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Aalto University
02150 Espoo, Finland

Robert Piché
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ABSTRACT

In this paper we study the accuracy and convergence of state-space
approximations of Gaussian processes (GPs) with squared exponen-
tial (SE) covariance functions. This kind of approximations is impor-
tant in construction of Kalman filtering and smoothing based GP re-
gression algorithms, which have a linear (as opposed to conventional
cubic) computational complexity in the number of training samples.
We start by deriving general conditions for a spectral density approx-
imation to give a uniform convergence of the mean and covariance
functions. We then show that the previously proposed reciprocal
Taylor series approximation gives such uniform convergence. We
then derive new approximations based on Padé approximants of the
exponential function as well as approximations inspired by the cen-
tral limit theorem, and prove their uniform convergence. Finally, we
compare accuracy of the different approximations numerically.

Index Terms— Gaussian process regression, state-space ap-
proximation, squared exponential, Kalman filter and smoother, Padé
approximant, central limit theorem

1. INTRODUCTION

Gaussian process (GP) regression (e.g. [1]) is concerned with esti-
mating the value of an unknown function f(t) at a given input value
t (i.e. test point) based on a finite number of noisy training samples
observed from it. The difference to classical regression is that in-
stead of postulating a parametric regression function fθ(t;θ), where
θ ∈ RD are parameters to be fitted, in GP regression we use a Gaus-
sian process prior with a given covariance function k(t, t′) to model
the unknown functions f(t). Here we concentrate on the case where
the input is univariate t ∈ R. The univariate case is important in the
signal processing context where we are modeling temporal signals
and hence the input variable can be considered to be time.

A GP regression problem [1] with the noisy measurements yj ∈
R, j = 1, . . . , N of the unknown function f(t) at times tj can be
written as:

f(t) ∼ GP(0, k(t, t′)),

yj = f(tj) + εj ,
(1)

where the errors εj are independent zero mean Gaussian with vari-
ances σ2

j . This model as well as the results of this article can be
easily extended in various ways, for example, to non-zero mean, or
to vector or correlated measurements.

The a posteriori process, that is, the process conditioned on the
given set of measurements y =

(
y1 . . . yN

)T , is also Gaussian
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and has the following mean and variance functions [1]:

µ(t) = kT(t) (K + Σ)−1 y,

V (t) = k(t, t)− kT(t) (K + Σ)−1 k(t),
(2)

where Σ = diag(σ2
1 , . . . , σ

2
N ), K = k(t1:N , t1:N ) is an N × N

matrix and k(t) = k(t, t1:N ) is a column vector. In principle, for-
mulas (2) give the full solution to the GP regression problem (with
fixed hyperparameters), but, because of the O(N3) complexity of
the matrix inversions, the formulas can only be applied directly to
small data sets.

State-space representations of Gaussian processes [2–4] have re-
cently been proposed as a solution to the above-mentioned computa-
tional scaling problem, other approaches being, for example, sparse,
reduced rank, and fast Fourier transform (FFT) based approxima-
tions (see, e.g., [5–10] and references therein). The state-space meth-
ods are based on constructing a state-space model (see [2] for details)

dx(t)

dt
= A x(t) + Lw(t),

yj = H x(tj) + εj ,
(3)

where A, L, and H are given matrices and w(t) is a white noise
process with spectral density q, such that the state-inference prob-
lem in the above model is equivalent to a GP regression problem
(1). It turns out [2–4] that the state-inference problem can be solved
efficiently using classical Kalman filtering and smoothing [11–14],
which has linear complexity O(N) with respect to the number of
measurements. The state-space GP methods have also been extended
to non-Gaussian and non-linear settings and they have found many
applications in location sensing, physics, and medicine [4, 15–18].

The main challenge in the state-space approach is the construc-
tion of the state-space model from a given covariance function pre-
scription. As discussed in, for example, [2–4], such a state-space
representation is possible exactly if and only if the spectral density
of the Gaussian process is a rational function. Unfortunately, this is
not the case for the most commonly used square exponential covari-
ance function

k(t, t′) = s2 exp

(
− (t− t′)2

2`2

)
. (4)

The spectral density is

S(ω) =

∫
k(t, t+ τ) exp(−i ω τ) dτ

= s2
√

2π ` exp

(
− `

2 ω2

2

)
,

(5)
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which is clearly not a rational function.
However, a simple and accurate approximation, as already

pointed out in [19] and later used in [2–4], is the following ratio-
nal approximation based on the nth order truncated Taylor series
expansion of the exponential function in the denominator:

Sn(ω) =
s2 (2π)1/2 `

1 +
(
`2 ω2

2

)
+ 1

2!

(
`2 ω2

2

)2
+ · · ·+ 1

n!

(
`2 ω2

2

)n .
(6)

This approximation leads to a n − 1 times differentiable process
that approximates the infinitely differentiable squared exponential
process. For any finite n this approximate system can be converted
into an equivalent n-dimensional state-space model with white noise
input [2].

It is desirable that the above approximation should converge to
the exact spectral density as n → ∞. We also want the corre-
sponding covariance function approximation, which by the Wiener-
Khinchin theorem (e.g., [1, 2]) is given as

kn(t, t′) =
1

2π

∫
Sn(ω) exp(i ω (t− t′)) dω, (7)

to converge to the exact covariance. The aim of this article is to prove
that these convergences indeed happen and to introduce some alter-
native approximations that also converge to the exact covariance. We
also show that these convergences imply convergence of the poste-
rior mean and covariance. Additionally, we numerically evaluate
how fast the errors diminish as the approximation order increases.

2. UNIFORM CONVERGENCE OF COVARIANCE
FUNCTIONS AND GP REGRESSORS

In this section we derive two general theorems that will be used in
the subsequent sections to show the convergence of different approx-
imations. The first theorem is concerned with the convergence of the
a priori covariance function and the second one with the convergence
of the Gaussian process posterior mean and covariance functions.

Theorem 2.1 (Convergence of a priori covariance function). Con-
sider a stationary covariance function k(t, t′) having spectral den-
sity S(ω) and a sequence of covariance functions kn(t, t′) having
spectral densities Sn(ω) for n ∈ Z+. If

1. Sn(ω) converges point-wise to S(ω) with n→∞; and

2. There exists a function S̄(ω) ≥ 0 with
∫
S̄(ω) dw <∞ such

that Sn(ω) ≤ S̄(ω) for all n ∈ Z+ and ω ∈ R,

then the covariance function approximation kn(t, t′) converges uni-
formly to k(t, t′). Furthermore, the covariance functions are uni-
formly bounded.

Proof. The Lebesgue dominated convergence theorem (e.g. [20])
implies that given the conditions 1 and 2 above, together with the
positivity of the spectral densities, we have

lim
n→∞

∫
|Sn(ω)− S(ω)| dω → 0. (8)

Using (7) and | exp(i ω (t − t′))| ≤ 1 together with elementary in-
equalities gives

|kn(t, t′)− k(t, t′)| ≤ 1

2π

∫
|Sn(ω)− S(ω)| dω. (9)

The convergence results by taking the limit n → ∞. The conver-
gence is uniform, because the bound on the right hand side is inde-
pendent of t, t′. The uniform boundedness of the covariance func-
tions kn follows from

|kn(t, t′)| ≤ 1

2π

∫
Sn(ω) dω ≤ 1

2π

∫
S̄(ω) dω <∞. (10)

The uniform boundedness of k results from the integrability of S im-
plied by the dominated convergence theorem and a similar argument
as above.

Theorem 2.2 (Convergence of posterior mean and variance). If con-
ditions 1 and 2 in Theorem 2.1 hold, and the joint noise covariance
Σ is strictly positive definite, then the corresponding posterior mean
and variance µn(t) and Vn(t) converge uniformly to µ(t) and V (t),
respectively.

Proof. For the mean we get by simple manipulation and using the
triangle inequality:

|µn(t)− µ(t)|

= |kT
n(t) (Kn + Σ)−1 y − kT(t) (K + Σ)−1 y|

≤ |(kn(t)− k(t))T (Kn + Σ)−1 y|

+ |kT(t) (Kn + Σ)−1 (K−Kn) (K + Σ)−1 y|.

(11)

Because kn(t) converges uniformly to k(t) and Kn converges to K,
and the remaining vectors and matrices are uniformly bounded, µn
also converges uniformly to µ.

For the variance we similarly get

|Vn(t)− V (t)|

≤ |kn(t, t)− k(t, t)|+ |(k(t)− kn(t))T (Kn + Σ)−1 kn(t)|

+ |kT(t) (K + Σ)−1 (K−Kn) (Kn + Σ)−1 kn(t)|

+ |kT(t) (K + Σ)−1 (k(t)− kn(t))|,
(12)

where the result follows with the same arguments as for the mean.

3. TAYLOR SERIES EXPANSIONS

In this section we show the convergence of the approximation (6),
which we call the Taylor series approximation because it is obtained
by approximating the exponential in 1/S(ω) ∝ exp(`2 ω2/2) using
the Taylor series expansion

exp(x) = 1 + x+
1

2!
x2 +

1

3!
x3 + · · · (13)

truncated after the M th term.

Theorem 3.1 (Convergence of the Taylor series approximation).
Consider the sequence of approximations

S[M ](ω) =
s2 (2π)1/2 `

1 +
(
`2 ω2

2

)
+ 1

2!

(
`2 ω2

2

)2
+ · · ·+ 1

M !

(
`2 ω2

2

)M .

(14)

When M → ∞, the a priori covariance function converges uni-
formly to the squared exponential (4). Also the posterior mean and
covariance functions converge uniformly to the GP regression solu-
tion with the squared exponential (4) covariance function.



Proof. By Taylor’s theorem, the sequence S[M ](ω) converges point-
wise to the spectral density (5). Furthermore, each sequence member
is clearly dominated by the integrable function

S̄(ω) =
s2 (2π)1/2 `

1 +
(
`2 ω2

2

) , (15)

and hence by Theorem 2.1 the prior covariance function converges
uniformly and by Theorem 2.2 the posterior mean and covariance
converge uniformly.

In fact, the sequence of approximations in (14) converges uni-
formly, not only point-wise, to S(ω), which results from Theorem
2.3 and Equation (4.4) in [21]. That theorem also implies that the
error should vanish exponentially in the order M , more precisely,
supω |S[M ](ω)− S(ω)| ≤ S(0) 2−M .

4. PADÉ APPROXIMANTS

The Padé approximant [22,23] of the exponential function is a ratio-
nal function, denoted

exp[L/M ](x) =
B(x)

A(x)
=

b0 + b1 x+ · · ·+ bL x
L

1 + a1 x+ · · ·+ aM xM
. (16)

The coefficients are defined by the condition that the Taylor series
of (16) agrees with (13) to as high a degree as possible. Perron’s
formula for the coefficients in (16) is

aj = (−1)j
(L+M − j)!M !

(L+M)! j! (M − j)! , j = 1, . . . ,M, (17a)

bj =
(L+M − j)!L!

(L+M)! j! (L− j)! , j = 0, . . . , L. (17b)

The Padé approximants of the spectral density (5) are

S[L/M ](ω) = s2 (2π)1/2 ` exp[L/M ]

(
− `

2 ω2

2

)
. (18)

In particular, the Taylor series approximation S[M ] in (14) is the Padé
approximant S[0/M ]. Other Padé approximants are

S[1/2](ω) =
(2π)1/2 ` s2

(
1− `2 ω2

6

)
`4 ω4

24
+ `2 ω2

3
+ 1

, (19a)

S[1/3](ω) =
(2π)1/2 ` s2

(
1− `2 ω2

8

)
`6 ω6

192
+ `4 ω4

16
+ 3 `2 ω2

8
+ 1

, (19b)

S[2/3](ω) =
(2π)1/2 ` s2

(
`4 ω4

80
− `2 ω2

5
+ 1
)

`6 ω6

480
+ 3 `4 ω4

80
+ 3 `2 ω2

10
+ 1

, (19c)

S[1/4](ω) =
(2π)1/2 ` s2

(
1− `2 ω2

10

)
`8 ω8

1920
+ `6 ω6

120
+ 3 `4 ω4

40
+ 2 `2 ω2

5
+ 1

, (19d)

S[2/4](ω) =
(2π)1/2 ` s2

(
`4 ω4

120
− `2 ω2

6
+ 1
)

`8 ω8

5760
+ `6 ω6

240
+ `4 ω4

20
+ `2 ω2

3
+ 1

. (19e)

An L/M Padé approximant corresponds to a M − L− 1 times
differentiable Gaussian process. Hence the processes S[1/2] and
S[2/3] are not differentiable, the processes S[1/3] and S[2/4] are once
differentiable, and S[1/4] is three times differentiable.

However, not all Padé approximants are valid (i.e. non-negative)
spectral densities. For example, S[1/M ](ω) < 0 for ω2`2 > 2(1 +
M) and so no S[1/M ] is valid. On the other hand, it follows from
the formula at the end of [22, §66] that all S[2n/M ] are valid spectral
densities. Among the approximants in (19), S[2/4] is the best in the
sense that it is valid, it is differentiable, and it is fairly low order. For
this reason, we will use this particular Padé approximant as the basis
for other approximations in the next section.

The advantageous properties of the S[2/4] approximant motivate
us to define a sequence of approximants as follows:

Sn(ω) = S[2n/4n](ω). (20)

The convergence of this sequence of approximations is established
by the following theorem.

Theorem 4.1 (Convergence of the S[2n/4n] approximation). For
the sequence of spectral density approximations Sn(ω) of (20), the
prior covariance function approximation as well as the correspond-
ing posterior mean and variance approximations converge uniformly
to the squared exponential (4) counterparts.

Proof. Theorem 2.3 in [21] implies that supω |S[2n/4n](ω) −
S(ω)| ≤ S(0) 2−2n and hence the approximation S[2n/4n] con-
verges point-wise. The formula at the end of [22, §66] implies
that these approximants are always positive and hence valid spec-
tral densities. Finally, lemma A.1 (Appendix A) implies that
S[2n/4n](ω) ≤ S̄(ω), where S̄ is defined in (15).

5. CENTRAL LIMIT THEOREM APPROXIMATIONS

In the familiar exponential function formula

exp(x) = lim
n→∞

(
1 +

x

n

)n
(21)

the term 1 + x
n

can be recognized as a first order approximation to
exp(x/n). Hence this formula is closely related to the identity

exp(x) = exp(x/n)n (22)

which corresponds to the “scaling and squaring” approximation that
is used in numerical computation of matrix exponentials [24].

In fact, the identity (21) can be generalised to

exp(x) = lim
n→∞

(
1 +

x

n
+ o

(
1

n

))n
, (23)

where the term o(1/n) can be an arbitrary expression that goes to
zero faster than 1/n, with any dependence on x (recall that we are
considering point-wise convergence). Thus, we can put, for exam-
ple, any Taylor series expansion of the exponential (13) of order
greater than one inside the parenthesis and still have the convergence
to the exponential function — and the convergence rate could be ex-
pected to be higher with a higher order Taylor polynomial.

The identity (23) is also closely related to the central limit theo-
rem (CLT, see, e.g., [25]), because if we replace x with −ω2/2, we
get

exp(−ω2/2) = lim
n→∞

(
1− ω2

2n
+ o

(
1

n

))n
. (24)

If we now interpret the term in the parenthesis as a Taylor se-
ries expansion of the characteristic function of a random variable
Xi/
√
n, it says that the sum of n such independent random vari-

ables
∑n
i=1Xi (whose characteristic function is the product the

individual characteric functions) converges to a standard Gaussian.
By generalizing this idea we get the following theorem.



Theorem 5.1 (Convergence of CLT approximation I). Consider a
non-negative integrable base approximation to the squared exponen-
tial covariance function of the form

Ŝ(ω) = s2 (2π)1/2 `

×

 1 + b1
(
`2 ω2

2

)
+ · · ·+ bL

(
`2 ω2

2

)L
1 + a1

(
`2 ω2

2

)
+ · · ·+ aM

(
`2 ω2

2

)M
 .

(25)

with L < M . If for n = 2, 3, . . . we form a sequence of new ap-
proximations via

Sn(ω) = Ŝ(0)

(
Ŝ(n−1/2 ω)

Ŝ(0)

)n
, (26)

then the resulting approximation converges uniformly to the squared
exponential covariance function (4) in the limit n → ∞, provided
that a1−b1 = 1 and if there exists an integrable function S̄(ω) such
that Sn(ω) ≤ S̄(ω) for all n. The corresponding posterior mean
and variance also converge uniformly.

Proof. We have

Sn(ω) = s2 (2π)1/2 `

×

 1 + b1
(
`2 ω2

2n

)
+ · · ·+ bL

(
`2 ω2

2n

)L
1 + a1

(
`2 ω2

2n

)
+ · · ·+ aM

(
`2 ω2

2n

)M

n

(27)

which converges point-wise to

lim
n→∞

Sn(ω) = s2 (2π)1/2 ` exp

(
(b1 − a1)

(
`2 ω2

2

))
. (28)

The limit above equals to the squared exponential if a1 − b1 = 1.
Provided that the mentioned integrable function exists, then the re-
sult follows from Theorems 2.1 and 2.2.

Corollary 5.1 (Convergence of CLT approximation II). Assume that
we form the sequence Sn(ω) as in Theorem 5.1 and that the base
approximation (25) is bounded by S̄(ω) defined in (15). Then the
corresponding mean and covariance functions converge uniformly
to the squared exponential ones.

Proof. We get

s2 (2π)1/2 `

 1 + b1
(
`2 ω2

2n

)
+ · · ·+ bL

(
`2 ω2

2n

)L
1 + a1

(
`2 ω2

2n

)
+ · · ·+ aM

(
`2 ω2

2n

)M

n

≤ s2 (2π)1/2 `(
1 +

(
`2 ω2

2n

))n [then use the binomial theorem]

=
s2 (2π)1/2 `(

1 + n
(
`2 ω2

2n

)
+ (positive terms)

) ≤ s2 (2π)1/2 `(
1 +

(
`2 ω2

2

)) .
(29)

The result now follows from Theorem 5.1 and the integrability of the
last bound.

Example 5.1. For the first order Taylor series base approximation
we have

Sn(ω) =
s2 (2π)1/2 `(

1 +
(
`2 ω2

2n

))n . (30)

The convergence now follows from Corollary 5.1 and hence the
means and covariances converge uniformly to the squared exponen-
tial. This result is just the well-known result of convergence of the
Matérn class of covariance functions to the squared exponential [1].

Example 5.2. By using the [2/4] Padé approximant (19e) as the
base approximation we get

Sn(ω) = (2π)1/2 ` s2
(

`4 ω4

120n2 − `2 ω2

6n
+ 1

`8 ω8

5760n4 + `6 ω6

240n3 + `4 ω4

20n2 + `2 ω2

3n
+ 1

)n
.

(31)

S[2/4] is bounded by (15) and thus the convergence follows from
Corollary 5.1.

Example 5.3. It is also possible to construct approximations using
other than Taylor series or Padé approximants as the base approxi-
mation. For example,

Ŝ(ω) =
s2 (2π)1/2 `

1 + `2 ω2

2
+ β2

2!

(
`2 ω2

2

)2 (32)

with β = (π − 1)
/√

2 satisfies the conditions of Theorem 5.1 and
matches the process variance, that is, k̂(t, t) = 1

2π

∫
Ŝ(ω) dω = s2.

When s = ` = 1, the corresponding covariance function differs
from k(t, t + τ) by at most 0.05, whereas the maximum difference
for second-order Taylor is 0.141.

6. NUMERICAL EVALUATION OF ACCURACY

In this section we evaluate the accuracy of the proposed approxi-
mations numerically. Because the computational requirements of
the Kalman filter and smoother are proportional to size of the state-
vector, it is natural to measure the accuracy as function of state di-
mensionality. Furthermore, as we are mainly interested in the uni-
form errors in the covariance function, we use the maximum error
over all the input values as the accuracy measure.

The following approximations were tested (with scaling param-
eter values s = ` = 1):

• Taylor n: nth order Taylor series from Theorem 3.1.

• Taylor [1]n: CLT approximation with a first order Taylor se-
ries base approximation from Example 5.1.

• Taylor [2]n: Same as the above, but with a second order Tay-
lor series base approximation.

• Pade [2/4]n: CLT approximation with a Padé 2/4 base ap-
proximation from Example 5.2.

• Pade [2n/4n]: Padé 2n/4n approximation from Example 4.1.

• MTaylorn: CLT approximation with a modified second order
Taylor series base approximation from Example 5.3.

The maximum absolute errors in the prior covariance functions
resulting from the approximations are shown in Figure 1. The re-
sults are given as function of the state dimensionality, because it de-
termines the computational requirements of the method. The state
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Fig. 1. Maximum errors in a priori covariance function as function
of the state dimensionality.

dimensionality is determined by the denominator order and hence
with different methods we get different state-dimensions with the
same n. For example, with Taylor series, the state dimension is ex-
actly n, but with Pade [2n/4n] it is 4n. In the figure, it can be seen
that the Taylor series approximations and the Padé 2n/4n approxi-
mants have an exponentially decaying error as expected. The Taylor
series approximation works surprisingly well and has a lower error
than the Padé 2n/4n approximant until the state dimension 8, after
which the Padé approximant is better.

In contrast, the errors of the CLT-type approximations do
not have an exponential convergence rate although the Padé 2/4
base approximation leads to quite low errors with the tested state-
dimensionalities and with certain state-dimensionalities it has a
lower error than the Taylor series approximation above. The mod-
ified Taylor series base approximation leads to the lowest error
among them with small state dimensions, but its error increases in
the beginning and then diminishes very slowly with the state dimen-
sion. The Taylor series base approximations do indeed converge
faster, but the convergence rates are still quite low.

We also tested the effect of the approximations to the posterior
mean and variance in a simple Gaussian process regression example
shown in Figure 2. The resulting errors are shown in Figure 3. The
results are similar to the a priori covariance function results with a
few differences: with the low state dimesionalities, the modified Tay-
lor series base approximation error first diminishes and then grows
a bit before starting a slow descent. Furthermore, both the Padé
2n/4n approximants and the Padé 2/4 base approximants have a
clearly lower error than the Taylor series approximation already at
the state dimension 8 although the latter error later rises above the
Taylor series error due to its sub-exponential convergence rate.

7. CONCLUSION AND DISCUSSION

In this paper we have studied the convergence and accuracy of Tay-
lor series, Padé, and central limit theorem (CLT) based approxima-
tions to the squared exponential function in the context of Gaussian
process regression. We have proved the theoretical convergence of
the previously proposed Taylor series approximations as well as of
a number of new approximations. The numerical evaluation of the
accuracy shows that the Taylor series expansion is a very good ap-
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Fig. 2. Example of GP regression used for evaluating the posterior
approximations. Dashed line is the true function and solid line is
the posterior mean. Shaded area depicts the 95% (point-wise) confi-
dence region.

proximation, but there are some other approximations which come
close or outperform the Taylor series approximations in approxima-
tion error. In particular, Padé approximants can be more accurate in
this sense.

However, the approximation error is not the only criterion that
is important in the selection of the appropriate approximation. The
CLT approximations have an advantage that because they are simple
powers of a base approximation, forming the state-space model of
an arbitrary order is easy provided that we can form it for the base
approximation. This is advantageous when a symbolic spectral fac-
torization is desired, which is the case, for example, in forming state
space representations of spatio-temporal processes [3, 4].

A. UPPER BOUND FOR PADÉ 2N/4N

The following result is used in the proof of Theorem 4.1.

Lemma A.1. exp[0/1](−x) ≥ exp[2n/4n](−x) for x ≥ 0.

Proof. For n = 1, we have

exp[0/1](−x)− exp[2/4](−x)

=
1

360
x4 + 1

2
x2

(1 + x)( 1
360

x4 + 1
30
x3 + 1

5
x2 + 2

5
x+ 1)

≥ 0.

The inductive step

exp[2n/4n](−x)− exp[2(n+1)/4(n+1)](−x) ≥ 0

follows from the inequalities

B[2n/4n](−x)A[2n+2/4n+3](−x)

−B[2n+2/4n+3](−x)A[2n/4n](−x) ≥ 0, (33)
B[2n+2/4n+3](−x)A[2n+2/4n+4](−x)

−B[2n+2/4n+4](−x)A[2n+2/4n+3](−x)

=
(4n+ 3)!

(6n+ 5)!

(2n+ 2)!

(6n+ 6)!
x6n+6 ≥ 0. (34)
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Fig. 3. Top: Maximum errors in posterior mean as function of the
state dimensionality. Bottom: Maximum errors in the posterior vari-
ance.

The inequality (33) holds because the left hand side is a polynomial
of degree 6n + 3 whose three leading coefficients are positive and
whose remaining coefficients can be shown, using arguments similar
to [23, p. 94–95], to be zero.
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