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Abstract. In this paper, we consider learning of spatio-temporal pro-
cesses by formulating a Gaussian process model as a solution to an
evolution type stochastic partial differential equation. Our approach is
based on converting the stochastic infinite-dimensional differential equa-
tion into a finite dimensional linear time invariant (LTI) stochastic dif-
ferential equation (SDE) by discretizing the process spatially. The LTI
SDE is time-discretized analytically, resulting in a state space model with
linear-Gaussian dynamics. We use expectation propagation to perform
approximate inference on non-Gaussian data, and show how to incor-
porate sparse approximations to further reduce the computational com-
plexity. We briefly illustrate the proposed methodology with a simulation
study and with a real world modelling problem.
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1 Introduction

Over the last decades Gaussian process (GP) based methods [1] have steadily
increased popularity as prominent tools for data analysis in several fields, in-
cluding spatial statistics, epidemiology and machine learning. Although, in the
common machine learning setting the modeled phenomena are assumed to be
static in time, learning of time dependent spatio-temporal models have recently
gained much interest. So far, the application of generic GP techniques to spatio-
temporal data has been hindered by the steep increase in computational require-
ments with respect to the number of data points.

In this article, we show how evolution type stochastic partial differential
equations [2] can be used as flexible prior models in spatio-temporal learning. In
our approach, the Gaussian spatio-temporal prior processes are modeled as lin-
ear time-invariant stochastic partial differential equations, and the measurement
models are assumed to be generic conditional distribution models for the mea-
surements. Formulating the model this way enables us to make use of the Markov
property inherent in the system to perform inference sequentially. Furthermore,
we show how to incorporate the recently proposed sparse GP approximations [3,
4] into the spatio-temporal formulation, which further reduces the computational
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burden. When combined with expectation propagation (EP) [5] approximate in-
ference scheme the computations are very cheap, enabling accurate inference on
large-scale spatio-temporal data sets.

As such, learning of spatio-temporal systems which are modeled as stochastic
differential equations is a mature subject and has been much studied in control
engineering under the names distributed parameter systems [6] and infinite-
dimensional (Kalman) filtering [7]. More recently, the Bayesian Kalman filtering
approach to spatio-temporal estimation has been studied, for example, in geo-
statistics [8–10] as well as in statistical inversion theory [11, 12]. In machine
learning context the usage of differential equations and partial differential equa-
tions for encoding prior information into Gaussian process regression models has
recently been discussed in [13].

2 Model and Methods

2.1 Spatio-Temporal Gaussian Processes

In this paper we consider evolution type stochastic partial differential equations
(SPDEs) [2] of the following form:

∂x(t, r)

∂t
= Arx(t, r) + Lrw(t, r), yk ∼

n∏
i=1

p(yki |x(tk, ri)), (1)

where x(t, r) denotes the latent spatio-temporal prior Gaussian process de-
pending on the time t ≥ 0 and spatial location r ∈ D on some bounded do-
main D ⊂ <d, and yk = (yk1, . . . , ykn) are the measurements. Ar and Lr
are linear operators acting on the variable r. The noise process w(t, r) is a
Gaussian process with r-dimensional covariance function of the time-white form
k(t, r; t′, r′) = δ(t− t′) k(r, r′), where k(r, r′) is some suitably chosen spatial co-
variance function. Since Ar and Lr are linear operators and w(t, r) is a Gaussian
process, x(t, r) is also a Gaussian process.

Often in Bayesian inference for Gaussian processes the model is formulated in
terms of time-space covariance function k(t, r; t′, r′) instead of a SPDE. However,
as shown in [14] there is one-to-one mapping between a large class of temporal
covariance functions (including the Matérn class) and linear state space models.
Similarly, there is an analogous one-to-one mapping between spatio-temporal
covariance functions and SPDEs. In the case of separable covariance functions of
the form k(t, r; t′, r′) = kt(t, t

′) ks(r, r
′) where kt and ks are appropriate temporal

and spatial covariance functions, the mapping becomes particularly simple and
computationally efficient. In our examples we shall consider models of this form.

After obtaining a set of observations y1:T = {y, . . . ,yT } the aim is to infer
the state posterior distribution p(x(t, r)|y1:T ). In practice, x(t, r) is discretized
with respect to space and time to make the model tractable. Additionally, the
dynamic model typically has few hyperparameters θ = (θ1, . . . , θp), which need
to be learned. These can include, for instance, the spatial length scales and
magnitudes of the noise process w(t, r) as well as possible parameters of the
operators Ar and Lr.
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2.2 Making the Model Tractable

A simple way to convert a stochastic partial differential equation model into
tractable form is to use discretization. For example, by using a finite differ-
ence or finite basis type of approximation in the spatial dimension, the infinite-
dimensional SPDE model can be transformed into finite-dimensional SDE:

dx(t)

dt
= F x(t) + L n(t), (2)

where matrices F and L are finite dimensional approximations to the linear
operators Ar and Lr, and x(t) = (x1(t), . . . ,xn(t)) is the state of the process at
a finite set of spatial points {r1, . . . , rn}. GPs with separable covariance functions
result also in models of this form, where n(t) has the covariance function δ(t−
t′) ks(r, r

′) and F is a hn×hn block diagonal matrix, where the h×h blocks are
constructed in such a way that they determine the desired temporal covariance
function kt(t, t

′) for the n components (see [14] for more details).
In practice, we are interested in the values of the Gaussian process at discrete

points of time, say, t ∈ {t1, t2, . . .}. By using the well known methods from linear
systems theory [15], the continuous time LTI model above can be transformed
into discrete time model of the following form:

xk = Ak−1 xk−1 + qk−1, qk−1 ∼ N(0,Qk−1), yk ∼ p(yk |xk), (3)

where the matrices Ak−1 and Qk−1 have analytic solutions (see, e.g., [15]).

2.3 Sparse Approximations

Suppose that we have a GP prior on n latent variables x ∈ <n with input fea-
tures {rix}ni=1 as x ∼ N(0,Kx,x). The problem of this approach is the O(n3)
scaling of computations in the inference. The recently developed sparse approx-
imations [3, 4] are aimed to mitigate these problems by placing a GP prior
on a smaller set of m inducing variables u ∈ <m (with own input features
{riu}mi=1) as u ∼ N(0,Ku,u), and then setting a linear-Gaussian relationship
between the inducing variables u and the actual latent variables x as x|u ∼
N(H u,R). Different approximations can be constructed by choosing the ma-
trices H and R appropriately. For example, by choosing H = Kx,uK−1u,u and
R = diag(Kx,x −Kx,u K−1u,u Ku,x) we obtain the fully independent conditional
(FIC) approximation, which we use as an example during the rest of this paper.
Due to linear-Gaussian formulation, the values of u can always be integrated out
analytically during the inference1, and by using the well-known matrix inverse
lemma the computations can be significantly reduced if R is of such form that it
can be inverted easily. For example, if R is diagonal the complexity is O(nm2).

To translate these ideas to spatio-temporal models we propose to formulate
a separable spatio-temporal GP prior model for inducing process u(t) ∈ <m as

du(t)

dt
= Fuu(t) + Lun(t), (4)

1 The input features of u, however, have an impact on the result.
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and the observation model as

xk|uk ∼ N(Hkuk,Rk), yk ∼ p(yk|xk). (5)

This formulation allows also to specify more general models by defining Hk

and Rk appropriately. For example, we can formulate additive models, in which
there are separate spatial, temporal and spatio-temporal components as well as
covariates, which have linear or fixed basis effects. This approach allows also to
predict the process on arbitrary input r since we can write the conditional as
x(t, r)|u(t) ∼ N(H(r)u(t),R(r)), which we can easily integrate over the poste-
rior of u(t) to get the marginal of x(t, r).

2.4 Expectation Propagation for Dynamic Systems

With generic GPs and non-Gaussian likelihoods expectation propagation (EP)
[5] has been shown to give state-of-the-art performance compared to other de-
terministic inference methods [16]. For dynamic systems EP was first introduced
by [17] and later extended for non-linear/Gaussian [18] and non-linear/Poisson
smoothing problems [19]. With EP, Gaussian approximations are made only in
the state space, avoiding possible difficulties arising with the Kalman filtering
type of methods [15]. In this article we apply EP to spatio-temporal GPs with
non-Gaussian likelihoods.

The central idea of EP is to factor the smoothing distribution as

p(x1:T |y1:T ) ≈ p̂(x1:T ) ∝
T∏
k=1

αk(xk)βk(xk), (6)

where the forward and backward messages αk(xk) ∝ p(xk|y1:k) and βk(xk) ∝
p(yk+1:T |xk,y1:k) are iteratively refined such that the Kullback-Leibler (KL) di-
vergence from the true posterior p(x1:T |y1:T ) to an approximation p̂(x1:T ) is min-
imized. While the global minimization is intractable, in EP the minimization is
performed by sequentially minimizing the KL divergence from p(xk−1,xk|y1:T ) ∝
αk−1(xk−1)p(xk|xk−1)p(yk|xk)βk(xk) to an approximation p̂(xk−1,xk). The mes-
sages αk(xk) and βk(xk) are typically chosen to be members of exponential
family (in our case un-normalized Gaussians), and such cases the minimization
of KL divergence is equivalent to moment matching. In our case this means
that the approximation p̂(xk−1,xk) is Gaussian, and in next section we briefly
detail how to seek its moments efficiently for the class of models considered
here. After obtaining p̂(xk−1,xk), the messages are updated in forward pass as
αnew
k (xk) =

∫
p̂(xk−1,xk)dxk−1/βk(xk) and in backward pass as βnew

k−1(xk−1) =∫
p̂(xk−1,xk)dxk/αk−1(xk−1). Usually several forward and backward passes over

the data are needed to achieve convergence.

Approximating the Two-Slice Posterior We now seek to find a Gaussian
approximation for p(xk−1,xk|y1:T ) via moment matching. First, the product of
densities p∗(xk−1,xk) = αk−1(xk−1)p(xk|xk−1) can be written as

p∗(xk−1,xk) ∝ N(xk−1,k|m∗k−1,k,P∗k−1,k), (7)
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where

m∗k−1,k =

[
mα
k−1

m∗k

]
, P∗k−1,k =

[
Pα
k−1 DT

k

Dk P∗k

]
(8)

and

m∗k = Ak−1m
α
k−1, Dk = Ak−1P

α
k−1, P∗k = Ak−1P

α
k−1A

T
k−1 + Qk−1. (9)

This can also be decomposed as p∗(xk−1,xk) ∝ p∗(xk)p∗(xk−1|xk), where

p∗(xk) = N(xk|,m∗k,P∗k), p∗(xk−1|xk) = N(xk−1|m∗k−1|k,P
∗
k−1|k),

m∗k−1|k = mα
k−1 + DT

k [P∗k]−1(xk −m∗k), P∗k−1|k = Pα
k−1 −DT

k [P∗k]−1Dk.
(10)

The backward message can be incorporated by simply using the product rule of
Gaussian distribution to get p∗∗(xk) = p∗(xk)βk(xk) ∝ N(xk|m∗∗k ,P∗∗k ).

The posterior is now of form p̂(xk−1,xk) ∝ p∗(xk−1|xk)p∗∗(xk)p(yk|xk). By
using the Bayes’ rule we can write p̂(xk) ∝ p∗∗(xk)p(yk|xk) when we treat
p∗∗(xk) as a prior for xk. Generally this is not of an analytically tractable
form, but we can seek Gaussian approximations by applying any approximate
inference scheme applicable to GPs with non-Gaussian likelihoods. Common
approaches are Laplace approximation or EP (see, e.g.,[1]). If we use sparse
approximations or other generalized observation models, the dynamic model
would be defined for uk and the prior for the ”moment matching” algorithm
is p∗∗(xk) ∝ N(Hk m∗∗k ,Hk P∗∗k HT

k + Rk). Since the covariance of this prior
is of same form as in sparse GPs, we can use same tricks as presented, e.g.,
in [20] to speed up the inference. With this we achieve the overall complexity
O(NTnm2), where N is the number of EP iterations across the time sequence
(in our examples we used N = 3, which we empirically observed to be sufficient).

After obtaining an approximation p̂(xk) ∝ N(xk|mk,Pk), the (marginalized)
posterior of xk−1 used in updating the backward messages can be obtained by
combining p̂(xk) with (10), which results in Kalman smoothing like equations
that are not stated here due to lack of space.

3 Results

We briefly show how to analyze log-Gaussian Cox process models by using the
presented modelling framework. We consider two large sized examples: a simula-
tion study highlighting the properties of our approach, and a real-world example
concerning tropical rainforest point process data modelled recently by [21, 22].

The log-Gaussian Cox process can be formulated in practice such that the ob-
servations yi in the region wi are Poisson distributed with mean |wi| exp(η(ti, ri)),
where |wi| is the area of the subregion (in our examples constant), and η(t, r) is
the latent intensity field, which is given a spatial or spatio-temporal prior.
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(b) n× T = 500 × 500

Fig. 1. Simulation study: Comparison of RMSE values versus the used CPU time for
the considered data set sizes averaged over several simulation runs. The software was
implemented on Matlab and ran on AMD Phenom II 3.5 GHz, 4GB RAM PC.

3.1 The Effect of Sparse Approximations

First we shall test how the sparse approximations affect the accuracy of the
posterior estimate. For simplicity we consider here only two dimensional fields
such that we treat one coordinate as time and the other as space. We sim-
ulate intensity fields η with a GP prior having a separable covariance function
k(t, r; t′, r′) = kt(t, t

′) ks(r, r
′), where both kt and ks are Matérn covariance func-

tions with smoothness and magnitude parameters set to ν = 3/2 and σ2 = 1.
We generate three different cases, in which the length scale parameter (common
for both covariance functions) has the values l ∈ {0.25, 0.75, 1.5}. We generate
data sets of size 100×100 and 500×500, and generate Poisson observations after
generating the intensities. Given the observed data, we set the field to have a
sparse GP prior and use EP to estimate its posterior. Figure 1 shows the RMSE
values plotted against the used CPU time in cases of using different number of
inducing variables between 2 and 70. It can be seen that the smoother the field
the less number of inducing variables is needed to achieve accurate results.

3.2 Tropical Rainforest Data

We consider tropical rainforest data shown in Panel (a) of Figure 2. The data
consists of 3605 trees in a rectangular rainforest area discretized into a 201×101
regular lattice. In each subregion also altitude and norm of the gradient are
observed. Similarly as in [21, 22], we model the log of the mean parameter in
Poisson distribution as

ηij = β0 + βalt altij + βgrad gradij + xij + εij , (11)

where β0 is a base line effect, βalt and βgrad the effects of the elevation and
gradient values, xij a spatially structured effect and εij a non-structure random
effect. We place a sequential sparse GP prior for xij similarly as in previous
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(a) Tree locations (b) Posterior mean of ηij − εij

Fig. 2. Tropical rainforest data: (a) Data and (b) the mean estimate of ηij − εij pro-
duced by EP. We used Laplace’s method with FIC (m = 60) in approximating the
one-slice posteriors. The horizontal axis was treated as time and the vertical as space.

section and model the random effect as εij ∼ N(0, σ2
ε ). The mean estimate of the

log intensity produced by EP is shown in Panel (b) of Figure 2. Hyperparameters
of the model were optimized w.r.t (approximate) marginal likelihood p(y1:T ) =∏T
k:1 p(yk|y1:k−1). Although we could use the full spatio-temporal GP prior for

the data considered here, by using FIC the computations were significantly faster
(the optimization taking only few minutes of CPU time) without affecting result.

4 Conclusions

In this article we have shown how spatio-temporal Gaussian processes can be
formed as linear-Gaussian state-space models that can be efficiently inferred by
using sequential algorithms. We have shown the key details on how to implement
EP for this class of GP priors with non-Gaussian observations. Moreover, we have
shown how to incorporate the sparse approximations for further speeding up
the computations. In future work we shall study wider class of spatio-temporal
Gaussian processes with more general covariance functions and linear operators,
implement a finite basis type of approximation to the SPDE by using the sparse
approximations, marginalize over the hyperparameters numerically as in [21, 22]
and apply the developed modelling framework to high dimensional data sets.
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