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Statistics of SDEs

Consider the stochastic differential equation (SDE)

dx = f(x, t) dt + L(x, t) dβ.

Each x(t) is random variable, and we denote its probability density
with p(x, t) – or sometimes with p(x(t)).
The probability density is solution to a partial differential equation
called Fokker–Planck–Kolmogorov equation.
The mean m(t) and covariance P(t) are solutions of certain
ordinary differential equations (with a catch. . . ).
For linear SDEs we get quite explicit results.
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Fokker-Planck-Kolmogorov PDE: Derivation [1/5]

Let φ(x) be an arbitrary twice differentiable function.
The Itô differential of φ(x(t)) is, by the Itô formula, given as follows:

dφ =
∑

i

∂φ

∂xi
fi(x, t) dt +

∑
i

∂φ

∂xi
[L(x, t) dβ]i

+
1
2

∑
ij

(
∂2φ

∂xi∂xj

)
[L(x, t) Q LT(x, t)]ij dt .

Taking expectations and formally dividing by dt gives the following
equation, which we will transform into FPK:

d E[φ]

dt
=
∑

i

E
[
∂φ

∂xi
fi(x, t)

]

+
1
2

∑
ij

E
[(

∂2φ

∂xi∂xj

)
[L(x, t) Q LT(x, t)]ij

]
.
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Fokker-Planck-Kolmogorov PDE: Derivation [2/5]

The left hand side can now be written as follows:

d E[φ]

dt
=

d
dt

∫
φ(x) p(x, t) dx

=

∫
φ(x)

∂p(x, t)
∂t

dx.

Recall the multidimensional integration by parts formula∫
C

∂u(x)

∂xi
v(x) dx =

∫
∂C

u(x) v(x) ni dS −
∫

C
u(x)

∂v(x)

∂xi
dx.

In this case, the boundary terms vanish and thus we have∫
∂u(x)

∂xi
v(x) dx = −

∫
u(x)

∂v(x)

∂xi
dx.
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Fokker-Planck-Kolmogorov PDE: Derivation [3/5]

Currently, our equation looks like this:∫
φ(x)

∂p(x , t)
∂t

dx︸ ︷︷ ︸
d E[φ]

dt

=
∑

i

E
[
∂φ

∂xi
fi(x, t)

]

+
1
2

∑
ij

E
[(

∂2φ

∂xi∂xj

)
[L(x, t) Q LT(x, t)]ij

]
.

For the first term on the right, we get via integration by parts:

E
[
∂φ

∂xi
fi(x, t)

]
=

∫
∂φ

∂xi
fi(x, t) p(x, t) dx

= −
∫
φ(x)

∂

∂xi
[fi(x, t) p(x, t)] dx

We now have only one term to go.
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Fokker-Planck-Kolmogorov PDE: Derivation [4/5]

For the remaining term we use integration by parts twice, which
gives

E
[(

∂2φ

∂xi∂xj

)
[L(x, t) Q LT(x, t)]ij

]
=

∫ (
∂2φ

∂xi∂xj

)
[L(x, t) Q LT(x, t)]ij p(x, t) dx

= −
∫ (

∂φ

∂xj

)
∂

∂xi

{
[L(x, t) Q LT(x, t)]ij p(x, t)

}
dx

=

∫
φ(x)

∂2

∂xi ∂xj

{
[L(x, t) Q LT(x, t)]ij p(x, t)

}
dx
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Fokker-Planck-Kolmogorov PDE: Derivation [5/5]

Our equation now looks like this:∫
φ(x)

∂p(x, t)
∂t

dx = −
∑

i

∫
φ(x)

∂

∂xi
[fi(x, t) p(x, t)] dx

+
1
2

∑
ij

∫
φ(x)

∂2

∂xi ∂xj
{[L(x, t) Q LT(x, t)]ij p(x, t)} dx

This can also be written as∫
φ(x)

[∂p(x, t)
∂t

+
∑

i

∂

∂xi
[fi(x, t) p(x, t)]

−1
2

∑
ij

∂2

∂xi ∂xj
{[L(x, t) Q LT(x, t)]ij p(x, t)}

]
dx = 0.

But the function is φ(x) arbitrary and thus the term in the brackets
must vanish⇒ Fokker–Planck–Kolmogorov equation.
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Fokker-Planck-Kolmogorov PDE

Fokker–Planck–Kolmogorov equation
The probability density p(x, t) of the solution of the SDE

dx = f(x, t) dt + L(x, t) dβ,

solves the Fokker–Planck–Kolmogorov partial differential equation

∂p(x, t)
∂t

= −
∑

i

∂

∂xi
[fi(x , t) p(x, t)]

+
1
2

∑
ij

∂2

∂xi ∂xj

{
[L(x, t) Q LT(x, t)]ij p(x, t)

}
.

In physics literature it is called the Fokker–Planck equation.
In stochastics it is the forward Kolmogorov equation.
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Fokker-Planck-Kolmogorov PDE: Example 1

∂p(x, t)
∂t

= −
∑

i

∂

∂xi
[fi (x , t) p(x, t)] +

1
2

∑
ij

∂2

∂xi ∂xj

{
[L(x, t) Q LT(x, t)]ij p(x, t)

}
.

FPK Example: Diffusion equation
Brownian motion can be defined as solution to the SDE

dx = dβ.

If we set the diffusion constant of the Brownian motion to be q = 2 D,
then the FPK reduces to the diffusion equation

∂p
∂t

= D
∂2p
∂x2
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Fokker-Planck-Kolmogorov PDE: Example 2

∂p(x, t)
∂t

= −
∑

i

∂

∂xi
[fi (x , t) p(x, t)] +

1
2

∑
ij

∂2

∂xi ∂xj

{
[L(x, t) Q LT(x, t)]ij p(x, t)

}
.

FPK Example: Benes SDE
The FPK for the SDE

dx = tanh(x) dt + dβ

can be written as

∂p(x , t)
∂t

= − ∂

∂x
(tanh(x) p(x , t)) +

1
2
∂2p(x , t)
∂x2

= (tanh2(x)− 1) p(x , t)− tanh(x)
∂p(x , t)
∂x

+
1
2
∂2p(x , t)
∂x2 .
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Mean and Covariance of SDE [1/2]

Using Itô formula for φ(x, t), taking expectations and dividing by dt
gives

d E[φ]

dt
= E

[
∂φ

∂t

]
+
∑

i

E
[
∂φ

∂xi
fi(x , t)

]

+
1
2

∑
ij

E
[(

∂2φ

∂xi∂xj

)
[L(x, t) Q LT(x , t)]ij

]
If we select the function as φ(x, t) = xu, then we get

d E[xu]

dt
= E [fu(x, t)]

In vector form this gives the differential equation for the mean:

dm
dt

= E [f(x, t)]
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Mean and Covariance of SDE [2/2]

If we select φ(x, t) = xu xv −mu(t) mv (t), then we get differential
equation for the components of covariance:

d E[xu xv −mu(t) mv (t)]

dt
= E [(xv −mv (t)) fu(x , t)] + E [(xu −mu(t)) fv (x , t)]

+ [L(x, t) Q LT(x, t)]uv .

The final mean and covariance differential equations are

dm
dt

= E [f(x, t)]

dP
dt

= E
[
f(x, t) (x−m)T

]
+ E

[
(x−m) fT(x, t)

]
+ E

[
L(x, t) Q LT(x, t)

]
Note that the expectations are w.r.t. p(x, t)!
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Mean and Covariance of SDE: Notes

To solve the equations, we need to know p(x, t), the solution to
the FPK.
In linear-Gaussian case the first two moments indeed characterize
the solution.
Useful starting point for Gaussian approximations of SDEs.

Simo Särkkä (Aalto) Lecture 3: Statistics of SDEs 16 / 29



Mean and Covariance of SDE: Example

Example (Moments of an Ornstein–Uhlenbeck process)

The Ornstein–Uhlenbeck process is

dx = −λ x dt + dβ, x(0) = x0,

We have f (x) = −λ x and thus the differential equations for the mean
and variance are thus given as

dm
dt

= −λm

dP
dt

= −2λP + q,

with m(0) = x0, P(0) = 0. The whole state distribution is

p(x , t) , p(x(t)) = N(x(t) | m(t),P(t)).
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Higher Order Moments

It is also possible to derive differential equations for the higher
order moments of SDEs.
But with state dimension n, we have n3 third order moments, n4

fourth order moments and so on.
Recall that a given scalar function φ(x) satisfies

d E[φ(x)]

dt
= E

[
∂φ(x)

∂x
f (x)

]
+

q
2

E
[
∂2φ(x)

∂x2 L2(x)

]
.

If we apply this to φ(x) = xn:

d E[xn]

dt
= n E[xn−1 f (x , t)] +

q
2

n (n − 1) E[xn−2 L2(x)]

This, in principle, is an equation for higher order moments.
To actually use this, we need to use moment closure methods.
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Mean and covariance of linear SDEs

Consider a linear stochastic differential equation

dx = F(t) x(t) dt + u(t) dt + L(t) dβ(t), x(t0) ∼ N(m0,P0).

The mean and covariance equations are now given as

dm(t)
dt

= F(t) m(t) + u(t)

dP(t)
dt

= F(t) P(t) + P(t) FT(t) + L(t) Q LT(t),

The general solutions are given as

m(t) = Ψ(t , t0) m(t0) +

∫ t

t0
Ψ(t , τ) u(τ) dτ

P(t) = Ψ(t , t0) P(t0)ΨT(t , t0)

+

∫ t

t0
Ψ(t , τ) L(τ) Q(τ) LT(τ)ΨT(t , τ) dτ
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Mean and covariance of LTI SDEs

In LTI SDE case
dx = F x(t) dt + L dβ(t),

we have similarly

dm(t)
dt

= F m(t)

dP(t)
dt

= F P(t) + P(t) FT + L Q LT

The explicit solutions are

m(t) = exp(F (t − t0)) m(t0)

P(t) = exp(F (t − t0)) P(t0) exp(F (t − t0))T

+

∫ t

t0
exp(F (t − τ)) L Q LT exp(F (t − τ))T dτ.

Simo Särkkä (Aalto) Lecture 3: Statistics of SDEs 21 / 29



LTI SDEs: Matrix fractions

Let the matrices C(t) and D(t) solve the LTI differential equation(
dC(t)/ dt
dD(t)/ dt

)
=

(
F L Q LT

0 −FT

)(
C(t)
D(t)

)
Then P(t) = C(t) D−1(t) solves the differential equation

dP(t)
dt

= F P(t) + P(t) FT + L Q LT

Thus we can solve the covariance with matrix exponential as well:(
C(t)
D(t)

)
= exp

{(
F L Q LT

0 −FT

)
t
}(

C(t0)
D(t0)

)
.
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Markov properties of SDEs

Definition of a Markov process:

p(x(t) | Xs) = p(x(t) | x(s)), for all t ≥ s.

where
Xt = {x(τ) : 0 ≤ τ ≤ t}.

All Itô processes are Markov processes.
p(x(t) | x(s)) is the transition density of the process.
The transition density is also a solution to the
Fokker–Planck–Kolmogorov equation.
Finite-dimensional distributions can be constructed as

p(x(t0),x(t1), . . . ,x(tn)) = p(x(t0))
n∏

i=1

p(x(ti) | x(ti−1)).
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Transition Densities of LTI SDEs

The solution of LTI SDE starting from x(s) ∼ N(m(s),P(s)):

m(t) = exp(F (t − s)) m(s)

P(t) = exp(F (t − s)) P(s) exp(F (t − s))T

+

∫ t

s
exp(F (t − τ)) L Q LT exp(F (t − τ))T dτ.

Starting exactly at x(s) corresponds to m(s) = x(s), P(s) = 0.
Thus we have

p(x(t) | x(s)) = N(x(t) | m(t | s),P(t | s)),

where

m(t | s) = exp(F (t − s)) x(s)

P(t | s) =

∫ t

s
exp(F (t − τ)) L Q LT exp(F (t − τ))T dτ.
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Transition Densities of LTI SDEs (cont.)

Let p(x(tk+1) | x(tk )) and ∆tk = tk+1 − tk , which gives:

p(x(tk+1) | x(tk ))

= N
(

x(tk+1) | exp(F ∆tk ) x(tk ),

∫ ∆tk

0
exp(F (∆tk − τ)) L Q LT exp(F (∆tk − τ))T dτ

)
,

This is now equivalent to a discrete-time system

x(tk+1) = Ak x(tk ) + qk , qk ∼ N(0,Σk )

where

Ak = exp(F ∆tk )

Σk =

∫ ∆tk

0
exp(F (∆tk − τ)) L Q LT exp(F (∆tk − τ))T dτ.
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Transition Densities of LTI SDEs: Example

Example (Discretized Wiener velocity model)

d2x(t)
dt2 = w(t).

In more rigorous Itô SDE form this model can be written as(
dx1
dx2

)
=

(
0 1
0 0

)
︸ ︷︷ ︸

F

(
x1
x2

)
dt +

(
0
1

)
︸︷︷︸

L

dβ(t),

We now get (note that F2 = 0):

A = exp (F ∆t) = I + F ∆ =

(
1 ∆t
0 1

)
Σ =

∫ ∆t

0

(
1 ∆t − τ
0 1

) (
0 0
0 q

) (
1 ∆t − τ
0 1

)T

dτ =

(1
3∆t3 1

2∆t2

1
2∆t2 ∆t

)
q.
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Summary

The probability density of SDE solution x(t) solves the
Fokker–Planck–Kolmogorov (FKP) partial differential equation.
The mean m(t) and covariance P(t) of the solution solve a pair of
ordinary differential equations.
In non-linear case, the expectations in the mean and covariance
equations cannot be solved without knowing the whole probability
density.
For higher moment moments we can derive (theoretical)
differential equations as well—can be approximated with moment
closure.
SDEs are Markov processes and can be characterised via
transition densities.
For linear SDEs, we can solve the probability density, transition
densities, and all the moments explicitly.

Simo Särkkä (Aalto) Lecture 3: Statistics of SDEs 29 / 29


	Fokker-Planck-Kolmogorov Equation
	Moments of SDEs
	Statistics of linear SDEs
	Markov Properties and Transition Densities SDEs
	Summary

