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Unscented Rauch-Tung-Striebel Smoother

Simo S̈arkkä∗, Member, IEEE

Abstract— This article considers the application of the un-
scented transform to optimal smoothing of non-linear state space
models. In this article, a new Rauch-Tung-Striebel type form
of the fixed-interval unscented Kalman smoother is derived.
The new smoother differs from the previously proposed two-
filter formulation based unscented Kalman smoother in the
sense that it is not based on running two independent filters
forward and backward in time. Instead, a separate backward
smoothing pass is used, which recursively computes corrections to
the forward filtering result. The smoother equations are derived
as approximations to the formal Bayesian optimal smoothing
equations. The performance of the new smoother is demonstrated
with a simulation.

Index Terms— unscented Kalman smoother, Rauch-Tung-
Striebel smoother, unscented transform

I. I NTRODUCTION

Optimal smoothing in context of state space models refers
to statistical (Bayesian) methodology that can be used for
computing estimates of the past state history of a time varying
system based on the history of noisy measurements obtained
from it. Phenomena, which can be modeled as this kind of
state space models can be found, for example, in navigation,
aerospace engineering, space engineering, remote surveillance,
telecommunications, physics, audio signal processing, control
engineering, several other fields [1]–[10].

Optimal smoothing is closely related to optimal filtering,
which is a class methods for computing estimates of current
and future states of the system. The formal solutions to the
filtering [1], [11]–[13] and smoothing [14]–[17] problems
are well known, and numerous approximation methods have
been proposed, for both the filtering [1], [4], [18]–[22] and
smoothing [18], [23]–[28] cases.

In this article we shall concentrate on theunscented trans-
form [22], [27], [29]–[31], which is a relatively new method
for forming Gaussian approximations to random variables
that are obtained as non-linear transformations of Gaussian
random variables. The unscented transform was first applied
to optimal filtering of non-linear discrete-time systems, and
the corresponding filter is called theunscented Kalman filter
[22], [27], [31]. Continuous-time and continuous-discrete-time
versions of the filter have been presented in [32].

The unscented transform has also been used for approxi-
mating the optimal smoothing solutions of state space models.
The unscented Kalman smoother, which is presented in [27]
is based on computing a suitable linear combination of two
filters, which are ran in forward and backward directions.
The backward filter is also a UKF, which uses the inverse
of the forward dynamic model as the dynamic model for the
filter. This form of optimal smoother can be interpreted as
an approximate non-linear extension to the Fraser’s two-filter
smoother presented in [16].
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However, as discussed in [33], computing the inverse of the
forward dynamic model and performing the backward filtering
using it as the dynamic model does not in general lead to
the right result. The general two-filter smoothing equations
have been presented in [33], together with Monte Carlo based
methods for approximating them.

The Rauch-Tung-Striebel (RTS) smoother [15] differs from
the two-filter smoother by that in the RTS smoother the
measurements are first processed by the forward filter and then
a separate backward smoothing pass is used for obtaining the
smoothing solution. In this article, a new unscented transform
based optimal smoother is derived, which is of the same form
as the Rauch-Tung-Striebel smoother.

A. Problem Formulation

In this article we shall consider astate space modelsof the
form

xk = fk−1(xk−1, qk−1)

yk = hk(xk, rk),
(1)

wherexk ∈ R
n is the state,yk ∈ R

m is the measurement at
time tk, qk−1 ∼ N(0, Qk−1) is the Gaussian process noise,
rk ∼ N(0, Rk) is the Gaussian measurement noise,fk−1(·)
is the dynamic model function andhk(·) is the measurement
model function. The time stepsk run from 0 to T and at time
step 0 there is no measurement, only the prior distribution
x0 ∼ N(m0, P0).

The purpose of thesmoothing algorithmis to find approx-
imations to the smoothing distributionsp(xk | y1:T ) for all
k ∈ {0, 1, . . . , T} and in this article the approximations are
chosen to be Gaussian:

p(xk | y1:T ) ≈ N(xk |ms
k, P s

k ).

B. Bayesian Optimal Filtering and Smoothing Equations

Consider a generic state space model of the form

xk ∼ p(xk |xk−1)

yk ∼ p(yk |xk),
(2)

where xk ∈ R
n is the state,yk ∈ R

m is the measurement,
p(xk |xk−1) is the transition density of the dynamic model
andp(yk |xk) is the likelihood density of the measurements.
It is easy to see that the model (1) is a special case of this
model.

Formally, the filtering distributions of the model are given
by the followingoptimal filtering equations[13], [14]:

1) Prediction step:

p(xk | y1:k−1) =

∫

p(xk |xk−1) p(xk−1 | y1:k−1) dxk−1.

(3)
2) Update step:

p(xk | y1:k) =
p(yk |xk) p(xk | y1:k−1)

∫

p(yk |xk) p(xk | y1:k−1) dxk

. (4)

The optimal smoothing equations[14] of the model can be
written in two alternative forms [33]:
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1) Two-filter smoother:

p(xk | y1:T ) ∝ p(xk | y1:k) p(yk+1:T |xk), (5)

where the first term on the right hand side is computed
by the optimal filter and the second can be computed
with a filter, which runs backwards in time. The un-
scented Kalman smoother presented in [27] can be seen
to be an approximation to this form of smoother.

2) Forward-backward smoother:

p(xk | y1:T )

= p(xk | y1:k)

∫
[

p(xk+1 |xk) p(xk+1 | y1:T )

p(xk+1 | y1:k)

]

dxk+1,

(6)

wherep(xk | y1:k) is the filtering distribution of the time
step k and p(xk+1 | y1:k) is the predicted distribution
of the time stepk + 1, which can be computed by
the first of the optimal filtering equations (3). The
smoothing recursion is started from last time stepk = T

and proceeded backwards in time. The smoothing algo-
rithm presented in this article is based on this forward-
backward smoother equation.

The filtering and smoothing equations are only formal in
the sense that they rarely can be directly used in practical
computations, because they are computationally intractable.
For this reason, numerical approximations are required.

II. M AIN RESULTS

In this section we shall present theunscented Rauch-Tung-
Striebel smootheror the forward-backward unscented Kalman
smoother, which can be used for approximating the smoothing
solutions of state space models of the form (1).

A. Unscented RTS Smoother

For the purpose of deriving the Rauch-Tung-Striebel type of
smoother, the forward-backward smoothing equation (6) can
be divided into the following three steps:

1) Form the joint distribution ofxk andxk+1 given y1:k:

p(xk, xk+1 | y1:k) = p(xk+1 |xk) p(xk | y1:k), (7)

where p(xk | y1:k) is the filtering distribution of the
current time step.

2) Compute the conditional distribution ofxk given xk+1

andy1:k by conditioning the joint distribution ofxk and
xk+1 to xk+1

p(xk |xk+1, y1:k) =
p(xk, xk+1 | y1:k)

p(xk+1 | y1:k)
, (8)

where the denominator term is given as

p(xk+1 | y1:k) =

∫

p(xk+1 |xk) p(xk | y1:k) dxk. (9)

But now, due to the Markov properties of the state space
model we havep(xk |xk+1, y1:T ) = p(xk |xk+1, y1:k)
and thus it follows that

p(xk |xk+1, y1:T ) =
p(xk, xk+1 | y1:k)

p(xk+1 | y1:k)
. (10)

3) The joint distribution ofxk andxk+1 giveny1:T can be
now computed as

p(xk, xk+1 | y1:T ) = p(xk |xk+1, y1:T ) p(xk+1 | y1:T ),
(11)

wherep(xk+1 | y1:T ) is the smoothing distribution of the
next time step. The smoothing distribution ofxk is given
by marginalizing the joint distribution overxk+1:

p(xk | y1:T )

=

∫

p(xk |xk+1, y1:T ) p(xk+1 | y1:T ) dxk+1.
(12)

Assume that the (approximate) mean and covariance of the
filtering distributions

p(xk | y1:k) ≈ N(xk |mk, Pk),

for the model (1) have been computed by the unscented
Kalman filter or a similar method. Further assume that the
smoothing distribution of time stepk + 1 is known and
Gaussian

p(xk+1 | y1:T ) ≈ N(xk+1 |ms
k+1, P

s
k+1).

An unscented transform based approximation to the optimal
smoothing solution can be derived as follows:

1) Generate unscented transform based Gaussian approxi-
mation to the joint distribution ofxk andxk+1, that is,
to the equation (7):
(

xk

xk+1

)

| y1:k ∼ N

((

mk

m−

k+1

)

,

(

Pk Ck+1

CT
k+1 P−

k+1

))

,

(13)
This can be done by concatenating the state and pro-
cess noise to a new augmented random variablex̃k =
(xT

k qT
k )T , which then has the distribution

x̃k | y1:k ∼ N

((

mk

0

)

,

(

Pk 0
0 Qk

))

.

It is now easy to use the unscented transform for forming
a Gaussian approximation to the joint distribution of
x̃k = (xT

k qT
k )T andxk+1 = fk(xk, qk).

2) Because the distribution (13) is Gaussian, the condi-
tioning in equation (8) or (10) can be obtained by the
computation rules of Gaussian distributions and this
conditional distribution is again Gaussian. This results
in the approximation

xk | y1:T ∼ N(m′

k+1, P
′

k+1),

where

Dk = Ck+1 [P−

k+1]
−1

m′

k+1 = mk + Dk(xk+1 − m−

k+1)

P ′

k+1 = Pk − Dk P−

k+1 DT
k .

3) If the smoothing distribution of the next time step is
assumed to be known and Gaussian

p(xk+1 | y1:T ) ≈ N(xk+1 |ms
k+1, P

s
k+1),
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then the distribution (11) is
(

xk

xk+1

)

| y1:T ∼ N(m′′

k+1, P
′′

k+1),

where

m′′

k+1 =

(

mk + Dk(xk+1 − m−

k+1)
ms

k+1

)

P ′′

k+1 =

(

Dk P s
k+1 DT

k + P ′

k+1 Dk P s
k+1

P s
k+1 DT

k P s
k+1

)

.

Marginalizing overxk+1 leads to the Gaussian approx-
imation to the smoothing distribution of the stepk:

xk | y1:T ∼ N(ms
k, P s

k ),

where

ms
k = mk + Dk

[

ms
k+1 − m−

k+1

]

P s
k = Pk + Dk

[

P s
k+1 − P−

k+1

]

DT
k .

(14)

In summary, a single step of theunscented RTS smoothercan
be now performed as follows:

1) Form the matrix of sigma points of the augmented
random variablẽxk = (xT

k qT
k )T

X̃k =
(

m̃k · · · m̃k

)

+
√

c
(

0
√

P̃k −
√

P̃k

)

.

where

m̃k =

(

mk

0

)

P̃k =

(

Pk 0
0 Qk

)

.

2) Propagate the sigma points through the dynamic model:

X̃−

k+1,i = fk(X̃x
k,i, X̃

q

k,i), i = 1 . . . 2n + 1,

whereX̃x
k,i andX̃

q

k,i denote the parts of the augmented
sigma pointi, which correspond toxk and qk, respec-
tively.

3) Compute the predicted meanm−

k+1, the predicted co-
varianceP−

k+1 and the cross-covarianceCk+1:

m−

k+1 =
∑

i

W
(m)
i−1 X̃−

k+1,i

P−

k+1 =
∑

i

W
(c)
i−1 (X̃−

k+1,i − m−

k+1) (X̃−

k+1,i − m−

k+1)
T

Ck+1 =
∑

i

W
(c)
i−1 (X̃x

k,i − mk) (X̃−

k+1,i − m−

k+1)
T ,

where the definitions of the weightsW (m)
i andW

(c)
i are

the same as in [32].
4) Compute the smoother gainDk, the smoothed meanms

k

and the covarianceP s
k :

Dk = Ck+1 [P−

k+1]
−1

ms
k = mk + Dk

[

ms
k+1 − m−

k+1

]

P s
k = Pk + Dk

[

P s
k+1 − P−

k+1

]

DT
k .

The above procedure is a recursion, which can be used
for computing the smoothing distribution of stepk from
the smoothing distribution of time stepk + 1. Because the

smoothing distribution and filtering distribution of the last time
step T are the same, we havems

T = mT , P s
T = PT , and

thus the recursion can be used for computing the smoothing
distributions of all time steps by starting from the last step
k = T and proceeding backwards to the initial stepk = 0.

III. I LLUSTRATIVE EXAMPLE

A. Re-entry Vehicle Tracking
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Fig. 1. In reentry target tracking problem radar is used for tracking a space
vehicle, which enters the atmosphere at a very high speed.

As an example we consider a simulated re-entry tracking
problem (see, Figure 1), where a radar is used for tracking
a space vehicle, which enters the atmosphere at a very high
speed. The problem was used for demonstrating the perfor-
mance of UKF in [31], [34].

In the simulation the parameters were selected to be the
same as used in [31], [34] and the following methods were
tested:

• EKF: Extended Kalman filter, where first order Taylor se-
ries expansions of the dynamic and measurements models
were used for approximating the non-linearities. Note that
unlike in [31], [34] the analytical derivatives were used
in the EKF, not finite difference approximations.

• UKF: Unscented Kalman filter, where the unscented
transform was used for approximating the non-linearities.

• EKS: Extended Kalman smoother, where the results of
forward and backward EKFs where combined to get the
smoothed result.

• UKS: Unscented Kalman smoother, where the results
of forward and backward UKFs were combined to get
the smoothed result. The approximate backward dynamic
model was obtained by changing the direction of time in
the continuous-time dynamic model and making Euler
discretized approximation to it.

• URTSS:Unscented Rauch-Tung-Striebel smoother pro-
posed in this article.

The results of 1000 Monte Carlo simulations are shown in
Table I. The results of the EKF and UKF are almost identical
in RMSE sense. The result of EKS is not available, because
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TABLE I

MEANS AND STANDARD DEVIATIONS OFRMSEVALUES OF THE POSITION

IN 1000 MONTE CARLO RUNS OF THE RE-ENTRY TRACKING PROBLEM.

Method E[RMSE] STD[RMSE]

EKF 0.0083 0.0007

UKF 0.0083 0.0007

EKS N/A N/A

UKS 0.0044 0.0005

URTSS 0.0044 0.0005

with most of the data sets the matrix computations became
so ill-conditioned that the smoother diverged. This is because
the Taylor series based approximation does not work well for
the inverse dynamic model. The UKS and URTSS give results
that are almost identical and superior to the filters.

This simulation shows that the performance of the URTSS
is the same as of UKS even though UKS has the additional
information on the inverse of the dynamic model function. The
linearization based EKS is completely inapplicable to thisnon-
linear model.

IV. CONCLUSION

In this article, a new Rauch-Tung-Striebel type of un-
scented Kalman smoother for computing approximate optimal
smoothing solutions of non-linear state space models has been
proposed. Unlike the previously proposed unscented Kalman
smoother, the new smoother is not based on combining results
of two unscented Kalman filters running forward and backward
in time. Instead, a separate backward smoothing pass is used
for computing suitable corrections to the forward filtering
result in order to obtain the smoothing solution. The perfor-
mance of the smoother has been demonstrated and compared
to other approaches with a numerical simulation.
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