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Unscented Rauch-Tung-Striebel Smoother However, as discussed in [33], computing the inverse of the
forward dynamic model and performing the backward filtering
Simo Sarkka®, Member, IEEE using it as the dynamic model does not in general lead to

the right result. The general two-filter smoothing equation

Abstract— This article considers the application of the un- have been presente_d in.[33], together with Monte Carlo based
scented transform to optimal smoothing of non-linear state spae Methods for approximating them.
models. In this article, a new Rauch-Tung-Striebel type form The Rauch-Tung-Striebel (RTS) smoother [15] differs from
of the fixed-interval unscented Kalman smoother is derived. the two-filter smoother by that in the RTS smoother the
fiter Tormulation based unscented Kaman Smoother in the Measurements are first processed by the forward fiter amd the
sense that it is not based on running two independent filters 2 Separ.ate baCk'Wélrd SmQOIhlhg pass is used for obtaining the
forward and backward in time. Instead, a separate backward SMoothing solution. In this article, a new unscented tramsf

smoothing pass is used, which recursively computes corrections t based optimal smoother is derived, which is of the same form
the forward filtering result. The smoother equations are derived a5 the Rauch-Tung-Striebel smoother.

as approximations to the formal Bayesian optimal smoothing

equations. The performance of the new smoother is demonstrade

with a simulation. A. Problem Formulation

Index Terms—unscented Kalman smoother, Rauch-Tung- |n this article we shall consider state space modetsf the
Striebel smoother, unscented transform form

Tk = fo—1(Tk—1,qK-1)

|. INTRODUCTION
Y = hi(zk, 78),

Optimal smoothing in context of state space models refers
to statistical (Bayesian) methodology that can be used f@herez, € R" is the statey, € R™ is the measurement at
computing estimates of the past state history of a time mgryitime tx, gx—1 ~ N(0,Qx-1) is the Gaussian process noise,
system based on the history of noisy measurements obtained~ N(0, 1;) is the Gaussian measurement noigg, 1 (-)
from it. Phenomena, which can be modeled as this kind isf the dynamic model function anfe(-) is the measurement
state space models can be found, for example, in navigatisipdel function. The time stegsrun from0 to 7" and at time
aerospace engineering, space engineering, remote $aneei] Step 0 there is no measurement, only the prior distribution
telecommunications, physics, audio signal processingtrab o ~ N(mo, I%).
engineering, several other fields [1]-[10]. The purpose of themoothing algorithnis to find approx-

Optimal smoothing is closely related to optimal filteringimations to the smoothing distributiong(zy, | y1.7) for all
which is a class methods for computing estimates of currénte {0,1,...,7} and in this article the approximations are
and future states of the system. The formal solutions to tBBosen to be Gaussian:
filtering [1], [11]-[13] and smoothing [14]-[17] problems
are well known, and numerous approximation methods have
been proposed, for both the filtering [1], [4], [18]-[22] and
smoothing [18], [23]-[28] cases. B. Bayesian Optimal Filtering and Smoothing Equations

In this article we shall concentrate on thascented trans-
form [22], [27], [29]-[31], which is a relatively new method
for forming Gaussian approximations to random variables z ~ p(Tk | Th-1)
that are obtained as non-linear transformations of Gamssia yr ~ p(yk | 1),
random variables. The unscented transform was first applieg] n "
to optimal filtering of non-linear discrete-time systemsda V/'¢'c ¢ € R* Is the statey; € R™ is the measurement,
the corresponding filter is called thenscented Kalman filter p(xx|2x-1) is the transition density of the dynamic model
[22], [27], [31]. Continuous-time and continuous-diseséime an_dp(yk | z1) is the likelihood den3|ty_ of the measurements.
versions of the filter have been presented in [32]. It is easy to see that the model (1) is a special case of this

The unscented transform has also been used for appro%c-’del' . S .
mating the optimal smoothing solutions of state space nsodel Formally, the f||tgr|ng Q|str!but|0ns qf the model.are given
The unscented Kalman smoother, which is presented in [ the followingoptimal filtering equationg13], [14]:
is based on computing a suitable linear combination of two 1) Prediction step:
filters, which are ran in forward and backward directions.

The backward filter is also a UKF, which uses the inverse Pk [Y1:-1) = /p(mk | Z—1) P(r—1 | Yr:k—1) o1
of the forward dynamic model as the dynamic model for the 3)
filter. This form of optimal smoother can be interpreted as 2) Update step:

an approximate non-linear extension to the Fraser’s tvierfil (s | 22) p(@n | y10-1)
smoother presented in [16]. oz | y1:k) = DAYk | Th) PATE | Y1:k—1 (4)

I plyr | z) play | yre—1) day
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@)

p(zk | y1.0) = N(zy | my, PY).

Consider a generic state space model of the form

)
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1) Two-filter smoother 3) The joint distribution ofr;, andxy; giveny;.r can be

now computed as
p(xr | y1r) < p(xr | yik) Pk | 2k),  (B) P

where the first term on the right hand side is computed @k, Ths1 [ y1:7) = p(@k | Tet1, y11) P(Tkt1 [y1:7),

by the optimal filter and the second can be computed ) ) o (1)
with a filter, which runs backwards in time. The un- wherep(zx+1 | y1.7) is the smoothing distribution of the
scented Kalman smoother presented in [27] can be seen next t|m§ stgp. The sr'n(.)othl'ng ,d'St,”bUt'onm IS given
to be an approximation to this form of smoother. by marginalizing the joint distribution over.;:
2) Forward-backward smoother p(zk | yr)
p(TE | Y1 (12)
@elyrr) p(@xan | 20) p(nss | v10) = /P(Ik | Zry1, y11) D(Thg1 | Y17) dopey s
= p(xy, ‘yl:k)/ [ + + : dzgi1, ) .
(k41 | y1:k) Assume that the (approximate) mean and covariance of the

filtering distributions
wherep(z, | y1.x) is the filtering distribution of the time ~ N P
step k and p(z41 | y1:6) IS the predicted distribution Pk [ yrk) ~ Nzi [ 1, Pr),

of the time stepk + 1, which can be computed byfsr the model (1) have been computed by the unscented

the first of the optimal filtering equations (3). Th&caiman filter or a similar method. Further assume that the
smoothing recursion is started from last time step T gmoothing distribution of time stef: + 1 is known and
and proceeded backwards in time. The smoothing alggx ssian

rithm presented in this article is based on this forward-

backward smoother equation. P(Try1 | yrr) = N(@ps1 [ mi s Piyq)-
The filtering and smoothing equations are only formal in L .
the sense that they rarely can be directly used in practié%ﬁ' unspented tr_ansform basec_i approximation to the optimal
computations, because they are computationally intria&‘.tabs'ﬁnOOthIng solution can be derived as follows:

For this reason, numerical approximations are required. 1) Generate unscented transform based Gaussian approxi-
mation to the joint distribution ok, and .1, that is,
Il. MAIN RESULTS to the equation (7):
In this section we shall present thascented Rauch-Tung- Tp mi P, Chria
Striebel smootheor the forward-backward unscented Kalman (wkH) [y ~ N ((mkH) ’ (C;CTH Pk+1)> ’
smoother, which can be used for approximating the smoothing 13)
solutions of state space models of the form (1). This can be done by concatenating the state and pro-
cess noise to a new augmented random variahle=
A. Unscented RTS Smoother (J}g qg)T, which then has the distribution
For the purpose of deriving the Rauch-Tung-Striebel type of ~ my P 0
smoother, the forward-backward smoothing equation (6) can Tr|yre ~ N (( 0 > ) ( 0 Qk)) .
be divided into the following three steps:
1) Form the joint distribution ofcx andax,: given yi.x: Itis now easy to use_the _unscented t_ra_nsform for fprming
a Gaussian approximation to the joint distribution of
p(xk7xk}+l |y1:k) = p($k+1 ‘xk)p(xk | yl:k)7 (7) T = (!Eg qg)T and Tyl = fk(l'k; Qk)-
where p(zx | y1.) is the filtering distribution of the 2) I_3egaus§ the di.stribution (13) is Gaussian., the condi-
current time step. tioning in equation (8) or (10) can be obtained by the

computation rules of Gaussian distributions and this
conditional distribution is again Gaussian. This results
in the approximation

2) Compute the conditional distribution af, given zj, 1
andy;., by conditioning the joint distribution aof; and
Tr41 10 T

Tk, Tk & x|y ~ N(mi ., Pl 1),
Pk | The1, y1k) = Pk Tiee1 [ Y101) (8) kY1 ~ N(mi 1, Pryq)

p(Trs1 | Y1)

. L where
where the denominator term is given as
Dy, = Cyq1 [Py
P |pa) = [ plowsa o) plon 1) dov. (@) S

But now, due to the Markov properties of the state space Piyy =Py — Dy P4 D}

model we havep(zy | zry1,y1.1) = p(Tr | Tho1, Yiok) 3)

and thus it follows that If the smoothing distribution of the next time step is

assumed to be known and Gaussian
p(xlm Th+1 |y1:k)

P(Trs1 | Y1:k) (10)

Tk | T » Y1: =
Py [ Trrrs yrr) (@t |yrr) = N(@pp [ M1, Piya)s
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where
mj, =my, + Dy, [mj4, — m,;rl] (14) 150 E
P{ =P+ Dy, [Piyy — Pryy] DE. ol |
In summary, a single step of thenscented RTS smoothean
be now performed as follows: 50 1
1) Form the matrix of sigma points of the augmented

2)

3)

4)

then the distribution (11) is smoothing distribution and filtering distribution of thestdime
" stepT are the same, we have. = mp, P} = Pr, and
(w k ) |y1.7 ~ N(mj, 1, Piyy), thus the recursion can be used for computing the smoothing
h distributions of all time steps by starting from the lastpste
where k =T and proceeding backwards to the initial steg- 0.
w (M + De(Trgr —my )
M1 = ms I1l. | LLUSTRATIVE EXAMPLE
k+1 .
pr Dy P, DI'+ P, DyP;, A. Re-entry Vehicle Tracking
kT B DT Pip
Marginalizing overzy; leads to the Gaussian approx- 300f ‘ / ]
imation to the smoothing distribution of the stép )

250+
Tk ‘yl:T ~ N(/an»PIS)a
200

i v — (1 ,TN\NT
random variablez;, = (z;, g, )

Se= (i m)+ve(o VB VA). ¥ _ ]

. . . . . .
6200 6250 6300 6350 6400 6450 6500 6550 6600 6650

where Fig. 1. In reentry target tracking problem radar is used facking a space
vehicle, which enters the atmosphere at a very high speed.
~ <7n43> 15 (ljk 0 )
k, =

0 Qk . : .
_ _ _ As an example we consider a simulated re-entry tracking
Propagate the sigma points through the dynamic modgloblem (see, Figure 1), where a radar is used for tracking
X- . — f(X® X9 —1 9 1 a space vehicle, which enters the atmosphere at a very high
k+1 Te(Xi ’“) ! nt+l speed. The problem was used for demonstrating the perfor-
where X7 ; and X} ; denote the parts of the augmentegnance of UKF in [31], [34].

sigma pomtz wh|ch correspond te:;, and g, respec- In the simulation the parameters were selected to be the
tively. same as used in [31], [34] and the following methods were
Compute the predicted mean, ,, the predicted co- tested:
varianceP; ; and the cross-covarianeg; ,1: « EKF: Extended Kalman filter, where first order Taylor se-
B (m) o ries expansions of the dynamic and measurements models
Mpp1 = ZW Xk+1 i were used for approximating the non-linearities. Note that
unlike in [31], [34] the analytical derivatives were used
P = ZW(C) k1, =My y) <Xk:_+1 i mI;+1)T in the EKF, not finite difference approximations.
o UKF: Unscented Kalman filter, where the unscented
Cry1 = Z Wi(f)l X,‘m —my) (XEH,i - m;+1)T7 transform was used for approximating the non-linearities.

« EKS: Extended Kalman smoother, where the results of
forward and backward EKFs where combined to get the
smoothed result.

o UKS: Unscented Kalman smoother, where the results
of forward and backward UKFs were combined to get
the smoothed result. The approximate backward dynamic
model was obtained by changing the direction of time in

Dy, = Cry1 [Pryq] " the continuous-time dynamic model and making Euler
discretized approximation to it.

. . T o URTSS:Unscented Rauch-Tung-Striebel smoother pro-

P =Py + Dy [Py — Pyy] Dy posed in this article.

where the definitions of the weights,™ and W) are
the same as in [32].

Compute the smoother gain,, the smoothed mean;
and the covarianc&;’:

my, = my + Dy [m,ﬂ_l — m,:_H]

The above procedure is a recursion, which can be us€&He results of 1000 Monte Carlo simulations are shown in
for computing the smoothing distribution of stép from Table I. The results of the EKF and UKF are almost identical
the smoothing distribution of time step + 1. Because the in RMSE sense. The result of EKS is not available, because
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TABLE | [11] R. E. Kalman, “A new approach to linear filtering and puitin
MEANS AND STANDARD DEVIATIONS OFRMSE VALUES OF THE POSITION problems,” Transactions of the ASME, Journal of Basic Engineering
IN 1000 MONTE CARLO RUNS OF THE REENTRY TRACKING PROBLEM vol. 82, pp. 35-45, March 1960.
[12] R. E. Kalman and R. S. Bucy, “New results in linear filteriand predic-
Method | E[RMSE] | STD[RMSE] tion theory,” Transactions of the ASME, Journal of Basic Enginegring

vol. 83, pp. 95-108, March 1961.

EKF 0.0083 0.0007 [13] Y. C. Ho and R. C. K. Lee, “A Bayesian approach to problems i

UKF 0.0083 0.0007 stochastic estimation and controllEEE Transactions on Automatic

EKS N/A N/A Control, vol. 9, pp. 333-339, 1964.

UKS 0.0044 0.0005 [14] Erecs:s Kigléie,Optlmal Estimation, Identification and Control M.I.T.

URTSS | 0.0044 0.0005 [15] H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likeldd estimates
of linear dynamic systemsAIAA Journa) vol. 3(8), pp. 1445-1450,
1965.

] ) ) [16] D. Fraser and J. Potter, “The optimum linear smoother asnabination
with most of the data sets the matrix computations became of two optimum linear filters,IEEE Transactions on Automatic Contyol

so ill-conditioned that the smoother diverged. This is lisea vol. 14(4), pp. 387-390, 1969. _ _
C. T. Leondes, J. B. Peller, and E. B. Stear, “Nonlinearosthing

. S Bl?]
the Taylor series based approximation does not work well for theory,” IEEE Transactions on Systems Science and Cybernafits
the inverse dynamic model. The UKS and URTSS give results 6(1), January 1970.

that are almost identical and superior to the filters. [18] A. Gelb, Ed.,Applied Optimal Estimation The MIT Press, 1974.
his si lati h h h £ f th ééQ] P. Maybeck, Stochastic Models, Estimation and Control, Volume 1
This simulation shows that the performance of the URT Academic Press, 1979.

is the same as of UKS even though UKS has the additionald] A. Doucet, N. de Freitas, and N. Gordon, Edegquential Monte Carlo

information on the inverse of the dynamic model functioneTh ___ Methods in Practice Springer, 2001. .

. . . . . . [21] B. Ristic, S. Arulampalam, and N. GordoBeyond the Kalman Filter

linearization based EKS is completely inapplicable to tius- Artech House, 2004.

linear model. [22] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A nevethod
for the nonlinear transformation of means and covariancedtarsiand
estimators,”IEEE Transactions on Automatic Controlol. 45(3), pp.

IV. CONCLUSION 477-482, March 2000.
. . . [23] A. P. Sage and J. L. Mels&stimation Theory with Applications to
In this article, a new RaUCh'Tung'Str'Ebel type of un* Communications and Control McGraw-Hill Book Company, 1971.
scented Kalman smoother for computing approximate optinfa#] P. Maybeck, Stochastic Models, Estimation and Control, Volume 2
smoothing solutions of non-linear state space models hars bg _ Academic Press, 1982.

d. Unlike th . | d d Kal 25] F. L. Lewis, Optimal Estimation with an Introduction to Stochastic
proposed. Unlike the previously proposed unscented Kalman' coniol Theory John Wiley & Sons, 1986.

smoother, the new smoother is not based on combining resit G. Kitagawa, “Monte Carlo filter and smoother for non-Gsian non-
of two unscented Kalman filters running forward and backward 'inear state space modelsjournal of Computational and Graphical

L . . Statistics vol. 5, pp. 1-25, 1996.
in time. Instead, a separate backward smoothing pass is U&QF E. A. Wan and R. van der Merwe, “The unscented Kalman filier

for computing suitable corrections to the forward filtering  Kalman Filtering and Neural NetworksS. Haykin, Ed. Wiley, 2001,
result in order to obtain the smoothing solution. The perfof._ ¢h-7-

28] ,S. J. Godsill, A. Doucet, and M. West, “Monte Carlo smaaghfor
mance of the smoother has been demonstrated and COmpérédnonlinear time seriesJournal of the American Statistical Associatjon
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