments

@ It is also possible to derive differential equations for the higher
order moments of SDEs.

@ But with state dimension n, we have n® third order moments, n*
fourth order moments and so on.

@ Recall that a given scalar function ¢(x) satisfies

2
dElotx)l E[ft(x I _E [—&gix) f(x)} +3€ [8 ;;(,f ) L2(x)] .

@ If we apply this to ¢(x) = x™:

4ED] _ y pent f(x, 0]+ T 1) B2 1200)

@ This, in principle, is an equation for higher order moments.
@ To actually use this, we need to use moment closure methods.
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Mean and covariance of linear SDEs

@ Consider a linear stochastic differential equation
dx = F(t)x(t) dt +u(t) dt + L() d(t), X(to) ~ N(mo, Po).

@ The mean and covariance equations are now given as

d";_l(ﬁ — F(t)m(t) + u(t)
%’) — F(1) P(t) + P(t) FT(t) + L(t) QLT(t),

@ The general solutions are given as
t
m(t) = W(t, fp) m(f) +/ W(t,7)u(r) dr
b
P(t) = W(t, 1) P(to) WT(t, to)

+ lrw(t, 7)L(r) Q(r) LT (1) W'(t,7) dr

b
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Mean and covariance of LTI SDEs

@ In LTI SDE case
dx = Fx(t) dt + L dg(t),

we have similarly

dm(t)
== = Fm(f)
%&t) =FP(t)+P()FT +LQLT

@ The explicit solutions are

m(t) = exp(F (t — t)) m(%)
P(t) = exp(F (t - to)) P(to) exp(F (t - to))"

+/ exp(F (t—7))LQL" exp(F (t —7))" dr
fo
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LTI SDEs: Matrix fractions

@ Let the matrices C(t) and D(t) solve the LTI differential equation
dC(t)/dt \ [ F LQLT C(t)
dD(t)/dt ) —\ 0 —FT D(t)

@ Then P(t) = C(t)D~'(t) solves the differential equation

%(t” =FP(t)+P(t)FT +LQLT

@ Thus we can solve the covariance with matrix exponential as well:
Cc(t) \ _ F LQLT C()
( D(?) ) ‘ex"{( 0 —F )t} ( D(t) )
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Markov properties of SDEs

@ Definition of a Markov process:
p(x(t) | Xs) = p(x(t) | x(s)), forallt>s.

where
Zi={x(1) : 0< 7 <t}
@ All It6 processes are Markov processes.
@ p(x(t) | x(s)) is the transition density of the process.

@ The transition density is also a solution to the
Fokker—Planck—Kolmogorov equation.

@ Finite-dimensional distributions can be constructed as

n

p(X(1o), X(t1), ... X(tn)) = P(X(to)) [ [ P(x(t:) | X(ti-1)).

i=1
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Transition Densities of LTI SDEs

@ The solution of LTI SDE starting from x(s) ~ N(m(s), P(s)):
m(t) = exp(F (t — s)) m(s)
P(t) = exp(F (t — 5)) P(s) exp(F (t — 5))"
+ /texp(F(t —7)LQLT exp(F (t—7))" dr.

@ Starting exactly at x(s) corresponds to m(s) = x(s), P(s) = 0.
@ Thus we have

p(x(t) | x(s)) = N(x(t) [ m(t | s),P(t | s)),
where

m(t | s) = exp(F (t — s)) x(8)

P(t|s) = /Stexp(F(t —7)LQL" exp(F (t—7))" dr.
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Transition Densities of LTI SDEs (cont.)

o Let p(x(txs+1) | X(t)) and Atk = tx1 — t, which gives:
P(X(tir1) | X(t))
=N (x(tk+1) | exp(F Ati) x(t), /O o exp(F (Aty — 7)) LQL" exp(F (At — 7))" d7->

@ This is now equivalent to a discrete-time system

X(tkr1) = Ak X(t) + Ak, ax ~ N(0,%)
where

A = exp(F Atk)

Af
k= / " exp(F (At — 7)) LQLT exp(F (At — 7)) dr.
0
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Transition Densities of LTI SDEs: Example

Example (Discretized Wiener velocity model)

d®x(t)
T w(t).
In more rigorous It6 SDE form this model can be written as

(we) :@ () at+ @ ap (1),

F L

We now get (note that F? = 0):

A=exp(FAt)=1+FA = ((1) A1t)

At _ N\T 1A43 1a42
s _ 1 At—r7 00 1 At—71 dr — ?Atz s At a
o \0 1 0 g/\0 1 AR At
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@ The probability density of SDE solution x(t) solves the
Fokker—Planck—Kolmogorov (FKP) partial differential equation.

@ The mean m(t) and covariance P(t) of the solution solve a pair of
ordinary differential equations.
@ In non-linear case, the expectations in the mean and covariance

equations cannot be solved without knowing the whole probability
density.

@ For higher moment moments we can derive (theoretical)
differential equations as well—can be approximated with moment
closure.

@ SDEs are Markov processes and can be characterised via
transition densities.

@ For linear SDEs, we can solve the probability density, transition
densities, and all the moments explicitly.
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