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SDEs as white noise driven differential equations

@ During the last lecture we treated SDEs as white-noise driven
differential equations of the form
B =100 8) + L(x ) w(t),
@ For linear equations the approach worked ok.
@ But there is something strange going on:

o The use of chain rule of calculus led to wrong results.
e With non-linear differential equations we were completely lost.
o Picard-Lindeldf theorem did not work at all.

@ The source of all the problems is the everywhere discontinuous
white noise w(t).

@ So how should we really formulate SDEs?
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Equivalent integral equation

@ We have a differential equation of the form

% = f(x, 1) + L(x, ) w(t),

@ Integrating the differential equation from f; to t gives:

t t
X(t) —x(th) = [ f(x(t),t) dt+ [ L(x(¢),t)w(t) dt.
fo to
@ The first integral is just a normal Riemann/Lebesgue integral.
@ The second integral is the problematic one due to the white noise.

@ This integral cannot be defined as Riemann, Stieltjes or Lebesgue
integral as we shall see next.
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Attempt 1: Riemann integral

@ In the Riemannian sense the integral would be defined as

t

L(x(t), )yw(t) dt = lim D Lx(t), 1) W(tE) (tsr — ),
tO Ce k
where fop < i < ... <ty =tand t; € [t, k1]

@ Upper and lower sums are defined as the selections of t; such
that the integrand L(x(t;), t;) w(Z) has its maximum and
minimum values, respectively.

@ The Riemann integral exists if the upper and lower sums converge
to the same value.

@ Because white noise is discontinuous everywhere, the Riemann
integral does not exist.
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Attempt 2: Stieltjes integral

@ Stieltjes integral is more general than the Riemann integral.

@ In particular, it allows for discontinuous integrands.

@ We can interpret the increment w(t) dt as increment of another
process 3(t) such that

tL(x(t), tHw(t) dt = tL(x(t), t) dB(1).

fo fo

@ It turns out that a suitable process for this purpose is the Brownian
motion —
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Brownian motion

Brownian motion

@ Gaussian increments:

ABk ~ N(0,Q Aty),

where ABy = B(tk+1) — B(t) and
Aty = b1 — -

@ Non-overlapping increments are
independent.

@ Qs the diffusion matrix of the Brownian motion.

@ Brownian motion t — (3(t) has discontinuous derivative
everywhere.

@ White noise can be considered as the formal derivative of
Brownian motion w(t) = d3(t)/dt.
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Attempt 2: Stieltjes integral (cont.)

@ Stieltjes integral is defined as a limit of the form
t
Lx(0),0) 4B = fim > L(x(5), ) [B(t1) — At
0 k

where fo < by < ... < tpand t; € [t, k1]

@ The limit t; should be independent of the position on the interval
te € [tk tkya]-

@ But for integration with respect to Brownian motion this is not the
case.

@ Thus, Stieltjes integral definition does not work either.
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Attempt 3: Lebesgue integral

@ In Lebesgue integral we could interpret 3(t) to define a “stochastic
measure” via B((u, v)) = B(u) — B(v).

@ Essentially, this will also lead to the definition
t
[ L), 48 = fim STLK(E). ) 8(brn) — Bt
o k
where fo < i < ... < tpand t; € [t, k1]
@ Again, the limit should be independent of the choice & € [tk, txt1].

@ Also our “measure” is not really a sensible measure at all.
@ = Lebesgue integral does not work either.
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Attempt 4: 1t6 integral

@ The solution to the problem is the 1t6 stochastic integral.
@ The idea is to fix the choice to f; = t, and define the integral as

t
L(x(t),t) dB(t) = lim ZL (t) ti) [B(tr1) — B(te)]-

)

@ This It6 stochastic integral turns out to be a sensible definition of
the integral.

@ However, the resulting integral does not obey the computational
rules of ordinary calculus.

@ Instead of ordinary calculus we have [t6 calculus.
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It6 stochastic differential equations

@ Consider the white noise driven ODE

dx

5 = T D+ L ().

@ This is actually defined as the It integral equation

x(t) = x(to) = tf(X(l‘), t) dt + t'—(X(l‘), t) dB(1),

) b

which should be true for arbitrary t, and ¢.
@ Settings the limits to t and t + dt, where dt is “small”, we get

dx = f(x, t) dt + L(x, t) dB.

@ This is the canonical form of an It6 SDE.
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Connection with white noise driven ODEs

@ Let’s formally divide by dt, which gives

dx ds
—=f —.
- (x,t) + L(x, 1) i,

@ Thus we can interpret d3/dt as white noise w.
@ Note that we cannot define more general equations

dx(t

) _ sx(t) wit). )
dt

because we cannot re-interpret this as an t6 integral equation.

@ White noise should not be thought as an entity as such, but it only
exists as the formal derivative of Brownian motion.
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Stochastic integral of Brownian motion

@ Consider the stochastic integral

/ ' 5(1) d5()
0

where 5(t) is a standard Brownian motion (Q = 1).

@ Based on the ordinary calculus we would expect the result
32(t)/2—but it is wrong.

@ If we selecta partition0 =) < t; < ... < t, = t, we get

t
/0 B(t) da(t) = tim S A1) B(t11) — B(t)]
k

= IimZ [— %(B(tk—H) — B(t))?
K

+ %(/32(fk+1) - 52(l‘k))]
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Stochastic integral of Brownian motion (cont.)

@ We have 1

Iim;—;(ﬂ(tkm — Bt — 5t

and

: 1 1
hm; 5(B(tsn) = B2(t)) — Z5%(0)
@ Thus we get the (slightly) unexpected result
t A 1 5
/0 Bt dB(t) = 5t + 5 3(1)

@ This is unexpected only if we believe in the chain rule:

d 1, _dx

@ Butitis not true for a (It6) stochastic process x(t)!
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[t6 formula

It6 formula

Assume that x(t) is an Itd process, and consider arbitrary (scalar)
function ¢(x(t), t) of the process. Then the It6 differential of ¢, that is,
the 1t6 SDE for ¢ is given as

09 9o . 1 ¢ L
d¢—adt+zi:axidx,+2zij:<axiaxj dx; dx;

_ % dt + (V)T dx + %tr { (vv%) dx de} :

provided that the required partial derivatives exists, where the mixed
differentials are combined according to the rules

dg dt=0
dt d3=0
ds dB" = Q dt.
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[t6 formula: derivation

@ Consider the Taylor series expansion:

dp(X, 1) op(x, 1)
T dt+zi: Px dx;

9%¢
+5 Z ( ) dx; dx; + .
@ To the first order in dt and second order in dx we have
dp = ¢(x + dx, t + dt) — o(x, t)

_ 09(x, 1) 9¢(x, 1) 929 v
~ dt+zi: Px dx,+§ij Fx70% dx; dx;.

o(X 4 dx, t +dt) = ¢(x, ) +

@ In deterministic case we could ignore the second order and higher
order terms, because dx dx' would already be of the order df2.

@ In the stochastic case we know that dx dx' is potentially of the
order dt, because d3 d3" is of the same order.
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It6 formula: example 1

It6 differential of 52(t)/2

If we apply the It6 formula to ¢(x) = 1x2(t), with x(t) = 5(t), where
B(t) is a standard Brownian motion, we get
|
dg = dff + 5
1 dgdt=0
=B df+dt, dtds —0
as expected; recall [} 5(t) dB(t) = —t+ 352(t). dp® = dt. )
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It6 formula: example 2

[t6 differential of sin(w x)
Assume that x(t) is the solution to the scalar SDE:

dx = f(x) dt + dg,

where (t) is a Brownian motion with diffusion constant g and w > 0.
The It6 differential of sin(w x(t)) is then

d[sin(w x)] = w cos(w x) dx — %wZ sin(w x) dx?
= w cos(w x) [f(x) dt +dp] — %WZ sin(w x) [f(x) dt 4+ dg]?

= w cos(w x) [f(x) dt +dS] — %wz sin(w x) g dt.
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Solutions of linear SDEs

@ Let’s consider the linear multidimensional time-varying SDE
dx = F(t)x dt + u(t) dt + L(t) dB

@ Let’s define a (deterministic) transition matrix W(¢, fy) via the
properties

oW(r,t)/0r = F(T)W(r, 1)

ow(r, t)/ot = —W(r, t)F(t)
W(r, t)=W(r,s)W(s,t)
w(t,7)=w (1)
w(t,t)=1.
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Solutions of linear SDEs (cont.)

@ Multiplying the above SDE with the integrating factor W(fy, ) and
rearranging gives

W(ty, t) dx — W(ty, t) F(t) x dt = W(ty, t)u(t) dt + W(ty, t) L(t) d3
@ [t6 formula gives
d[W(ty, t)X] = —W(lp, t) F(t) x df + W(fp, t) dx.
@ Thus the SDE can be rewritten as
d[W(ty, t)X] = W(ty, t)u(t) dt + W(lp, t)L(¢) dg,

where the differential is a 1to differential.
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Solutions of linear SDEs (cont.)

@ Integration (in 1t6 sense) from t, to ¢ gives
W(to, 1) x(t) — W(to, Io) X(to)

t t
= [ Wlo.r)u(r) a7 + | W(io.7)L(r) dB(r).

@ Rearranging gives the full solution

t t
X(t) =w(t, ) x(th)+ [ W(t,7)u(r)dr+ [ W(t,7)L(r) dB(7).

b b
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Solutions of linear LTI SDEs

@ Let’s consider LTI SDE
dx =Fx dt+ L dg.
@ The transition matrix now reduces to the matrix exponential:
W(t, 1) = exp (F(t — 1))

F2(t—1)?  F(t— 1)
=1+F(t—1f)+ ( °)+ (1~ ) +...

2! 3!

@ The solution simplifies to

t
x(1) = exp (F (t — &) X(to) +/ exp (F (¢ — 7)) L dB(r).

fo

@ Corresponds to replacing w(7) dr with d3(7) in the heuristic
solution.
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Solutions of linear LTI SDEs

Solution of Ornstein—Uhlenbeck equation

The complete solution to the scalar SDE

——Tean

= = =95% quaniles

dx = —Ax dt+dp, x(0) = xo,

where A > 0 is a given constant and 3(t)
is a Brownian motion is

x(t) = exp(—At) xo

4 /Otexp(—)\(t — 7)) dB(7).
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Non-linear SDEs

@ There is no general solution method for non-linear SDEs
dx = f(x, t) dt + L(x, t) d3.

@ Sometimes we can use transformation/other methods from
deterministic setting and replace chain rule with 1t6 formula.

@ However, we can still use the Euler-Maruyama method presented
last time:

X(ty1) = X(t) + F(X(t), t) At + L(X(t), t) ABx,

where ABx ~ N(0,Q At).
@ The method might now look more natural, because Apj is just a
finite increment of Brownian motion.
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Existence and uniqueness of solutions

@ The existence and uniqueness conditions for SDE solutions can
be proved via stochastic Picard iteration:

$o(t) = Xo
t t
enr1(t) =Xo+ [ flen(7),7) d7+ [ L(pn(7),7) dB(7).

b b

@ The iteration converges and thus the SDE has unique strong
solution provided that the following are met:
e Functions f and L grow at most linearly in x.
e Functions f and L are Lipschitz continuous in x.

@ A strong solution means a solution x for a given 3 — strong
uniqueness implies that the whole path is unique.

@ We can also have a weak solution which is some pair (X, 3) which
solves the SDE.

@ Weak uniqueness means that the distribution is unique.
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Stratonovich calculus

@ The symmetrized stochastic integral or the Stratonovich integral
can be defined as follows:

t
L(x(¢), £) cdB(f) = lim > L(x(t), &) [B(tc+1) — BE)],
fo oo
where t; = (i + tx+1)/2 is the midpoint.
@ Recall that in It6 integral we had the starting point t; = fx.
@ Now the It6 formula reduces to the rule from ordinary calculus.

@ Stratonovich integral is not a martingale (a process such that
E[M(t) | {M(7) : 7 €]0,s]}] = M(s)), which makes its theoretical
analysis harder.

@ Smooth approximations to white noise converge to the
Stratonovich integral.
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Stratonovich calculus (cont.)

Conversion of Stratonovich SDE into 1t6 SDE

The following SDE in Stratonovich sense
dx = f(x,t) dt + L(x, t) 0 dg,
is equivalent to the following SDE in It6 sense
dx = f(x, t) dt + L(x, t) d3,

where ] ol
~ i(X
f,'(X, t) = f,'(X, t) +5 Ij( ) Lkl(x)
2 i an
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@ White noise formulation of SDEs had some problems with chain
rule, non-linearities and solution existence.

@ We can reduce the problem into existence of integral of a
stochastic process.

@ The integral cannot be defined as Riemann, Stieltjes or Lebesgue
integral.

@ It can be defined as an It6 stochastic integral.

@ Given the defition, we can define Itd6 stochastic differential
equations.

@ In It6 stochastic calculus, the chain rule is replaced with 1t6
formula.

@ For linear SDEs we can obtain a general solution.

@ Existence and uniqueness can be derived analogously to the
deterministic case.

@ Stratonovich calculus is an alternative stochastic calculus.
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