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On Unscented Kalman Filtering for State
Estimation of Continuous-Time Nonlinear Systems

Simo S̈arkkä∗, Member, IEEE

Abstract— This article considers the application of the un-
scented Kalman filter (UKF) to continuous-time filtering prob-
lems, where both the state and measurement processes are mod-
eled as stochastic differential equations. The mean and covariance
differential equations which result in the continuous-time limit of
the UKF are derived. The continuous-discrete unscented Kalman
filter is derived as a special case of the continuous-time filter,
when the continuous-time prediction equations are combined
with the update step of the discrete-time unscented Kalman
filter. The filter equations are also transformed into sigma-point
differential equations, which can be interpreted as matrix square
root versions of the filter equations.

Index Terms— unscented Kalman filter, continuous-time filter,
continuous-discrete filter, stochastic differential equation, nonlin-
ear system, continuous-time state space model, nonlinear state
space model

I. I NTRODUCTION

T HE unscented Kalman filter (UKF) [1]–[3] is an efficient
derivative free filtering algorithm for computing approx-

imate solutions to discrete-time non-linear optimal filtering
problems. It has been successfully applied to numerous practi-
cal problems and it has been shown to outperform the extended
Kalman filter (EKF) in many cases [4]. However, in its original
form, the UKF is a discrete-time algorithm and it cannot
be directly applied to continuous-discrete filtering problems,
where the state dynamics are modeled as continuous-time
stochastic processes, or to continuous-time filtering problems,
where both the state and measurement processes are modeled
as continuous-time stochastic processes.

Phenomena, which can be modeled as time varying sys-
tems, where a continuous-time signal is observed discretely
or continuously in time are very common in engineering
and physics applications. Examples of such applications are
GPS and inertial navigation [5], [6], target tracking [7]–[9],
estimation of biological processes [10], telecommunications
[11], [12], stochastic optimal control [13], [14] and inverse
problems in physics [15].

In this article, the differential equations which result in
the continuous-time limit of the UKF are derived. Both the
continuous-time and continuous-discrete cases are considered.
The derived continuous-time filtering equations, which could
be called the unscented Kalman-Bucy filter (UKBF) equations,
are similar to the extended Kalman-Bucy filter (EKBF) equa-
tions [16]–[18] and consist of a pair of differential equations
for the mean and covariance of the posterior state process. A
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square root version of the filter is also derived and it consists
of a matrix differential equation for the sigma points.

The continuous-discrete unscented Kalman filter is derived
as a special case of the continuous-time filter, when the
continuous-time prediction equations are combined with the
update step of the discrete-time UKF. A square root version
of this continuous-discrete filter is also presented.

II. PROBLEM STATEMENT

A. Optimal Continuous-Time Filtering

In analog communication systems [11] the measured signals
are typically continuous-time processes and analog receivers
are devices, which demodulate or estimate the actual transmit-
ted continuous-time signals from the noisy measured signals.
Also in many analog (electrical or mechanical) control systems
(see, e.g., [13], [14]) operating without digital computers
the measured signals are continuous-time, not discrete-time
signals. The optimal recursive estimation of this kind of
systems is calledoptimal continuous-time filtering[16], [17].

The most general form of the optimal continuous-time
filtering models considered in this article is

dx(t) = f(x(t), t) dt + L(t) dβ(t)

dy(t) = h(x(t), t) dt + V (t) dη(t),
(1)

where
• x(t) ∈ R

n is the state process,
• y(t) ∈ R

m is the (integrated) measurement process,
• f is the drift function,
• h is the measurement model function,
• L(t) andV (t) are arbitrary time varying matrices, inde-

pendent ofx(t) andy(t),
• β(t) and η(t) are independent Brownian motions with

diagonal diffusion matricesQc(t) andRc(t), respectively.
The dynamic and measurement models can be equivalently
interpreted as It̂o or Stratonovich typestochastic differential
equations[19], [20].

The filtering model can also be formulated in terms of
formal white noisese(t) = dβ(t)/dt, n(t) = dη(t)/dt, and
differential measurementz(t) = dy(t)/dt as follows [16]:

dx(t)

dt
= f(x(t), t) + L(t) e(t)

z(t) = h(x(t), t) + V (t)n(t),
(2)

where the white noise processese(t) and n(t) have spectral
densitiesQc(t) andRc(t), respectively.

The purpose of the optimal (Bayesian) continuous-time
filtering is to recursively compute the posterior distribution

p(x(t) | {y(τ) : 0 ≤ τ ≤ t}), (3)
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or at least the relevant moments of the distribution (e.g., mean
and covariance).

The formal solution to the filtering problem is well known
and it is given by theKushner-Stratonovich equation[21]–
[23], which is a measure valued stochastic partial differential
equation. The unnormalized version of the equation is called
the Zakai equation[24], [25]. However, these equations only
give the formal solution, and the actual computation of the
distribution or its expectations (such as mean and covariance)
would require an infinite amount of computational resources.
In certain special cases, the equations do have finite dimen-
sional solutions, which leads to Kalman-Bucy filters [26] and
Benĕs filters [27].

Because the exact solution to the continuous-time optimal
filtering problem is generally intractable, approximations must
be used. The most common approximation method is the
extended Kalman-Bucy filter (EKBF) (see, e.g., [16]–[18]),
which approximates the exact solution by replacing the non-
linear model with a suitably linearized approximate model,
which can be solved by the Kalman-Bucy filter. Another
general way of forming approximations is Monte Carlo sam-
pling [28], [29], where a set of weighted particles is used for
approximating the posterior probability measure.

B. Optimal Continuous-Discrete Filtering

Nowadays, in many signal processing systems, the sensor
measurements are obtained at discrete instances of time either
due to sampling, due to processing delays in the device or
because the sensor operates in scans. Still in the Nature
time is continuous, not discrete, and for this reason often a
physically more realistic approach than discrete-time filtering
or continuous-time filtering iscontinuous-discrete filtering
[16], [17]. In continuous-discrete filtering the state dynamics
are modeled as continuous-time stochastic processes, and the
measurements are obtained at discrete instances of time. This
differs from discrete-time filtering, because in that approach
both the dynamics and measurements are modeled as discrete-
time processes.

The continuous-discrete filtering models considered here
have the general form

dx(t) = f(x(t), t) dt + L(t) dβ(t)

yk = hd(x(tk), tk) + rk,
(4)

where
• x(t) ∈ R

n is the state,
• yk ∈ R

m is the measurement,
• f is the drift function,
• L(t) is the dispersion matrix,
• β(t) is Brownian motion with diffusion matrixQc(t),
• hd is the measurement model function,
• rk is a zero mean Gaussian measurement noise with

covariance matrixRk.
The dynamic model can be equivalently interpreted as a Itô
or Stratonovich typestochastic differential equation. As in the
continuous-time filtering case the dynamic model can also be
written in terms of white noise processe(t) as

dx(t)

dt
= f(x(t), t) + L(t) e(t). (5)

The purpose of (Bayesian) continuous-discrete filtering isto
recursively compute the posterior distribution

p(x(tk) | y1, . . . , yk), (6)

where tk is the time of measurementyk. By using optimal
prediction the corresponding distribution can also be computed
for all time instances before the next measurementt ∈
[tk, tk+1).

In theory, the solution to the continuous-discrete filtering
problem can be computed by the following prediction and
update steps [16]:

• Prediction step:solves the predicted probability density
at time steptk from the Kolmogorov forward partial
differential equationusing the old posterior probability
density at time steptk−1 as the boundary condition.

• Update step:uses theBayes’ rule for computing the
posterior probability density of state at time steptk from
the predicted probability density of the prediction step,
and the likelihood of the measurementyk.

As in the continuous-time case, the closed form solutions to
these equations or to the equations for the moments (e.g., mean
and covariance) of the distributions can only be found in a
few special cases [30]–[32] and approximations are generally
needed. The continuous-discrete extended Kalman filter (EKF)
[16]–[18] uses a Taylor series expansion approximation to
the non-linear drift function and forms a Gaussian process
approximation to the SDE. Another possible approach is to
simulate sample paths of SDEs [33] and use particle filters
for estimation [34], [35]. Interacting and branching particle
systems [36] are particle based solutions to nonlinear filtering
problems also in the continuous-discrete setting.

Other possible approaches are statistical linearization [17],
grid based methods [35], [37] and multiple model methods [7],
[35], Gaussian sum approximations [38], [39], and numerical
solving of the Kolmogorov forward equation [40], [41].

III. D ISCRETE-TIME UNSCENTEDKALMAN FILTERING

A. Unscented Transform

The unscented transform(UT) [1]–[3] can be used for
forming a Gaussian approximation to the joint distribution
of random variablesx and y, when the random variabley
is obtained by a non-linear transformation of the Gaussian
random variablex as follows:

x ∼ N(m,P )

y = g(x),
(7)

wherex ∈ R
n, y ∈ R

m, andg : R
n 7→ R

m is a general non-
linear function. The idea of UT is to form a fixed number of
deterministically chosen sigma-points, which capture themean
and covariance of the original distribution ofx exactly. These
sigma-points are then propagated through the non-linearity
and the mean and covariance of the transformed variable are
estimated from them. Note that the unscented transform is
significantly different from Monte Carlo estimation, because
the sigma points are selected deterministically [1], [2].



PREPRINT - TO APPEAR IN IEEE TRANSACTIONS ON AUTOMATIC CONTROL, OCTOBER 2007 3

Algorithm 3.1 (Unscented transform):The unscented
transform can be used for forming the Gaussian approximation

(

x
y

)

∼ N

((

m
µU

)

,

(

P CU

CT
U SU

))

, (8)

to the joint probability density ofx ∈ R
n and y ∈ R

m. The
unscented transform is the following:

1) Form the set of2n + 1 sigma points from the columns
of the n × n matrix

√

(n + λ)P as follows:

x(0) = mx

x(i) = mx +
[

√

(n + λ)P
]

i
, i = 1, . . . , n

x(i) = mx −
[

√

(n + λ)P
]

i−n
, i = n + 1, . . . , 2n

(9)

and compute the associated weights:

W
(m)
0 = λ/(n + λ)

W
(c)
0 = λ/(n + λ) + (1 − α2 + β)

W
(m)
i = 1/{2(n + λ)}, i = 1, . . . , 2n

W
(c)
i = 1/{2(n + λ)}, i = 1, . . . , 2n.

(10)

The parameterλ is a scaling parameter defined as

λ = α2 (n + κ) − n. (11)

The positive constantsα, β andκ are used as parameters
of the method.

2) Transform each of the sigma points as

y(i) = g(x(i)), i = 0, . . . , 2n. (12)

3) Mean and covariance estimates fory can be computed
as

µU ≈
2n
∑

i=0

W
(m)
i y(i)

SU ≈
2n
∑

i=0

W
(c)
i (y(i) − µU ) (y(i) − µU )T .

(13)

4) The cross-covariance ofx andy can estimated as

CU ≈
2n
∑

i=0

W
(c)
i (x(i) − m) (y(i) − µU )T . (14)

The matrix square root of positive definite matrixP means a
matrix A =

√
P such that

P = AAT . (15)

Because the only requirement forA is the definition above,
we can, for example, use the lower triangular matrix of the
Cholesky factorization(see, e.g., [42]).

In this article, the Cholesky factorization is denoted as the
function chol(·):

A = chol(P ). (16)

The unscented transform can be seen as a function (or func-
tional) from (g,m, P ) to (µU , SU , CU ):

[µU , SU , CU ] = UT(g,m, P ). (17)

B. Unscented Kalman Filter

The unscented Kalman filter(UKF) [1]–[3] is a discrete-
time filtering algorithm, which utilizes the unscented transform
for computing approximate solutions to the filtering problems
of the form1

xk = fd(xk−1, k − 1) + qk−1

yk = hd(xk, k) + rk,
(18)

where xk ∈ R
n is the state,yk ∈ R

m is the measurement,
qk−1 ∈ R

n is a Gaussian process noiseqk−1 ∼ N(0, Qk−1),
andrk ∈ R

m is a Gaussian measurement noiserk ∼ N(0, Rk).
The mean and covariance of the initial statex0 are m0 and
P0, respectively.

In terms of the unscented transformUT(·) the unscented
Kalman filter prediction and update steps can be written as
follows:

• Prediction: Compute the predicted state meanm−

k and
the predicted covarianceP−

k as

[m−

k , P̃k] = UT(fd,mk−1, Pk−1)

P−

k = P̃k + Qk−1.
(19)

• Update:Compute the predicted meanµk and covariance
of the measurementSk, and the cross-covariance of the
state and measurementCk:

[µk, S̃k, Ck] = UT(hd,m
−

k , P−

k )

Sk = S̃k + Rk.
(20)

Then compute the filter gainKk, the state meanmk and
the covariancePk, conditional to the measurementyk:

Kk = Ck S−1
k

mk = m−

k + Kk [yk − µk]

Pk = P−

k − Kk Sk KT
k .

(21)

The filtering is started from the initial meanm0 and covariance
P0. A thorough treatment of the unscented Kalman filtering,
sigma-point filtering in general and connections to several
other filtering algorithms can be found in [4]. Efficient square
root versions of the UKF are presented in [4], [43].

IV. CONTINUOUS-TIME UNSCENTEDKALMAN FILTERING

A. Matrix Form of Unscented Kalman Filter

In this section the unscented Kalman filter is presented
in matrix form, where the weighted sums of sigma points
are written as equivalent matrix expressions. This eases the
derivations of continuous-time forms of the UKF in the next
sections.

In order to clean up the notation, we shall use the convention
that expression

Y = g(X), (22)

where X ∈ R
n×d and g : R

n 7→ R
m means that thei:th

columnYi of the matrixY ∈ R
m×d is formed as follows:

Yi = g(Xi). (23)

1In this article we only consider the case of additive noise, but UKF can
also be applied to more general filtering problems with non-additive noise.
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Lemma 4.1 (The matrix form of UT):The unscented trans-
form can be written in matrix form as follows:

X =
[

m · · · m
]

+
√

c
[

0
√

P −
√

P
]

Y = g(X)

µU = Y wm

SU = Y W Y T

CU = X W Y T ,

(24)

whereX is the matrix of sigma points,c = α2 (n + κ), and
vectorwm and matrixW are defined as follows:

wm =
[

W
(0)
m · · · W

(2n)
m

]T

W =
(

I −
[

wm · · · wm

])

× diag(W (0)
c · · ·W (2n)

c )

×
(

I −
[

wm · · · wm

])T
.

(25)

Proof: See Appendix I-A
Algorithm 4.1 (Unscented Kalman filter):The UKF pre-

diction and update steps can be written in matrix form as
follows:

• Prediction: Compute the predicted state meanm−

k and
the predicted covarianceP−

k as

Xk−1 =
[

mk−1 · · · mk−1

]

+
√

c
[

0
√

Pk−1 −
√

Pk−1

]

X̂k = fd(Xk−1, k − 1)

m−

k = X̂k wm

P−

k = X̂k W [X̂k]T + Qk−1.

(26)

• Update:Compute the predicted meanµk and covariance
of the measurementSk, and the cross-covariance of the
state and measurementCk:

X−

k =
[

m−

k · · · m−

k

]

+
√

c
[

0
√

P−

k −
√

P−

k

]

Y −

k = hd(X
−

k , k)

µk = Y −

k wm

Sk = Y −

k W [Y −

k ]T + Rk

Ck = X−

k W [Y −

k ]T .

(27)

Then compute the filter gainKk, the state meanmk and
the covariancePk:

Kk = Ck S−1
k

mk = m−

k + Kk [yk − µk]

Pk = P−

k − Kk Sk KT
k .

(28)

B. Continuous-Time Unscented Kalman Filter

By taking the formal limit of the discrete-time unscented
Kalman filter equations in Algorithm 4.1, the following novel
continuous-time filter can be derived:

Algorithm 4.2 (Unscented Kalman-Bucy filter):The
stochastic differential equations corresponding to the UKF
in the continuous-time limit of the state and measurement

processes, that is, theunscented Kalman-Bucy filter (UKBF)
equations, are given as

K(t) = X(t)W hT (X(t), t)
[

V (t)Rc(t)V T (t)
]−1

dm(t)

dt
= f(X(t), t)wm + K(t) [z(t) − h(X(t), t)wm]

dP (t)

dt
= X(t)W fT (X(t), t) + f(X(t), t)W XT (t)

+ L(t)Qc(t)LT (t)

− K(t)V (t)Rc(t)V T (t)KT (t),
(29)

where we have formally defined the differential measurement
z(t) = dy(t)/dt. The sigma-point matrixX(t) is defined as

X(t) =
[

m(t) · · · m(t)
]

+
√

c
[

0
√

P (t) −
√

P (t)
]

.
(30)

Proof: See Appendix I-B.
To avoid problems related to the finite numerical precision

of computer arithmetic, Kalman filter equations are often
implemented such that the matrix square roots of covariance
matrices are used in computations instead of their actual values
[18]. Because UKF already uses matrix square roots in its
sigma-points, the square root version of continuous-time UKF
can be obtained by formulating the filter as a differential
equation for the sigma points.

Algorithm 4.3 (Square root unscented Kalman-Bucy filter):
The unscented Kalman-Bucy filter can be formulated in terms
of sigma points as follows:2

K(t) = X(t)W hT (X(t), t)
[

V (t)Rc(t)V T (t)
]−1

M(t) = A−1(t)
[

X(t)W fT (X(t), t)

+ f(X(t), t)W XT (t)

+ L(t)Qc(t)LT (t)

− K(t)V (t)Rc(t)V T (t)KT (t)
]

A−T (t)

dXi(t)

dt
= f(X(t), t)wm + K(t) [z(t) − h(X(t), t)wm]

+
√

c
[

0 A(t)Φ
(

M(t)
)

−A(t)Φ
(

M(t)
)]

i

(31)

where the matrix of sigma-points is defined as

X(t) =
[

m(t) · · · m(t)
]

+
√

c
[

0 A(t) −A(t)
]

, (32)

andΦ(·) is a function returning the lower diagonal part of the
argument as follows:

Φij

(

M(t)
)

=







Mij(t) , if i > j
1
2Mij(t) , if i = j

0 , if i < j.
(33)

The initialA(0) should be the lower triangular Cholesky factor
of the initial covariance matrixA(0) = chol(P (0)).

Proof: See Appendix I-D.
Note that in the square root filter, the equations contain the

matrix A(t), which is the lower triangular Cholesky factor of
the covarianceA(t) = chol(P (t)) at all time instancest ≥ 0.

2Here ()i denotes theith column of the argument matrix.
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However, the factorization needs to be explicitly computed
only on the initial time step, becauseA(t) can be extracted
from X(t) at any time step by very simple means. This
also implies that in the implementation of the algorithm the
covarianceP (t) of the state never needs to be evaluated.

The unscented Kalman-Bucy filter equations presented in
this section are actually Stratonovich type of stochastic dif-
ferential equations, because they have been derived by taking
the continuous-time limit of discrete-time equations by using
the rules of conventional calculus. In the beginning of the
paper it was stated that the continuous-time dynamic and
measurement models can be equivalently interpreted as either
Itô or Stratonovich type of stochastic differential equations,
which is indeed true, but with both the interpretations the filter
equations still are of the Stratonovich type.

C. Unscented Continuous-Time Prediction

In this section the continuous-time prediction equations are
derived as special cases of the continuous-time filters in the
previous section. The motivation is that using the prediction
equations we can construct the continuous-discrete versions of
the unscented Kalman filter.

Algorithm 4.4 (Mean and covariance prediction):The
predicted meanm(t) and covarianceP (t) of the state for
times t ≥ t0 given the mean and covariance at the time
instancet0, that is, m(t0) and P (t0) can be computed by
integrating the differential equations

dm(t)

dt
= f(X(t), t)wm

dP (t)

dt
= X(t)W fT (X(t), t) + f(X(t), t)W XT (t)

+ L(t)Qc(t)LT (t),

(34)

from initial conditionsm(t0) and P (t0) to time instancet.
HereX(t) is defined as in Equation (30),

Proof: Formally setRc(t) = ∞ I in Algorithm 4.2,
which results inK(t) = 0.

Algorithm 4.5 (Square root prediction):The UKF predic-
tion equations can be written in terms of sigma points as

M(t) = A−1(t) [X(t)W fT (X(t), t)

+ f(X(t), t)W XT (t)

+ L(t)Qc(t)LT (t)]A−T (t)

dXi(t)

dt
= f(X(t), t)wm

+
√

c
[

0 A(t)Φ
(

M(t)
)

−A(t)Φ
(

M(t)
)]

i
,

(35)

whereA(t), X(t) and Φ(·) are defined as in Algorithm 4.3.
The integration is started from the sigma pointsX(t0), which
are generated fromm(t0) andP (t0).

Proof: Formally setRc(t) = ∞ I in Algorithm 4.3,
which results inK(t) = 0.

D. Continuous-Discrete Unscented Kalman Filter

The mean and covariance form of continuous-discrete UKF
can be now implemented as follows:

Algorithm 4.6 (Continuous-discrete UKF):The prediction
and update steps of the continuous-discrete unscented Kalman
filter are the following:

• Prediction.Integrate the differential equations (34) in Al-
gorithm 4.4 from the initial conditionsm(tk−1) = mk−1,
P (tk−1) = Pk−1 to time instancetk. The predicted
mean and covariance are given asm−

k = m(tk) and
P−

k = P (tk), respectively.
• Update.The update step is the same as the discrete-time

unscented Kalman filter update step (27) of Algorithm
4.1.

The corresponding square root continuous-discrete UKF has
the same form:

Algorithm 4.7 (Square root continuous-discrete UKF):
The prediction and update steps of the square root continuous-
discrete unscented Kalman filter are the following:

• Prediction. Integrate the differential equations (35) in
Algorithm 4.5 from the initial conditionsX(tk−1), which
are the sigma points generated fromm(tk−1) = mk−1

andP (tk−1) = Pk−1. The integration is continued up to
the time instancetk and the predicted sigma points are
given asX−

k = X(tk).
• Update.The update step is the same as the discrete-time

unscented Kalman filter update step (27) of Algorithm
4.1, but now the predicted sigma points do not have to
be generated from mean and covariance, because they are
already available. To enhance the numerical stability of
the update equations, square root versions [4], [43] of the
UKF update step can also be used.

V. REMARKS AND DISCUSSION

A. Computational Complexity

Although, the new matrix form of the unscented transform is
very useful in derivation of the filtering equations, in numerical
computations, the classical form can be computationally more
efficient. The matrix expressions appearing in the filtering
equations can be equivalently written as summations as fol-
lows:

X(t)W fT (X(t), t)

=

2n
∑

i=0

W
(c)
i (x(i) − mx) (f(x(i), t) − mf )T

f(X(t), t)W XT (t)

=

2n
∑

i=0

W
(c)
i (f(x(i), t) − mf ) (x(i) − mx)T

X(t)W hT (X(t), t)

=

2n
∑

i=0

W
(c)
i (x(i) − mx) (h(x(i), t) − mh)T ,

(36)
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where

mx =

2n
∑

i=0

W
(m)
i x(i)

mf =

2n
∑

i=0

W
(m)
i f(x(i), t)

mh =
2n
∑

i=0

W
(m)
i h(x(i), t).

(37)

By using the summation forms of the covariance terms the
full matrix product is replaced by the weighted sum of outer
products, which is lighter to compute.

The relationship between the unscented Kalman-Bucy filter
and extended Kalman-Bucy filter approximations can be seen
to be

X(t)W hT (X(t), t) ⇐⇒ P (t)HT (m(t), t)

X(t)W fT (X(t), t) ⇐⇒ P (t)FT (m(t), t)

f(X(t), t)wm ⇐⇒ f(m(t), t)

h(X(t), t)wm ⇐⇒ h(m(t), t),

(38)

where the elements of the Jacobian matricesF (m(t), t) and
H(m(t), t) are given as

Fij(m(t), t) =
dfi(x, t)

dxj

∣

∣

∣

∣

∣

x=m(t)

Hij(m(t), t) =
dhi(x, t)

dxj

∣

∣

∣

∣

∣

x=m(t)

.

(39)

The computational complexity of the unscented Kalman-Bucy
filter (or continuous-discrete UKF) can be seen to be 2-3 times
the computational complexity of the extended Kalman-Bucy
filter, when compared in terms of number of multiplications
and additions. When the state dimension isn, the UKBF needs
2n + 1 evaluations off andh, when EKBF needs only one.
However, in addition to that, EKBF needs evaluations of the
Jacobian matrices (and possibly Hessian matrices) of both the
functions.

VI. I LLUSTRATIVE EXAMPLES

A. Continuous-Time Non-Linear Filtering

In this section we shall test the performance of the unscented
Kalman-Bucy filter in continuous-time version of the non-
linear filtering problem, which was used in [17] for demon-
strating the performance of the statistical linearizationbased
filter. Both the statex(t) and the measurementsz(t) are one-
dimensional continuous-time processes and the filtering model
is:

dx(t)/dt = − sin x(t) + w(t)

z(t) =
1

2
sin(x(t)) + n(t),

(40)

where w(t) and n(t) are continuous-time white noise pro-
cesses with spectral densitiesqc = 0.01 and rc = 0.004,
respectively. Note that in [17] the dynamic model was in
continuous time and the measurement model was in discrete

TABLE I

RMSEVALUES OF THE PARAMETER AND SIGNAL AVERAGED OVER1000

MONTE CARLO RUNS IN THE CONTINUOUS-TIME NON-LINEAR FILTERING

PROBLEM.

Filter RMSE[x]

EKBF 0.22

EKBF2 0.20

UKBF 0.16

SLF 0.13
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Fig. 1. Illustration of transient period error behavior in continuous-time
non-linear filtering problem.

time, but here both the models are in continuous time. The
simulation was performed over time period of 5 seconds
using the Euler-Maruyama scheme [33] and with time steps
of ∆t = 0.01.

The root mean squared error (RMSE) results of 1000 Monte
Carlo runs with extended Kalman-Bucy filter (EKBF), sec-
ond order extended Kalman-Bucy filter (EKBF2), unscented
Kalman-Bucy filter (UKBF) and statistically linearized filter
(SLF) are shown in Table I. It can be seen that SLF is
the best of the filters in RMSE sense, because it uses the
closed form formulas for expectations and covariances of
the non-linearities (see [17]), when the other filters can only
approximate them. The UKBF gives a significantly better
result than EKBF and EKBF2, and the UKBF result is also
quite close to the base line result of SLF. The performances of
EKBF and EKBF2 are most likely that bad because the Taylor
series expansion based approximations do not work well when
the estimation error is large.

Even thought the SLF is better than UKBF in RMSE sense,
SLF has the serious disadvantage that in order to implement it,
one has to be able to compute closed form formulas for certain
expected values of non-linear transformations of Gaussian
random variables [17]. These expected values can be computed
in closed form only in simple special cases and thus UKBF is
a very good choice for models with significant non-linearities
and uncertainties.

A typical transient behavior of the filters is illustrated in
Figure 1. It can be seen that SLF is best because it converges
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very quickly near the correct state. The convergence of UKBF
is slower, but significantly faster than of EKBF and EKBF2.

B. Re-Entry Vehicle Tracking

Here we consider the reentry tracking problem, where a
radar is used for tracking a space vehicle, which enters the
atmosphere at a very high speed. The reentry problem was
used for demonstrating the performance of UKF in [2] and
slight corrections to the equations and simulation parameters
were later published in [44].

The stochastic equations of motion for the space vehicle are
given as [2], [44]

R(t) =
√

x2
1(t) + x2

2(t)

V (t) =
√

x2
3(t) + x2

4(t)

b(t) = b0 exp (x5(t))

D(t) = b(t) exp

(

R0 − R

H0

)

V (t)

G(t) = − Gm0

R3(t)

dx1/dt = x3(t)

dx2/dt = x4(t)

dx3/dt = D(t)x3(t) + G(t)x1(t) + w1(t)

dx4/dt = D(t)x4(t) + G(t)x2(t) + w2(t)

dx5/dt = w3(t),

(41)

wherew1(t), w2(t), w3(t) are white Gaussian process noises
with known joint spectral density. The constants are [2]:

b0 = −0.59783

H0 = 13.406

Gm0 = 3.9860 × 105

R0 = 6374.

(42)

In the article [2] the radar measured 10 times per second and
the simulated discrete process noise covariance was

Q(k) =





2.4064 × 10−5 0 0
0 2.4064 × 10−5 0
0 0 0



 . (43)

If we interpret the dynamic model (41) as originally continu-
ous time model, we may assume that the discretized covariance
is actually an approximation to a non-linear continuous-time
process driven by continuous-time process noise with spectral
density Qc. In this interpretation it is reasonable to assume
that the relationship between the discrete covariance and the
continuous-time spectral density is originally the approxima-
tion Q(k) ≈ Qc ∆t where∆t = 0.1 s is the sampling time
used in [2]. Thus the true spectral density matrix is the matrix
in (43) multiplied by 10.

In the actual filter implementation the lower right corner
term in the modeled process noise covariance was set to the
value 10−6. This additional small noise term was used for
the constant parameter to enhance the filter stability as was
done in [44]. This modified discrete process noise covariance

is denoted asQ′(k) and the corresponding spectral density is
denoted asQ′

c.
The radar is located at(xr, yr) = (R0, 0) and the measure-

ment model is

rk =
√

(x1(tk) − xr)2 + (x2(tk) − yr)2 + er
k

θk = tan−1

(

x2(tk) − yr

x1(tk) − xr

)

+ ea
k,

(44)

where theer
k ∼ N(0, σ2

r) andea
k ∼ N(0, σ2

a).
In the simulation, the assumed means and covariances of

the state, simulated means and covariances of the state and
the standard deviations of measurements were selected to be
the same as in [2], [44]. The simulated data were generated
by simulating the stochastic differential equation (41) with
100 steps of Euler-Maruyama scheme [33] between each
measurement.

The discrete UKF (DUKF) and continuous-discrete UKF
(CDUKF) were both implemented using 10 steps of Runge-
Kutta integration between measurements, but the difference
was in handling of process noise:

• In DUKF, each measurement is processed as follows:

1) Integrate each of the sigma point through the noise
free dynamic model using 10 steps of the Runge-
Kutta integration.

2) Compute the predicted mean and covariance, and
model process noise effect by approximating the
discrete covariance byQ′(k) ≈ Q′

c ∆t.
3) Perform standard UKF update step for the measure-

ment.

• In CDUKF, each measurement is processed as follows:

1) Integrate the mean and covariance differential equa-
tions using 10 steps of the Runge-Kutta integration,
and usingQ′

c as the diffusion matrix (or spectral
density) of the process noise.

2) Perform standard UKF update step for the measure-
ment.

The amount of computations required by the CDUKF is
slightly higher than of DUKF, but the number of evaluations
of the dynamic model function is the same for both the models
and thus the practical total difference is small. The algorithm
parameters in the unscented transforms were selected to be
α = 1/2, β = 2, κ = −2.

Simulations were performed using different time steps of
∆t = 0.1, 0.2, . . . , 3 seconds and the results from 100 Monte
Carlo simulations per step size are shown in Figure 2. The dis-
crete UKF (DUKF) and continuous-discrete UKF (CDUKF)
have very much the same performance when the time step
size is short. However, when the time step grows, DUKF
encounters numerical problems and its error grows rapidly.
The problem is that when the sigma-points are integrated
one at a time, nothing prevents the covariance estimate from
becoming non-positive definite. With larger time steps this
causes severe numerical difficulties. At the same time, no
numerical problems can be seen in the CDUKF and its error
grows much slower.

In this simulation scenario the advantage of the continuous-
time formulation over the discrete-time formulation is the
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Fig. 2. Root mean squared error (RMSE) versus time step size in the reentry
filtering problem. Results are from 100 Monte Carlo runs per time step with
the continuous-discrete UKF (CDUKF) and discrete UKF (DUKF). The higher
errors of DUKF with longer time step sizes are caused by numerical problems
on the prediction step.

numerical stability. This stability is due to that when the
noise process is modeled as a continuous-time process the
non-linear dynamic model cannot force the covariance to
become non-positive definite. In the discrete-time formulation
the covariance can become non-positive definite.

In this particular problem it is not essential whether un-
certainties are modeled as discrete-time or continuous-time
stochastic processes. Since the performance of CDUKF seems
to be at least that of DUKF, in cases where the continuous-time
stochastic process formulation is more accurate in modeling
point of view, the continuous-discrete UKF is likely to perform
better than the discrete UKF.

VII. CONCLUSION

In this article novel continuous-time and continuous-discrete
versions of the originally discrete-time unscented Kalman
filter (UKF) have been derived and applied to non-linear
continuous-time filtering and re-entry vehicle tracking prob-
lems. Numerically more stable square-root versions of the new
filters have also been derived.

The continuous-time and continuous-discrete unscented fil-
ters are good alternatives to the extended Kalman filters in
models, where the Jacobian and Hessian matrices of the drift
terms are not available or when the Taylor series expansion
approximations do not work well. According to the simulations
the approximations generated by the new filters are better
in the cases where the model non-linearities and estimation
uncertainties are significant.
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APPENDIX I
DERIVATIONS

A. Derivation of Matrix Form of UT

If we define the matrix of sigma points as

X =
[

x(0) · · · x(2n)
]

, (45)

then the sigma point computation in equations (9) can be
written in form of the first equation in (24). The second
equation is simply the vector form of Equation (12).

If we define the weight vectorwm and matrixWc as in
Equation (25) and denote the matrix of sigma points ofy
as Y the transformed mean and covariance equations can be
written as

µU =
∑

i

W (i)
m y(i)

= Y wm (46)

SU =
∑

i

W (i)
c (y(i) − µU ) (y(i) − µU )T

=
∑

i

W (i)
c (y(i) − Y wm) (y(i) − Y wm)T

=
(

Y − Y
[

wm · · · wm

])

× diag(W (0)
c · · ·W (2n)

c )

×
(

Y − Y
[

wm · · · wm

])T

= Y W Y T (47)

CU =
∑

i

W (i)
c (x(i) − m) (y(i) − µU )T

=
∑

i

W (i)
c (x(i) − Xwm) (y(i) − Y wm)T

=
(

X − X
[

wm · · · wm

])

× diag(W (0)
c · · ·W (2n)

c )

×
(

Y − Y
[

wm · · · wm

])T

= X W Y T , (48)

which leads to last three equations in (24).

B. Derivation of UKBF

The continuous-time unscented Kalman filter equations can
be derived from the discrete-time UKF by the same limiting
procedure as is commonly used in derivation of the Kalman-
Bucy filter from the discrete-time Kalman filter (see, e.g., [14],
[18]). The continuous-time filtering model

dx(t) = f(x(t), t) dt + L(t) dβ(t)

dy(t) = h(x(t), t) dt + V (t) dη(t),
(49)

whereβ(t) andη(t) are independent Brownian motions with
diagonal diffusion matricesQc(t) andRc(t) can be interpreted
such that when∆t is sufficiently close to zero, we have

x(t + ∆t) − x(t) = f(x(t), t)∆t + L(t)∆β + o(∆t)

y(t + ∆t) − y(t) = h(x(t), t)∆t + V (t)∆η + o(∆t),
(50)

where ∆β ∼ N(0, Qc(t)∆t), ∆η ∼ N(0, Rc(t)∆t) and
o(∆t) is a function such thato(∆t)/∆t → 0 when∆t → 0.
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Assuming thatx(t) ∼ N(m(t), P (t)), the UKF prediction
from x(t) to x(t + ∆t) can be written as

X(t) =
[

m(t) · · · m(t)
]

+
√

c
[

0
√

P (t) −
√

P (t)
]

X̂(t + ∆t) = X(t) + f(X(t), t)∆t + o(∆t)

m−(t + ∆t) = X̂(t + ∆t)wm

P−(t + ∆t) = X̂(t + ∆t)W X̂(t + ∆t)

+ L(t)Qc(t)LT (t)∆t.

(51)

SubstitutingX̂(t + ∆t) into the equations ofm−(t + ∆t)
and P−(t + ∆t), and using the identitiesm(t) = X(t)wm,
P (t) = X(t)W XT (t) gives

m−(t + ∆t) = m(t) + f(X(t), t)wm ∆t + o(∆t)

P−(t + ∆t) = P (t) + f(X(t), t)W XT (t)∆t

+ X(t)W fT (X(t), t)∆t

+ L(t)Qc(t)LT (t)∆t + o(∆t).

(52)

Assuming that we measure the difference∆y = y(t + ∆t) −
y(t) the UKF update step can be written as

X−(t + ∆t) =
[

m−(t + ∆t) · · · m−(t + ∆t)
]

+
√

c
[

0
√

P−(t + ∆t) −
√

P−(t + ∆t)
]

Y −(t + ∆t) = h(X−(t + ∆t), t)∆t + o(∆t)

µ(t + ∆t) = Y −(t + ∆t)wm

S(t + ∆t) = Y −(t + ∆t)W [Y −(t + ∆t)]T

+ V (t)Rc(t)V T (t)∆t

C(t + ∆t) = X−(t + ∆t)W [Y −(t + ∆t)]T

K(t + ∆t) = C(t + ∆t)S−1(t + ∆t)

m(t + ∆t) = m−(t + ∆t)

+ K(t + ∆t) [∆y − µ(t + ∆t)]

P (t + ∆t) = P−(t + ∆t)

− K(t + ∆t)S(t + ∆t)KT (t + ∆t).
(53)

SubstitutingY −(t + ∆t), µ(t + ∆t), C(t + ∆t), S(t + ∆t),
and retaining only first order terms results in

K(t + ∆t) = X−(t + ∆t)W hT (X−(t + ∆t), t)

× [V (t)Rc(t)V T (t)]−1 + o(∆t)/∆t

m(t + ∆t) = m−(t + ∆t) + K(t + ∆t)

×
[

∆y − h(X−(t + ∆t), t)wm ∆t
]

+ o(∆t)

P (t + ∆t) = P−(t + ∆t) − K(t + ∆t)

× V (t)Rc(t)V T (t)KT (t + ∆t)∆t

+ o(∆t).

(54)

Substitutingm−(t + ∆t) andP−(t + ∆t) gives

m(t + ∆t) = m(t) + f(X(t), t)wm ∆t + K(t + ∆t)

×
[

∆y − h(X−(t + ∆t), t)wm ∆t
]

+ o(∆t)

P (t + ∆t) = P (t) + f(X(t), t)W XT (t)∆t

+ X(t)W fT (X(t), t)∆t

+ L(t)Qc(t)LT (t)∆t − K(t + ∆t)

× V (t)Rc(t)V T (t)KT (t + ∆t)∆t

+ o(∆t).

(55)

Dividing by ∆t and taking the limit∆t → 0 results in the
differential equations in the Algorithm 4.2.

C. Alternative Derivation

In Appendix I-B the equations of the unscented Kalman-
Bucy filter were derived by taking the formal limit of the
discrete-time equations. However, it is also possible to derive
the same equations purely in continuous-time framework. The
mean and covariance of the optimal continuous-time filter are,
in theory, given by the stochastic differential equations [16]

dm = E[f(x, t)] dt +
(

E[x hT (x, t)] − E[x] E[hT (x, t)]
)

×
(

V (t)Rc(t)V T (t)
)−1

[dy(t) − E[h(x, t)] dt]

dPij =
{

E[xi fj(x, t)] − E[xi] E[fj(x, t)] + E[fi(x, t)xj ]

− E[fi(x, t)] E[xj ] +
[

L(t)Qc(t)LT (t)
]

ij

−
(

E[xi hT (x, t)] − E[xi] E[hT (x, t)]
)

×
(

V (t)Rc(t)V T (t)
)−1

× (E[h(x, t)xj ] − E[h(x, t)] E[xj ])
}

dt

+
{

E[xi xj hT (x, t)] − E[xi xj ] E[hT (x, t)]

− E[xi] E[xj hT (x, t)] − E[xj ] E[xi hT (x, t)]

+ 2E[xj ] E[xi] E[hT (x, t)]
}

×
(

V (t)Rc(t)V T (t)
)−1

[dy(t) − E[h(x, t)] dt] .
(56)

The expectations are with respect to the posterior distribution
of the statex(t) and thus cannot be in practice computed,
because the computation would require the knowledge of all
(infinite number of) moments of the distribution. However, an
unscented transform based approximation to these equations
can be formed as follows.

If we assume that the third order term in the covariance
equation above is approximately zero, the equations above can
be approximately written as

dm

dt
= E[f(x, t)] + Cov[x, h(x, t)]

×
(

V (t)Rc(t)V T (t)
)−1

[z(t) − E[h(x, t)]]

dP

dt
= Cov[x, f(x, t)] + Cov[f(x, t), x] + L(t)Qc(t)LT (t)

− Cov[x, h(x, t)]
(

V (t)Rc(t)V T (t)
)−1

Cov[h(x, t), x],
(57)
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whereCov[x, y] = E[x yT ] − E[x] E[y]T denotes the cross-
covariance ofx and y, and z(t) = dy(t)/dt is the differen-
tiated measurement process. If we assume that the posterior
mean and covariance ofx(t) arem(t) andP (t), respectively,
unscented transform based approximations to the expectations
and covariances can be formed as follows:

E[f(x, t)] ≈ f(X(t), t)wm

E[h(x, t)] ≈ h(X(t), t)wm

Cov[x, f(x, t)] ≈ X(t)W fT (X(t), t)

Cov[f(x, t), x] ≈ f(X(t), t)W XT (t)

Cov[x, h(x, t)] ≈ X(t)W hT (X(t), t)

Cov[h(x, t), x] ≈ hT (X(t), t)W XT (t),

(58)

where X(t) are the sigma-points generated fromm(t) and
P (t). Substituting these approximations into the Equations
(57) results in the unscented Kalman-Bucy filter equations in
Algorithm 4.2.

Note that the above derivation is not strictly complete as
such, because the UKBF equations presented in Section IV-
B are actually Stratonovich equations, but the Equations (57)
are It̂o type of equations. However, we may argue that the
extra terms arising from the conversion of Equations (57) from
Itô from to Stratonovich form would only introduce terms
involving odd moments, which anyway disappear due to the
Gaussian approximation.

D. Derivation of SR-UKBF

Assume that the matrix square root used is the Cholesky
factorization

A(t) = chol(P (t)), (59)

which also assures that the square root is lower triangular.If
we define (symmetric matrix)

U(X(t), t) = X(t)W fT (X(t), t) + f(X(t), t)W XT (t)

+ L(t)Qc(t)LT (t)

− K(t)V (t)Rc(t)V T (t)KT (t),
(60)

then the differential equation of the covariance is of the form

dP (t)

dt
= U(X(t), t). (61)

It is now possible to derive differential equations for the
Cholesky factorA(t) using the procedure presented in [45] and
later in [14]. We first expand the derivative of the covariance
matrix as follows:

dA(t)

dt
AT (t) + A

dAT (t)

dt
= U(X(t), t). (62)

Multiplying both sides from left byA−1 and from right by
A−T gives

A−1(t)
dA(t)

dt
+

dAT (t)

dt
A−T (t) = A−1(t)U(X(t), t)A−T (t).

(63)
Now the left hand side is sum of lower triangular matrix
A−1(t) dA(t)

dt
and upper triangular matrixdAT (t)

dt
A−T (t), and

the right hand side is symmetric matrix. Thus it can be
concluded that the derivative ofA(t) can be written as

dA(t)

dt
= AΦ

(

A−1(t)U(X(t), t)A−T (t)
)

, (64)

where the functionΦ, which is defined in Equation (33) gives
the lower diagonal part and half of the diagonal part of its
argument. The expression of the sigma points is

X(t) =
[

m(t) · · · m(t)
]

+
√

c
[

0 A(t) −A(t)
]

. (65)

Taking derivatives from both sides of the equation gives

dX(t)

dt
=

[

dm(t)
dt

· · · dm(t)
dt

]

+
√

c
[

0 dA(t)
dt

−dA(t)
dt

]

.

(66)

Substituting the equations fordm(t)/dt and dA(t)/dt leads
to equations in Algorithm 4.3.
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