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ABSTRACT
Nonlinear Kalman filter and Rauch–Tung–Striebel smoother
type recursive estimators for nonlinear discrete-time state
space models with multivariate Student’s t-distributed mea-
surement noise are presented. The methods approximate the
posterior state at each time step using the variational Bayes
method. The nonlinearities in the dynamic and measurement
models are handled using the nonlinear Gaussian filtering
and smoothing approach, which encompasses many known
nonlinear Kalman-type filters. The method is compared to
alternative methods in a computer simulation.

Index Terms— Robust filtering, Robust smoothing, Vari-
ational Bayes, Gaussian filter, Gaussian smoother

1. INTRODUCTION

Because large deviations typically occur in real data more fre-
quently than is modeled by the normal (i.e. Gaussian) distri-
bution, there is interest in developing estimation algorithms
that can cope with these “outliers” while retaining the com-
putational efficiency of Gaussian models.

In statistics, a popular approach to robustify linear multi-
variate regression is to use the Student’s t-distribution in place
of the Gaussian distribution and to compute the estimates
using an Expectation-Maximization iteration [1–4]. This
“outlier-accommodation” approach has many advantages: it
is easy to implement, computationally light, amenable to
Bayesian analysis, and doesn’t require parameter tuning.

The approach has recently been extended to the sequen-
tial linear filtering and smoothing setting by Agamennoni et
al. [5]. Their filter approximates the posterior state at each
time step using an iterative solution of a variational Bayes
formula; each iteration resembles a conventional Kalman fil-
ter update. Similar filter equations had been presented ear-
lier in [6, 7], but the former work focused on on-line learning
of the linear model’s measurement noise variance parameter,
while the latter work focused on outlier-detection rather than
outlier-accommodation.

In this work we extend the outlier-robust filter and
smoother to nonlinear state space models. For the sake
of generality, we use the Gaussian filtering and smoothing
framework [8–11] (also referred to as Gaussian assumed
density filtering and smoothing). For Gaussian noise, this
framework includes as special cases many popular non-
linear Kalman-type filters, including the extended Kalman
filter (EKF) [12], the unscented Kalman filter (UKF) [13],
the cubature Kalman filter (CKF) [14], the Gauss-Hermite
Kalman filter (GHKF) [9], and the corresponding smoothers
[11, 15, 16].

2. VARIATIONAL BAYES APPROXIMATION FOR
FILTERING AND SMOOTHING

2.1. Problem Formulation

Consider the non-linear state space model with t-distributed
measurement noise,

xk |xk−1 ∼ N(f(xk−1), Qk) (1a)
yk |xk ∼ Student(h(xk), Rk, ν), (1b)

where f(·) and h(·) are non-linear dynamic and measurement
model functions1. The matrix Rk is symmetric positive defi-
nite, and the Student’s t-distribution’s probability density is

p(yk |xk) ∝
(
1 + 1

ν (yk − h(xk))TR−1
k (yk − h(xk))

)− ν+d
2 ,

where d is the dimension of yk and ν ≥ 1 is a parameter that
controls the Student density’s kurtosis (heavy-tailedness); for
general practice a value of ν = 4 is recommended [1]. The
case ν = 1 is the Cauchy distribution and for ν → ∞ the
distribution converges to N(h(xk), Rk).

In filtering the aim is to estimate the state distribution
p(xk | y1:k) at time steps k = 1, . . . , T . In contrast, in
smoothing the aim is to estimate the state posterior given

1For clarity, we assume that f(·) and h(·) do not depend on k, but that
dependency can be included easily to the presented algorithms.
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future measurements, that is, p(xk | y1:T ) with k = 1, . . . , T .
With the model (1) these distributions are analytically in-
tractable, and so in this article we aim to provide approximate
algorithms that provide reasonably accurate solutions effi-
ciently.

2.2. Nonlinear Kalman Filtering and Smoothing

Even in the case of Gaussian measurement noise (i.e. ν →∞
in (1b)), the nonlinear filtering and smoothing problems are
analytically intractable [8, 12]. An efficient approach for
approximately solving the filtering problem with Gaussian
measurement noise is the Gaussian filtering (GF) [8–10]
framework. In Gaussian filter, the state posterior density
p(xk | y1:k) is approximated with a multivariate Gaussian
density N(xk |mk, Pk) at each time step k = 1, . . . , T , with
the mean mk and covariance Pk computed via the following
steps:

• Prediction:

m−
k =

∫
f(xk−1) N(xk−1 |mk−1, Pk−1) dxk−1,

P−
k =

∫
(f(xk−1)−mk−1) (f(xk−1)−mk−1)T

×N(xk−1 |mk−1, Pk−1) dxk−1 +Qk.

• Update:

µk =

∫
h(xk) N(xk |m−

k , P
−
k ) dxk

Sk =

∫
(h(xk)− µk)(h(xk)− µk)T

×N(xk |m−
k , P

−
k ) dxk +Rk

Ck =

∫
(xk −m−

k ) (h(xk)− µk)T

×N(xk |m−
k , P

−
k ) dxk

Kk = Ck S
−1
k

mk = m−
k +Kk (yk − µk)

Pk = P−
k −Kk SkK

T
k .

In [11] it was shown that approximating Gaussian smooth-
ing densities N(xk |ms

k, P
s
k ) for the model class (1), but with

Gaussian measurement noise can obtained by solving the fol-
lowing Rauch–Tung–Striebel (RTS) smoother type equations
in a backward order k = T − 1, . . . , 1:

Lk =

∫
(xk −mk)(f(xk)−m−

k+1)T N(xk |mk, Pk) dxk

Gk = Lk[P−
k+1]−1

ms
k = mk +Gk(ms

k+1 −m−
k+1)

P sk = Pk +Gk(P sk+1 − P−
k+1)GTk .

These filtering and smoothing methods, however, cannot
be directly used in the case of Student’s t-distributed mea-
surement noise, but in the following we show how they can
be used as part of a Variational Bayes (VB) framework to pro-
vides the required approximations efficiently.

2.3. Non-Linear Variational Bayes Filter

Introducing an auxiliary random variable λk, the measure-
ment model’s Student’s t-distribution can be expressed as the
Gaussian mixture

p(yk |xk) =

∫
p(yk |xk, λk)p(λk) dλk,

where yk |xk, λk ∼ N(h(xk), 1
λk
Rk) and λk ∼ Gamma(ν2 ,

ν
2 ).

While assuming that p(xk | y1:k−1) is approximated with
a Gaussian density N(xk |m−

k , P
−
k ) using the prediction step

of the non-linear Gaussian filter above, the state posterior can
be found by marginalising λk out of the joint posterior

p(xk, λk | y1:k) ∝ λ
d
2

k e−
λk
2 (yk−h(xk))TR−1

k (yk−h(xk))

· e− 1
2 (xk−m−

k )T (P−
k )−1(xk−m−

k )λ
ν
2−1

k e−
νλk
2 .

In order to make this computation tractable we use a stan-
dard variational Bayes (VB) approach. We seek a separable
approximation in the form of a product of probability densi-
ties, p(xk, λk | y1:k) ≈ q(xk)q(λk). The VB approximation
minimizes the Kullback-Leibler (KL) divergence between the
product approximation and the true posterior,

KL(q(xk)q(λk) ‖ p(xk, λk | y1:k))

=

∫
q(xk)q(λk) log

(
q(xk)q(λk)

p(xk, λk | y1:k)

)
dxk dλk.

Using the calculus of variations to minimize the KL diver-
gence with respect to q(λk) while keeping q(xk) fixed yields
[17, p. 466]

log q(λk) = Ex
(
log p(xk, λk, y1:k)

)
+ const.

= − 1
2λkγ̄k +

(
ν+d

2 − 1
)

log λk − νλk
2 + const.,

(2)

where

γ̄k = Ex
(
(yk − h(xk))TR−1

k (yk − h(xk))
)

= tr{Ex
(
(yk − h(xk))(yk − h(xk))T

)
R−1
k }.

(3)

This expectation can be approximated with the same methods
as used in approximating the Gaussian integrals in non-linear
Kalman filtering and smoothing. Thus, q(λk) is the density
of a Gamma(ν+d

2 , γ̄k+ν
2 ) distribution with mean

λ̄k = Eλ(λk) =

∫
λk q(λk) dλk =

ν + d

ν + γ̄k
. (4)



Similarly, minimizing the KL divergence with respect to
q(xk), with q(λk) fixed, yields

log q(xk) = Eλ
(
log p(xk, λk, y1:k)

)
+ const.

= − 1
2 λ̄k(yk − h(xk))TR−1

k (yk − h(xk))

− 1
2 (xk −m−

k )T (P−
k )−1(xk −m−

k ) + const.

This can be seen as exactly the same estimation problem as in
the update step of non-linear Kalman filter above, and thus we
can approximate q(xk) with a Gaussian using the update step
equations with measurement covariance 1

λ̄k
Rk . The varia-

tional parameters of q(λk) and q(xk) are coupled, and can
be solved with fixed-point iteration such that parameters of
q(λk) are solved while keeping q(xk) fixed and vice versa,
which results in Algorithm 1.

Algorithm 1: One time step of the VB filter for the
non-linear model with Student t-distributed measure-
ment noise

Data: model parameters f(), h(), Qk, Rk, ν, prior state
Gaussian parameters mk−1, Pk−1, and number
of VB fixed-point iterations N

Result: posterior state Gaussian parameters mk, Pk
begin1

m−
k ←

∫
f(xk−1) N(xk−1 |mk−1, Pk−1) dxk−12

P−
k ←

∫
(f(xk−1)−m−

k ) (f(xk−1)−m−
k )T3

×N(xk−1 |mk−1, Pk−1) dxk−1 +Qk
λ̄k ← 14

for n from 1 to N do5

µk ←
∫
h(xk) N(xk |m−

k , P
−
k ) dxk6

Sk ←
∫

(h(xk)− µk) (h(xk)− µk)T7

×N(xk |m−
k , P

−
k ) dxk + 1

λ̄k
Rk

Ck ←
∫

(xk −m−
k ) (h(xk)− µk)T8

×N(xk |m−
k , P

−
k ) dxk

Kk ← Ck S
−1
k9

mk ← m−
k +Kk(yk − µk)10

Pk ← P−
k −KkSkK

T
k11

Dk ←
∫

(yk − h(xk)) (yk − h(xk))T12

×N(xk |mk, Pk) dxk
γ̄k ← tr(DkR

−1
k )13

λ̄k ← ν+d
ν+γ̄k14

endfor15

end16

2.4. Non-Linear Variational Bayes Smoother

The non-linear filtering algorithm can also be extended to
provide approximate fixed-interval smoothing solutions, that
is, factorizing solutions q(xk)q(λk) that approximate the true
posterior p(xk, λk | y1:T ) at each time step k = 1, . . . , T . Us-

ing the standard VB approach, log q(λ1:T ) can be written as

log q(λ1:T ) = Ex1:T
(log p(x1:T , λ1:T , y1:T )) + const.

=

T∑
k=1

Exk(log p(yk |xk, λk)) + log p(λk) + const.

Because the terms of the sum are jointly independent, we have

log q(λk) = − 1
2λk Exk

(
(yk − h(xk))TR−1

k (yk − h(xk))
)

+
(
ν+d

2 − 1
)

log λk − νλk
2 + const.,

which is of the same form as (2) except that the expectation is
taken over the smoothed state distribution q(xk).

Similarly, for log q(x1:T ) we get

log q(x1:T ) = Eλ1:T
(log p(x1:T , λ1:T , y1:T )) + const.

=

T∑
k=1

log p(xk |xk−1) + log p(yk |xk, λ̄k) + const.

This can be identified as a non-linear smoothing problem with
known measurement covariance, and thus be approximated
with non-linear RTS smoothing algorithms [11].

As the result we have an algorithm that alternates between
updating the approximations q(xk) and q(λk) while keeping
the other terms fixed such that q(xk) are updated using non-
linear Kalman filtering and smoothing, and q(λk) by solving
the parameters from (5) similarly as in the non-linear VB fil-
ter above. Several iterations are needed for the parameters to
converge towards a fixed value. The resulting fixed-interval
smoother is shown Algorithm 2.

Because the smoothing algorithm also updates the esti-
mates of the last time step, it would be possible to use fixed-
lag smoothing to enhance the filtering results. A Gaussian
fixed-lag smoother can be obtained as a simple modification
to the fixed-interval smoothers as is shown in [11].

2.5. Conditionally Independent Measurements

In some cases it may be more appropriate to use a marginal
t-distribution for each measurement channel. That is, in place
of the multivariate t-distribution (1b), the measurement model
is taken to be a product of t-marginals

p(yk |xk) =

d∏
i=1

Student(yk |hk,i(xk), ri,k, νi).

The VB algorithms developed above can be easily modified
for this independent measurement-channel model, by using d-
dimensional vectors for λk and γ̄k, and updating each of the
components in the algorithms.

3. NUMERICAL EXAMPLE

To illustrate the use of the proposed algorithms, we consider
a computer simulation of a multi-sensor bearings-only target



Algorithm 2: Variational Bayes smoother for interval
k = 1, . . . , T for the non-linear state-space model with
Student t-distributed measurement noise

Data: model parameters f(), h(), Qk, Rk, ν and
variational noise parameters λ̄k for each time
step k = 1, . . . , T , state prior parameters m0 and
P0 and number of VB fixed-point iterations N

Result: Smoothed state and noise parameters ms
k, P

s
k

and λ̄k for each time step k = 1, . . . , T
begin1

for n from 1 to N do2

for k from 1 to T do3

m−
k ←4 ∫

f(xk−1) N(xk−1 |mk−1, Pk−1) dxk−1

P−
k ←5 ∫

(f(xk−1)−m−
k ) (f(xk−1)−m−

k )T

×N(xk−1 |mk−1, Pk−1) dxk−1 +Qk
µk ←

∫
h(xk) N(xk |m−

k , P
−
k ) dxk6

Sk ←
∫

(h(xk)− µk) (h(xk)− µk)T7

×N(xk |m−
k , P

−
k ) dxk + 1

λ̄k
Rk

Ck ←
∫

(xk −m−
k ) (h(xk)− µk)T8

×N(xk |m−
k , P

−
k ) dxk

Kk ← CkS
−1
k9

mk ← m−
k +Kk(yk − µk)10

Pk ← P−
k −KkSkK

T
k11

endfor12

ms
T ← mT13

P sT ← PT14

for k from T − 1 to 1 do15

Lk ←
∫

(xk −mk) (f(xk)−m−
k+1)T16

×N(xk |mk, Pk) dxk
Gk ← Lk[P−

k+1]−117

ms
k ← mk +Gk(ms

k+1 −m
−
k+1)18

P sk ← Pk +Gk(P sk+1 − P
−
k+1)GTk19

endfor20

for k from 1 to T do21

Dk ←
∫

(yk − h(xk)) (yk − h(xk))T22

×N(xk |ms
k, P

s
k ) dxk

γ̄k ← tr(DkR
−1
k )23

λ̄k ← ν+d
ν+γ̄k24

endfor25

endfor26

end27

tracking problem, where the sensors measure the angle be-
tween the target and the sensor. Outliers in the sensor mea-
surements are introduced using a clutter model that is not
Student-t.

The dynamics of the target are modeled with coordinated
turning model, where the state x = (u, u̇, v, v̇, ω) contains the
2d location (u, v) and the corresponding velocities (u̇, v̇) as

well as the turning rate ω of the target. The dynamic model
can be written as

xk =



1 sin(ω∆t)
ω 0 cos(ω∆t)−1

ω 0

0 cos(ω∆t) 0 − sin(ω∆t) 0

0 1−cos(ω∆t)
ω 1 sin(ω∆t)

ω 0

0 sin(ω∆t) 0 cos(ω∆t) 0
0 0 0 0 1

xk−1 + qk,

(5)
where qk ∼ N(0, Qk) is the process noise. In our simulations
we use the parameters

Qk =

q1M 0 0
0 q1M 0
0 0 q2

 , M =

(
∆t3/3 ∆t2/2
∆t2 ∆t

)
,

where q1 = 0.1, q2 = 1.75 × 10−4 and ∆t = 1. We gen-
erate measurements for sensors i = 1, . . . , d according to the
mixture model

yi,k |xk, ci,k ∼

{
U(−π, π), if ci,k = 0

N(arctan
(
vk−siv
uk−siu

)
, σ2
i,k), if ci,k = 1

(6)
Here ci,k = 0 indicates that the measurement from the ith
sensor at the kth time step is clutter, while ci,k = 1 if the mea-
surement is from the actual target. Clutter is uniformly dis-
tributed over the angle measurement space [−π, π], whereas
the measurements from the actual target are the angle val-
ues from sensors located at (siu, s

i
v) corrupted with additive

Gaussian distributed noise with variances σ2
i,k. In our simu-

lation scenario we have d = 4 sensors placed at the corners
of the square [−10, 10]× [−10, 10], and the variances are set
to σ2

i,k = 0.12. We assume that the probability of clutter is
constant over time, that is, ci,k is a Bernoulli random variable
with prob(ci,k) = pc. In our simulations we used the clutter
probability pc = 0.1. We simulated the target trajectory 100
times for 400 time steps according to dynamic model (5) and
generated measurements on each time step with model (6).
With the generated measurement sequences we assessed the
performance of following filters and smoothers in estimating
the state trajectories:

• JT: Non-linear Student’s t-filter and smoother devel-
oped in this article with a joint t-distribution (ν = 5)
as the measurement model. In VB filter, 5 fixed point
iterations were used, which is enough to achieve con-
vergence in all cases. In smoothers we used 5 VB iter-
ations.

• MT: Same as JT with the joint t-distribution replaced
by separate t-marginals for each of the 4 sensors.

• MC5 and MC20: Rao-Blackwellized Monte Carlo data
association (RBMCDA) algorithm [18] with 5 and 20
particles. This is an ideal method for this simulation



scenario since the clutter model specified above is a
special case of model class assumed by RBMCDA.

• PA: Gaussian ADF with perfect associations, that is,
clutter measurements are not given to the filter.

We used the numerical approximation methods of UKF,
CDKF, CKF and GHKF in approximating the necessary
Gaussian integrals in every tested filtering algorithm. In
UKF we used the transformation parameters (α = 1, β =
2, κ = 0), in CDKF the step size hcd =

√
3 and in GHKF

m = 3n = 243 quadrature points.
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Fig. 1. The average CPU times taken by the methods are
shown for filters (a) and for filter and smoothers combined
(b).

Figure 1 shows the CPU times taken by the methods,
showing that the Student’s t based filters are many times
faster than RBMCDA. We can also see that while GHKF
gives the highest estimation accuracy it also much slower
than the rest since the number of quadrature points m is so
large (in general m grows exponentially with the number of
state components). Among the other methods CKF provides
a good trade-off in accuracy and speed. Both t-filters also
provide adequate tracking accuracy, which is further illus-
trated in Figure 2, which show typical target trajectories and
estimates of it given by MT and MC20 (with CKF/CRTS).
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Fig. 2. Example trajectory with filtered and smoothed esti-
mates.

The root mean square errors (RMSE) of estimating the tar-
get positions and turn rates are shown in panels (a)–(d) of Fig-
ure 3. We can see that the performance of RBMCDA is nearly
optimal with both 5 and 20 particles. The regular Gaussian
measurement model was also tested, but it diverged in all sim-
ulation cases. Of the tested integration methods GHKF gave
the best performance in all cases, followed by CKF, CDKF
and UKF in that order.

4. CONCLUDING REMARKS

In this article, we have presented a new outlier-robust filter
and smoother for nonlinear state space models. The filter and
smoother are based on using Student’s t-distribution in the
measurement model. The methods approximate the poste-
rior state at each time step using the variational Bayes method
and handle the non-linearities using the Gaussian filtering and
smoothing approach. The method was compared to the parti-
cle filtering based method RBMCDA in computer simulation,
which showed that the proposed approach provides a good
trade-off between accuracy and computational efficiency.
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