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On Unscented Kalman Filtering for State
Estimation of Continuous-Time Nonlinear Systems

Simo Srkka®, Member, IEEE

Abstract— This article considers the application of the un- square root version of the filter is also derived and it cdesis
scented Kalman filter (UKF) to continuous-time filtering prob-  of a matrix differential equation for the sigma points.
lems, where both the state and measurement processes are mod- The continuous-discrete unscented Kalman filter is derived

eled as stochastic differential equations. The mean and covariaac ial f th ntin time filter. when th
differential equations which result in the continuous-time limit of as a special case o e co uous-time filter, e e

the UKF are derived. The continuous-discrete unscented Kalman Continuous-time prediction equations are combined with th
filter is derived as a special case of the continuous-time filter, update step of the discrete-time UKF. A square root version

when the continuous-time prediction equations are combined of this continuous-discrete filter is also presented.
with the update step of the discrete-time unscented Kalman
filter. The filter equations are also transformed into sigma-point
differential equations, which can be interpreted as matrix square ) I_I' PROBI_‘EM S_TAT'_EMENT
root versions of the filter equations. A. Optimal Continuous-Time Filtering

Index Terms— unscented Kalman filter, continuous-time filter, In analog communication systems [11] the measured signals
continuous-discrete filter, stochastic differential equation, nalin-  are typically continuous-time processes and analog receiv
ear system, continuous-time state space model, nonlinear stategpa devices, which demodulate or estimate the actual tignsm
space model ted continuous-time signals from the noisy measured ssgnal

Also in many analog (electrical or mechanical) control eyss
|. INTRODUCTION (see, e.g., [13], [14]) operating without digital compuster
the measured signals are continuous-time, not discnete-ti

HE unscented Kalman filter (UKF) [1}-{3] is an erflC'emsignals. The optimal recursive estimation of this kind of

imat:esrcl)\ﬁ:\(;isfr?g Zlitsetg'rg?ei%g'tz?nfﬁ;ggrmg;tti':]%laﬁg;?x'systems is calledptimal continuous-tim(_a filteringl_G], [17]._

. ; The most general form of the optimal continuous-time
problems. It has been successfully applied to numerouslpraj,"t ring models considered in this article is
cal problems and it has been shown to outperform the exten e&
Kalman filter (EKF) in many cases [4]. However, in its origina dx(t) = f(z(1),t) dt + L(t) dB(t)
form, the UKF is a discrete-time algorithm and it cannot dy(t) = h(z(t),t) dt + V(¢) dn(t),
be directly applied to continuous-discrete filtering perhb,
where the state dynamics are modeled as continuous-time -
stochastic processes, or to continuous-time filtering lerab, - 2(t) € Rm IS the state process,
where both the state and measurement processes are modelédy(t> € R™ s the (integrated) measurement process,

as continuous-time stochastic processes. * £ IS :L‘e drift functlon,t del funci
Phenomena, which can be modeled as time varying sys- IS thé measurement moael tunction, . .
L(t) andV (t) are arbitrary time varying matrices, inde-

tems, where a continuous-time signal is observed disgretel °
g r pendent ofz(t) andy(t),

or continuously in time are very common in engineering . . . .
and physics applications. Examples of such applicatioss ar * g.(t) an? g(f? are mdte.pendetnt Bgol\évnltan mouoPs :N'th
GPS and inertial navigation [5], [6], target tracking [} lagonal diffiusion ma riceQ.(t) andR.(t), respec ively.
estimation of biological processes [10], telecommunérati '€ dynamic and measurement models can be equivalently
[11], [12], stochastic optimal control [13], [14] and inger interpreted as & or Stratonovich typestochastic differential

’ ’ ' equations[19], [20].

problems in physics [15]. G .
In this article, the differential equations which result in 1he filtering model can also be formulated in terms of

the continuous-time limit of the UKF are derived. Both thdormal white noises:(t) = dj(t)/dt, n(t) = dn(t)/dt, 'f‘”d
continuous-time and continuous-discrete cases are amesid differential measurement(t) = dy(t)/dt as follows [16]:

@)

The derived continuous-time filtering equations, whichldou da(t) D8+ L) et
be called the unscented Kalman-Bucy filter (UKBF) equations dt Fla(t),t) + L(t) e(t) (2)
are similar to the extended Kalman-Bucy filter (EKBF) equa- z(t) = h(z(t),t) + V() n(t),

tions [16]-[18] and consist of a pair of differential eques

for the mean and covariance of the posterior state processW,Iéq\ere the white noise processes) andn(t) have spectral

densitiesQ.(t) and R.(t), respectively.
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or at least the relevant moments of the distribution (e.ggam The purpose of (Bayesian) continuous-discrete filteringpis

and covariance). recursively compute the posterior distribution
The formal solution to the filtering problem is well known
and it is given by theKushner-Stratonovich equatiof21]— p(x(te) ly1,-- - uk), (6)

[23], which is a measure valued stochastic partial difféegn wheret, is the time of measuremen,. By using optimal

equation. The unnormalized version of the equation is da"erediction the corresponding distribution can also be
the Zakai equation24], [25]. However, these equations onIyp . . oatey
. . . for all time instances before the next measurement
give theformal solution and the actual computation of the[t bes)

kylk+1)-

distribution or its expectations (such as mean and covegjan . . . __
In theory, the solution to the continuous-discrete filtgrin

would require an infinite amount of computational resources bl b ted by the followi dicti d
In certain special cases, the equations do have finite dim&joP'em can be computed by he following prediction an

sional solutions, which leads to Kalman-Bucy filters [26]janUpOIate steps [16];

Bené filters [27]. « Prediction step:solves the predicted probability density
Because the exact solution to the continuous-time optimal at time stept;, from the Kolmogorov forward partial
filtering problem is generally intractable, approximasanust differential equationusing the old posterior probability

be used. The most common approximation method is the density at time step,_; as the boundary condition.
extended Kalman-Bucy filter (EKBF) (see, e.g., [16]-[18]), » Update step:uses theBayes’ rule for computing the
which approximates the exact solution by replacing the non- posterior probability density of state at time stgpfrom
linear model with a suitably linearized approximate model, the predicted probability density of the prediction step,
which can be solved by the Kalman-Bucy filter. Another  and the likelihood of the measuremept

general way of forming approximations is Monte Carlo samas in the continuous-time case, the closed form solutions to

pling [28], [29], where a set of weighted particles is used fahese equations or to the equations for the moments (e.gn me

approximating the posterior probability measure. and covariance) of the distributions can only be found in a

. ) ) o few special cases [30]-[32] and approximations are gelyeral

B. Optimal Continuous-Discrete Filtering needed. The continuous-discrete extended Kalman filteFJEK
Nowadays, in many signal processing systems, the senflB]-[18] uses a Taylor series expansion approximation to

measurements are obtained at discrete instances of tilver eithe non-linear drift function and forms a Gaussian process

due to sampling, due to processing delays in the device agproximation to the SDE. Another possible approach is to

because the sensor operates in scans. Still in the Natsi@ulate sample paths of SDEs [33] and use particle filters

time is continuous, not discrete, and for this reason oftenfér estimation [34], [35]. Interacting and branching pelei

physically more realistic approach than discrete-timeriifiy systems [36] are particle based solutions to nonlinearifige

or continuous-time filtering iscontinuous-discrete filtering problems also in the continuous-discrete setting.

[16], [17]. In continuous-discrete filtering the state dgmies  Other possible approaches are statistical linearizatiah, [

are modeled as continuous-time stochastic processeshendgirid based methods [35], [37] and multiple model methods [7]

measurements are obtained at discrete instances of tine. TB5], Gaussian sum approximations [38], [39], and numérica

differs from discrete-time filtering, because in that agmio solving of the Kolmogorov forward equation [40], [41].

both the dynamics and measurements are modeled as discrete-

time processes.

The continuous-discrete filtering models considered herd!!: DISCRETETIME UNSCENTEDKALMAN FILTERING

have the general form A. Unscented Transform
da(t) = f(x(t),t)dt + L(t) dB(?) (4y  The unscented transforn{UT) [1]-[3] can be used for
yr = ha(x(ty), tg) + i, forming a Gaussian approximation to the joint distribution
where of random variablest and y, when the random variablg
. 2(t) € R" is the state, is obtained. by a non-linear transformation of the Gaussian
« y, € R™ is the measurement, random variabler as follows:
« f is the drift function, x ~ N(m, P)
o L(t) is the dispersion matrix, y = g(z), @)
« ((t) is Brownian motion with diffusion matrixQ.(t),
e hg is the measurement model function, wherex € R", y € R™, andg : R” — R™ is a general non-
e 7, IS @ zero mean Gaussian measurement noise withear function. The idea of UT is to form a fixed number of
covariance matrixiy,. deterministically chosen sigma-points, which capturentigan

The dynamic model can be equivalently interpreted asda &nd covariance of the original distribution ofexactly. These
or Stratonovich typestochastic differential equatiors in the sigma-points are then propagated through the non-linearit
continuous-time filtering case the dynamic model can also B8d the mean and covariance of the transformed variable are

written in terms of white noise proces$t) as estimated from them. Note that the unscented transform is
da(t) significantly different from Monte Carlo estimation, besau
= f(x(t),t) + L(t) e(t). (5) the sigma points are selected deterministically [1], [2].

dt



PREPRINT - TO APPEAR IN IEEE TRANSACTIONS ON AUTOMATIC CONTR., OCTOBER 2007 3

Algorithm 3.1 (Unscented transform)he unscented B. Unscented Kalman Filter
transform can be used for forming the Gaussian approximatio The unscented Kalman filtefUKF) [1][3] is a discrete-
AN m P Cy time filtering algorithm, which utili_zes the unsgentled shorm
y po ) \CE Sy ) )’ for computing approximate solutions to the filtering probie
. . _ of the form*
to the joint probability density ot € R™ andy € R™. The
unscented transform is the following: ok = fa(@k-1,k = 1) + qr—1 (18)
1) Form the set on + 1 sigma points from the columns Yk = ha(zk, k) + i,
of then x n matrix \/(n + A) P as follows: where z;, € R" is the statey, € R™ is the measurement,
(0) _ qr—1 € R™ is a Gaussian process noigge_; ~ N(0, Qx—1),
T =My . . .
4 andr, € R™ is a Gaussian measurement naige- N(0, Ry,).
2 =m, + [\/(n + ) P] L, oi=1,...,n The mean and covariance of the initial statg are mg and
0 ! . Py, respectively.
et =my — [ (n+A) P]i_n> it=n+l,...,2n In terms of the unscented transfortfil(-) the unscented
(9) Kalman filter prediction and update steps can be written as
and compute the associated weights: follows: o . N
« Prediction: Compute the predicted state mear), and
Wom) =\ (n+A) the predicted covariancg, as
W =N+ A+ (1 —a+8) (10) i
W™ =1/{2(n+ N}, i=1,...,2n i, Pl = UT(fa, mi—s, Ben) (19)

Py =P+ Q1.

« Update: Compute the predicted mean, and covariance
of the measuremertt;,, and the cross-covariance of the

W =1/{2(n+ N}, i=1,....2n
The parametep is a scaling parameter defined as

A=a2 (n+ k) —n. (11) state and measuremef;:
The positive constants, 3 and«x are used as parameters [4k> Sk, C] = UT (ha,my, P 20)
of the method. S, = Sy + Ry.

2) Transform each of the sigma points as Then compute the filter gaik, the state meam,; and

y(i) - g(x(i))7 i=0,...,2n. 12) the covarianceP;, conditional to the measurememnt:
3) Mean and covariance estimates foran be computed Ky = Cy Sk_l
as my = my, + Ky [yx — ] (21)

P, =P, — Ky Sp K.

2n
NE 4 (m) . (i)
= ! The filtering is started from the initial mean, and covariance

2n (13) Py. A thorough treatment of the unscented Kalman filtering,
So~ Y W D — p) (D — )T sigma-point filtering in general and connections to several
i=0 other filtering algorithms can be found in [4]. Efficient sgaia
4) The cross-covariance aof andy can estimated as root versions of the UKF are presented in [4], [43].

2n

c i i IV. CONTINUOUS-TIME UNSCENTEDKALMAN FILTERING
Cy Y W @ —m) D — ). (14)
=0

A. Matrix Form of Unscented Kalman Filter
The matrix square root of positive definite matikmeans a  In this section the unscented Kalman filter is presented
matrix A = /P such that in matrix form, where the weighted sums of sigma points
are written as equivalent matrix expressions. This eases th
derivations of continuous-time forms of the UKF in the next
Because the only requirement fer is the definition above, Sections. _ .
we can, for example, use the lower triangular matrix of the In order to clean up the notation, we shall use the convention
Cholesky factorizatioifsee, e.g., [42]). that expression

In this article, the Cholesky factorization is denoted &8s th Y = g(X), (22)

function chol(-): where X € R"*? andg : R® — R™ means that the:th
A = chol(P). (18)  columny; of the matrixY € R™*? is formed as follows:

The unscented transform can be se.en as a function (or func- Y; = g(X;). (23)
tional) from (g, m, P) to (uy, Sy, Cv):

P=AAT. (15)

1in this article we only consider the case of additive noiagt, BKF can
[MU: Su, CU] = UT(Q; m, P)~ (17) also be applied to more general filtering problems with nonitagdnoise.
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Lemma 4.1 (The matrix form of UT)fhe unscented trans- processes, that is, thenscented Kalman-Bucy filter (UKBF)

form can be written in matrix form as follows: equations, are given as
X=[m - ml+vclo vP —VP| K(t) = X)W AT (X(1),1) [V(t) Re(t) VT (£)]
Y =g(X) dm(t)
o — Y o a  a =X w4 K () [2(0) = hX (1), 1) wn]
Sy =y Wy WU Xy w (X0 + FX0.0 W XT(1)
Cy=XWYT dt i
’ +L(t) Qc(t) L™ (t)
where X is the matrix of sigma points; = o2 (n + &), and — KOV R VT () KT (t),
vectorw,, and matrix/V are defined as follows: (29)
Wy, = [W(O) W(%)r where we have formally defined the differential measurement
W= (1 m[ " ! 2(t) = dy(t)/dt. The sigma-point matrixX (¢) is defined as
f—t — |lw PP w.
" " (25) _ o P&) —/P{)]
x diag(W 0 - W) X0 = [m(e) ) velo VPO P(t()gd)
x (I = [wp, - wm])T, Proof: See Appendix I-B. [
Proof: See Appendix I-A ] To avoid problems related to the finite numerical precision

Algorithm 4.1 (Unscented Kalman filter)lhe UKF pre- of computer arithmetic, Kalman filter equations are often
diction and update steps can be written in matrix form asplemented such that the matrix square roots of covariance

follows: matrices are used in computations instead of their actuaésa
« Prediction: Compute the predicted state mear], and [18]. Because UKF already uses matrix square roots in its
the predicted covariancg, as sigma-points, the square root version of continuous-tirké-U

can be obtained by formulating the filter as a differential
equation for the sigma points.

Xi—1 = [mie—1 oo mid] Algorithm 4.3 (Square root unscented Kalman-Bucy filter):
+ Ve [0 \/Pk-—l *\/Pk—lj The unscented Kalman-Bucy filter can be formulated in terms
X = fa(Xp_1,k—1) (26) of sigma points as follow$:
my = Xi W, K(t) = X(0) WRT(X(£),£) [V(£) Re(t) VT (£)] "
P =X W IGTT + Quor M) = A7) [X(OW fT(X (1),
« Update: Compute the predicted mean, and covariance FAX@),HW XT (1)
of the measurement;, and the cross-covariance of the ’ T
state and measuremefy;: + L(t) Qc(t) L™ (1)
o o _ _ T T -T
X; = [m; my) K() V(1) R() VT () KT()] AT (1)
_ Z dX;(t)
+vc |0 P —4\/P = —
G o VA R 8 = X)) wm + K ) [2(0) = BX(2), ) 0]
Y, =ha(X . k) @7) +velo ape(m@) —ame(mw)|
M = Yk_ W, 7

Se=Y, W[V, " +R . . o ,
k=Y WY, }T+ F where the matrix of sigma-points is defined as
Cp =Xy Wy, "

X(t) = t) --- t 0 A(t) —A@ 32
Then compute the filter gaiik’;, the state meam, and ®) [m( ) m( )] +Ve [ ®) ( )] » (32)
the covariancePy: and®(-) is a function returning the lower diagonal part of the
argument as follows:

Ky =0y Syt
- My(t) , ifi>
mi =m, + K, - 28 J )
e e (28) o, (M) = D) iz (@9
b=~ B ok By 0 , ifi<j.

B. Continuous-Time Unscented Kalman Filter The ini'tigI_A(O) shquld be the'lower triangular Cholesky factor
) o i . of the initial covariance matrixA(0) = chol(P(0)).
By taking the formal limit of the discrete-time unscented  proof: See Appendix I-D. =
Kalman filter equations in Algorithm 4.1, the following ndve  Note that in the square root filter, the equations contain the
continuous-time filter can be derived: matrix A(t), which is the lower triangular Cholesky factor of

Algorithm 4.2 (Unscented Kalman-Bucy filterjhe the covarianced(t) = chol(P(t)) at all time instances > 0.
stochastic differential equations corresponding to theFUK

in the continuous-time limit of the state and measurementHere(); denotes thath column of the argument matrix.
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However, the factorization needs to be explicitly computed Algorithm 4.6 (Continuous-discrete UKF)fhe prediction
only on the initial time step, becaus&(t) can be extracted and update steps of the continuous-discrete unscentedakalm
from X(¢) at any time step by very simple means. Thiflter are the following:

also implies that in the implementation of the algorithm the
covarianceP(t) of the state never needs to be evaluated.
The unscented Kalman-Bucy filter equations presented in
this section are actually Stratonovich type of stochasiic d
ferential equations, because they have been derived bygaki
the continuous-time limit of discrete-time equations byngs
the rules of conventional calculus. In the beginning of the *
paper it was stated that the continuous-time dynamic and
measurement models can be equivalently interpreted asreith

Prediction.Integrate the differential equations (34) in Al-
gorithm 4.4 from the initial conditionsu(t;—1) = my_1,
P(tx—1) = Py_1 to time instancet,. The predicted
mean and covariance are given ag, m(ty) and

P_ = P(ty), respectively.

Update.The update step is the same as the discrete-time
unscented Kalman filter update step (27) of Algorithm
4.1.

Itd or Stratonovich type of stochastic differential equasion The corresponding square root continuous-discrete UKF has
which is indeed true, but with both the interpretations tlterfi the same form:

equations still are of the Stratonovich type.

C. Unscented Continuous-Time Prediction

In this section the continuous-time prediction equatiores a
derived as special cases of the continuous-time filters én th

previous section. The motivation is that using the predicti
equations we can construct the continuous-discrete vessib
the unscented Kalman filter.

Algorithm 4.4 (Mean and covariance predictionJhe
predicted meann(t) and covarianceP(t) of the state for

timest > ty, given the mean and covariance at the time

instancety, that is, m(ty) and P(¢y,) can be computed by
integrating the differential equations

dn;t(t) = f(X(t),t) wm
%ﬁt) = X)W f(X(t),t) + F(X(@),t) W XT(t) (34)
+ L(t) Qc(t) L (1),

from initial conditionsm(ty) and P(ty) to time instancel.
Here X (t) is defined as in Equation (30),
Proof: Formally setR.(t) = ool in Algorithm 4.2,
which results inK (t) = 0. |
Algorithm 4.5 (Square root prediction)The UKF predic-
tion equations can be written in terms of sigma points as

M) = A7 () X O W (X0,
+FX0,0W X7 ()
L, HHORO @A 5
S 00, 0w

Ny {0 A(t)@(M(t)) _A(t)q>(M(t))} ,

3

where A(t), X (¢) and ®(-) are defined as in Algorithm 4.3.
The integration is started from the sigma poiti$t,), which
are generated fromm(ty) and P(to).

Proof: Formally setR.(t) = ool in Algorithm 4.3,
which results inK (t) = 0. |

D. Continuous-Discrete Unscented Kalman Filter

The mean and covariance form of continuous-discrete UKF

can be now implemented as follows:

Algorithm 4.7 (Square root continuous-discrete UKF):
The prediction and update steps of the square root contgiuou
discrete unscented Kalman filter are the following:

« Prediction. Integrate the differential equations (35) in
Algorithm 4.5 from the initial conditionsX (¢;,_1), which

are the sigma points generated from(ty_1) = mi_1

and P(ty—1) = Px—1. The integration is continued up to
the time instance; and the predicted sigma points are
given asX, = X(tx).

Update.The update step is the same as the discrete-time
unscented Kalman filter update step (27) of Algorithm
4.1, but now the predicted sigma points do not have to
be generated from mean and covariance, because they are
already available. To enhance the numerical stability of
the update equations, square root versions [4], [43] of the
UKF update step can also be used.

V. REMARKS AND DISCUSSION

A. Computational Complexity

Although, the new matrix form of the unscented transform is
very useful in derivation of the filtering equations, in nutoal
computations, the classical form can be computationallyemo
efficient. The matrix expressions appearing in the filtering
equations can be equivalently written as summations as fol-
lows:

X(0)W 1 (X(0),10)

- i W (@O — ) (£, 8) — mg)T
FOX(E.0 W XT(0)

= SO (08 ) @ - P
X(t) WiiL:]?(X(t), )

2n
=Y W @D —my) (D, 8) — )T
1=0
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where TABLE |
RMSEVALUES OF THE PARAMETER AND SIGNAL AVERAGED OVER1000

MONTE CARLO RUNS IN THE CONTINUOUSTIME NON-LINEAR FILTERING

2n )
My = Z Wi(m) 2
=0

PROBLEM.
2n , Filter RMSEE]
mp=>_ W™ fa,¢) (37) EKBF | 0.22
i2:0 EKBF2 | 0.20
Mh = ZWi h(z™,1). SLF 0.13
=0
By using the summation forms of the covariance terms the
full matrix product is replaced by the weighted sum of outer 1 i
products, which is lighter to compute. 0.9 Eigiz ]
The relationship between the unscented Kalman-Bucy filter 08 UKBE
and extended Kalman-Bucy filter approximations can be seen 07 SLF
to be 5
£ 06
X()W R (X(8),1) <= P(t) H (m(1), 1) S e
XOW (X)) <= PO F (m().8) g0, 8 o
FX(0),t) 0 == f(m(t),1) s
h(X(t)7t) W h(m(t)at)v 0.2 1
where the elements of the Jacobian matrié&sn(t),t) and 01 ~ 'M ]
, i
H(m(t),t) are given as 0 . VY NN
0 0.2 0.4 0.6 0.8 1
dfi(z,t) Time
Fij(m(t),t) = A
7 z=m(t) 39 Fig. 1. lllustration of transient period error behavior iontinuous-time
( ) non-linear filtering problem.
H,’j(m(t),t) = T
i z=m(t)

. . time, but here both the models are in continuous time. The
The computational complexity of the unscented Kalman-Buc . : .
mulation was performed over time period of 5 seconds

filter (or continuous-discrete UKF) can be seen to be 2-3dime _. o
: : using the Euler-Maruyama scheme [33] and with time steps
the computational complexity of the extended Kalman—Buca/]c Af — 0.01

filter, when compared in terms of number of multiplications
o . L The root mean squared error (RMSE) results of 1000 Monte
and additions. When the state dimension,ishe UKBF needs Carlo runs with extended Kalman-Bucy filter (EKBF), sec-

2n + 1 evaluations off and h, when EKBF needs only one. .
However, in addition to that, EKBF needs evaluations of tT?nd order extended Kalman-Bucy filter (EKBF2), unscented

Jacobian matrices (and possibly Hessian matrices) of ihath alman-Bucy filter .(UKBF) and statistically linearized it .
functions. SLF) are shown in Table I. It can be seen that SLF is

the best of the filters in RMSE sense, because it uses the
closed form formulas for expectations and covariances of
the non-linearities (see [17]), when the other filters caly on
A. Continuous-Time Non-Linear Filtering approximate them. The UKBF gives a significantly better
In this section we shall test the performance of the unsdent@sult than EKBF and EKBF2, and the UKBF result is also
Kalman-Bucy filter in continuous-time version of the nonduite close to the base line result of SLF. The performanées o

linear filtering problem, which was used in [17] for demonEKBF and EKBF2 are most likely that bad because the Taylor

strating the performance of the statistical linearizatimsed S€res expansion based approximations do not work well when

filter. Both the state:(t) and the measurementgt) are one- the estimation error is large. _
dimensional continuous-time processes and the filteringaho  Even thought the SLF is better than UKBF in RMSE sense,
is: SLF has the serious disadvantage that in order to implerhent i

one has to be able to compute closed form formulas for certain
) (40) expected \{alues of non-linear transformations of Gaussian
2(t) = = sin(z(t)) + n(t), random variables [17]. These expected values can be cothpute

in closed form only in simple special cases and thus UKBF is

where w(t) and n(t) are continuous-time white noise pro-a very good choice for models with significant non-lineasti
cesses with spectral densitigs = 0.01 and r. = 0.004, and uncertainties.
respectively. Note that in [17] the dynamic model was in A typical transient behavior of the filters is illustrated in
continuous time and the measurement model was in discr&igure 1. It can be seen that SLF is best because it converges

VI. ILLUSTRATIVE EXAMPLES

dz(t)/dt = —sinx(t) + w(t)
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very quickly near the correct state. The convergence of UKB& denoted a€)’(k) and the corresponding spectral density is
is slower, but significantly faster than of EKBF and EKBF2denoted as)’..
The radar is located dt:,, y,-) = (Ro,0) and the measure-

B. Re-Entry Vehicle Tracking ment model is

Here we consider the reentry tracking problem, where a "% = \/(xl(tk) —2r)? A+ (w2(te) = yr)? + €,
radar is used for tracking a space vehicle, which enters the , _ . -1 (1?2(75k) - yr> 4l (44)
atmosphere at a very high speed. The reentry problem was xy(te) — @r k>
used for demonstrating the performance of UKF in [2] an\g/here thee] ~ N(0,02) ande? ~ N(0,02).
slight corrections to the equations and simulation parerset | S|mulat|on the assﬁmed means and covariances of

were later published in [44]. the state, simulated means and covariances of the state and
The stochastic equations of motion for the space vehicle 8ffe standard deviations of measurements were selected to be
given as [2], [44] the same as in [2], [44]. The simulated data were generated

R(t) — /72 2 by simulating the stochastic differential equation (41)thwi
(t) = /oi(t) + a5(t 100 steps of Euler-Maruyama scheme [33] between each
measurement.
V(t) = y/23(t) + 23 . . .
The discrete UKF (DUKF) and continuous-discrete UKF
b(t) = bo eXP( 5(t ) (CDUKF) were both implemented using 10 steps of Runge-
D(t) = bt) exp Ry—R V) Kutta} mtegrquon between meIaSt-Jrements, but the differenc
H was in handling of process noise:
Glt) = — Gmg (41) « In DUKF, each measurement is processed as follows:
R3(t) 1) Integrate each of the sigma point through the noise
daq/dt = x3(t) free dynamic model using 10 steps of the Runge-
dza/dt = 24(t) Kutta integration. _ _
de/dt — D alt ; ; 2) Compute the predicted mean and covariance, and
w3/dt = D(t) z3(t) + G(t) 21(t) + w1 (t) model process noise effect by approximating the
day/dt = D(t) z4(t) + G(t) z2(t) + w2 (1) discrete covariance b§)’ (k) ~ @/, At.
das/dt = ws(t), 3) Perform standard UKF update step for the measure-
ment.

wherew (t), wa(t), ws(t) are white Gaussian process noises

with known joint spectral density. The constants are [2]: « In CDUKF, each measurement is processed as follows:

1) Integrate the mean and covariance differential equa-

bo = —0.59783 tions using 10 steps of the Runge-Kutta integration,
Hy = 13.406 and using@’. as the diffusion matrix (or spectral
Gmo = 3.9860 x 10° (42) density) of the process noise.
2) Perform standard UKF update step for the measure-
Ry = 6374. ment.
In the article [2] the radar measured 10 times per second allde amount of computations required by the CDUKF is
the simulated discrete process noise covariance was slightly higher than of DUKF, but the number of evaluations
9 4064 x 10-5 0 0 of the dynamic m0(_jel functior_l is the same for both the quels
Qk) = 0 9 4064 x 10-5 0] . (43) and thus thg practical total difference is small. The athani
0 0 0 parameters in the unscented transforms were selected to be

a=1/2,0=2,k=—-2.

If we interpret the dynamic model (41) as originally continu  Simulations were performed using different time steps of
ous time model, we may assume that the discretized covariarst = 0.1,0.2,...,3 seconds and the results from 100 Monte
is actually an approximation to a non-linear continuomseti Carlo simulations per step size are shown in Figure 2. The dis
process driven by continuous-time process noise with sglecicrete UKF (DUKF) and continuous-discrete UKF (CDUKF)
density Q.. In this interpretation it is reasonable to assumieave very much the same performance when the time step
that the relationship between the discrete covariance ed size is short. However, when the time step grows, DUKF
continuous-time spectral density is originally the appme- encounters numerical problems and its error grows rapidly.
tion Q(k) =~ Q. At where At = 0.1s is the sampling time The problem is that when the sigma-points are integrated
used in [2]. Thus the true spectral density matrix is the imatrone at a time, nothing prevents the covariance estimate from
in (43) multiplied by 10. becoming non-positive definite. With larger time steps this

In the actual filter implementation the lower right cornecauses severe numerical difficulties. At the same time, no
term in the modeled process noise covariance was set to thanerical problems can be seen in the CDUKF and its error
value 1075, This additional small noise term was used fogrows much slower.
the constant parameter to enhance the filter stability as wagn this simulation scenario the advantage of the continuous
done in [44]. This modified discrete process noise covadantime formulation over the discrete-time formulation is the
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APPENDIXI
DERIVATIONS

A. Derivation of Matrix Form of UT
If we define the matrix of sigma points as

X = [33(0) x(%)} , (45)

RMSE

then the sigma point computation in equations (9) can be
written in form of the first equation in (24). The second
equation is simply the vector form of Equation (12).
If we define the weight vectot,, and matrix W, as in

Equation (25) and denote the matrix of sigma pointsyof
. . : : : asY the transformed mean and covariance equations can be
o o5 1 15 2 25 3 written as

Time step [seconds]

Fig. 2. Root mean squared error (RMSE) versus time step sizesireentry i

filtering problem. Results are from 100 Monte Carlo runs peretistep with —Yuw (46)
the continuous-discrete UKF (CDUKF) and discrete UKF (DYKIFhe higher m
errors of DUKF with longer time step sizes are caused by numlegpioblems Sy = Z Wc(i) (y(i) — ) (y(i) _ /~LU)T

on the prediction step.

numerical stability. This stability is due to that when the

noise process is modeled as a continuous-time process the =V =Y]wn - wn])

non-linear dynamic model cannot force the covariance to X diag(W£0)--~WC(2”))

become non-positive definite. In the discrete-time forriota (Y =Y [wp - wa])"

the covariance can become non-positive definite. —vywyT 47
In this particular problem it is not essential whether un- - (47)

certainties are modeled as discrete-time or continugue-ti Cu =Y W@ —m) " - py)"

stochastic processes. Since the performance of CDUKF seems i

to be at least that of DUKEF, in cases where the continuous-tim = Z WD (2D — Xwp,) (4D — Ywp,)"

stochastic process formulation is more accurate in mogdelin p

point of view, the continuous-discrete UKF is likely to parh = (X - X [wn - wpl)

better than the discrete UKF. x diag(W© ... w2m)

X (Y -Y [wm e wm] )T

VIl. CONCLUSION —xwyT, (48)

In_this article novgl _continut_)us-time_ and continUOUS-BEE \, hich leads to last three equations in (24).
versions of the originally discrete-time unscented Kalman
filter (UKF) have been derived and applied to non-linear o
continuous-time filtering and re-entry vehicle trackingolpr B- Derivation of UKBF
lems. Numerically more stable square-root versions of 8 n  The continuous-time unscented Kalman filter equations can
filters have also been derived. be derived from the discrete-time UKF by the same limiting
The continuous-time and continuous-discrete unscented fitocedure as is commonly used in derivation of the Kalman-
ters are good alternatives to the extended Kalman filters Bucy filter from the discrete-time Kalman filter (see, e.@4]
models, where the Jacobian and Hessian matrices of the dif8]). The continuous-time filtering model
terms are not available or when the Taylor series expansion
approximations do not work well. According to the simulatso da(t) = f(a(t),t) dt + L(t) d5(t) (49)
the approximations generated by the new filters are better dy(t) = h(z(t),t) dt + V(t) dn(?),

in the cases where the model non-linearities and estimatighere 3(¢) andn(t) are independent Brownian motions with
uncertainties are significant. diagonal diffusion matrice§). () andR.(t) can be interpreted
such that whem\t is sufficiently close to zero, we have
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anonymous reviewers for helpful comments. o(At) is a function such that(At)/At — 0 when At — 0.
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Assuming thatz(t) ~ N(m(t), P(t)), the UKF prediction Substitutingm (¢t + At) and P~ (¢ + At) gives

from x(t) to z(t + At) can be written as mlt+ A) = m(t) + FX(E), ) wm At + K(t+ At)
x [Ay — h(X ™ (t + At), ) wy, At]

X(t) = [m( - m(t)] + o(At)
A [0 \/m _\/P(w P(t-l—Aﬁ)_ P(t) + f(X ()7t)WXT()A (55)
X(t+ a0 =x () JEXO. DAL +o(AD) gy X)W fT(X(t),0) At
m”(t + At) = X (t + At) wy, L(t) Qe(t) LT (t) At — K (t + At)
P (t+At) = (t+At)W X (t + At) ><V(t)Rc(t)VT(t)KT(t—i-At)At
L(t) Qo(t) LT (t) At. + o(At).

o _ _ Dividing by At and taking the limitA¢ — 0 results in the
Substituting X (¢ + At) into the equations ofn™ (¢t + At) differential equations in the Algorithm 4.2.
and P~ (¢t + At), and using the identities:(t) = X (t) wm,
_ T R
P(t) = X(t) W X7 (t) gives C. Alternative Derivation

In Appendix I-B the equations of the unscented Kalman-

m”(t + At) = m(t) + f(X(t), 1) wm At + o(At) Bucy filter were derived by taking the formal limit of the
P=(t+ At) = P(t) + f(X(t), ) W XT(t) At discrete-time equations. However, it is also possible tivee
X)W fT(X(1),t) At (52)  the same equations purely in continuous-time frameworle Th
T mean and covariance of the optimal continuous-time filter ar
L(t) Qc(t) L7 (t) At + o(At). in theory, given by the stochastic differential equatioh8][

Assuming that we measure the differentg = y(t + At) — dm = Bf(z,t)] dt + (Bl hT(m 0] - Bl2] B0 (a, o))
y(t) the UKF update step can be written as x (V) Re()) V(1)) [dy(t) — E[h(x, t)] dt]
[

il
de{E[xzf( >] Blai] Blf; (e, 0)] + Blfi (@, ) 2]

X~ (t+At) = [m~(t+At) - m”(t+ At)] — E[fi(z, )] Elay] + [L() Q.(t) LT (t)],,
E[h

+velo P(t+At) —/P(t+ At)]

Y7t + Af) = B(X™(t+ Ab),£) At + o(Al) - (Bl T(x’ )] Efe B[R (2, 1))
B ’ -1
p(t+ AL) =Y~ (t + At) wy, < (V(t) Re(t) VT (1))
St+A) =Y (t+A)WI[Y~(t+ Ab)T x (E[h(z,t) z;] — E[h(z,1)] E[z;]) }dt
+ V(1) Re(t) VT (1) At v { Elw; z; b7 (2,1)] — Blz; z;] B[7 (z,t)]

Ct+At) = X (t+ AW Y~ (t + At)]"
K(t+ At) = Ot + At) S (t + At)
m(t + At) = m™ (t + At)

— Blai] Blz; h" (2, )] - Blz;] Bla; b7 (2, 1)]
+2Ez;) Bla] B[R (2,1)]}

-1
+ K(t+ At) [Ay — p(t + At)] x (V) Re(t) VI(t))  [dy(t) — Elh(z, t)] 1] .
P(t + At) = P~(t + At) (56)
— K(t+At)S(t+ At) KT (t + At). The expectations are with respect to the posterior digichu

(53) of the statez(¢) and thus cannot be in practice computed,
because the computation would require the knowledge of all
o (infinite number of) moments of the distribution. However, a
Substitutingy = (t + At), u(t + At), C(t + At), S(t + At), ynscented transform based approximation to these eqsation

and retaining only first order terms results in can be formed as follows.
If we assume that the third order term in the covariance
K(t+At)=X"(t+A) WhT (X~ (t + At),t) equation a_bove is ap_proximately zero, the equations abave ¢
< V() Re() VI (O] + o(At) /At be approximately written as

m(t + At) =m” (t + At) + K(t + At) % = E[f(z,t)] + Cov(z, h(x,t)]

X |Ay — (X~ (t + At), t) wy, At _

S A A gy X (V) Rlt) V7 (1) [2(6) ~ Eln(z, 0]

dpP

P(t+At) = P~ (t + At) — K(t + At) o = Covlz, f(z,t)] + Covlf(z, 1), 2] + L(t) Qc(t) LT (t)

X V() Re(t) VT (t) KT (t + At) At — Covla, h(z, )] (V () Re(t) VT (£)) ™" Covlh(x, t), ],

+ o(At). (57)
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where Cov[z,y] = E[zyT] — E[z] E[y]T denotes the cross- the
covariance ofr andy, and z(t) = dy(t)/d¢ is the differen- con
tiated measurement process. If we assume that the posterior
mean and covariance af(t) arem(t) and P(t), respectively,
unscented transform based approximations to the expesati
and covariances can be formed as follows:

E[f(x.t)] ~ F(X(£),1) wn the

10

right hand side is symmetric matrix. Thus it can be
cluded that the derivative of(¢) can be written as

dA(t)

i (64)

—AD (A—l(t) U(X(),1) A_T(t)),

where the functionb, which is defined in Equation (33) gives

lower diagonal part and half of the diagonal part of its

argument. The expression of the sigma points is

E[h(z,t)] = h(X (1), 1) wim
Covlz, f(x,6)] = X () W fT(X(t), 1) X(t) = [m(®) m(t)] +ve[0 A(t) —A(t)]. (65)
T (58) , o . o
Cov[f(x,t),z] = f(X(t),t) W X" (¢) Taking derivatives from both sides of the equation gives
Covle, hiz, )] = X(6) W AT (X().1) AX(t) o t t t
Cov[h(z, 1), 2] ~ hT (X (), 1) W XT (1), e rvelo agn e,

where X (¢t) are the sigma-points generated fram(t) and
P(t). Substituting these approximations into the Equatio

(66)

maubstituting the equations felm(t)/dt and dA(t)/dt leads

(57) results in the unscented Kalman-Bucy filter equations §© €duations in Algorithm 4.3.

Algorithm 4.2.

Note that the above derivation is not strictly complete as
such, because the UKBF equations presented in Section I}
B are actually Stratonovich equations, but the Equatio@$ (5
are 16 type of equations. However, we may argue that the
extra terms arising from the conversion of Equations (5@)fr [
[td from to Stratonovich form would only introduce terms
involving odd moments, which anyway disappear due to th%]
Gaussian approximation.

[4]
D. Derivation of SR-UKBF

Assume that the matrix square root used is the Cholesky
factorization [5]

(6]
which also assures that the square root is lower trianglflar. 7]
we define (symmetric matrix)

A(t) = chol(P(t)), (59)

VX0 = XOW X0+ S0, X700 .
L(t) Qe(t) LT (1) e

- K( JV(O) R(t) VT (0) K7 (1), 60 o

then the differential equation of the covariance is of therfo [12]
dP(t) [13]

e U(X(t),t). (61) (14

It is now possible to derive differential equations for th
Cholesky factorA(t) using the procedure presented in [45] and
later in [14]. We first expand the derivative of the covari@anc 16
matrix as follows: ]
T [17]

dA(t) dA*(t) 18]

dt dt
Multiplying both sides from left byA=! and from right by

AT+ A =U(X(t),1). (62)

(29]

A~T gives [20]
T
A*l(t)%it) dAdt(t)A*T(t):A*l(t)U(X(t),t)A*T(t). 24

(63)

Now the Ieft hand side is sum of lower triangular matri¥??!
A=L(t) 440 and upper triangular matri$A-® A7 (¢), and
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