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Abstract. In this paper we shall discuss an extension to Gaussian pro-
cess (GP) regression models, where the measurements are modeled as
linear functionals of the underlying GP and the estimation objective is a
general linear operator of the process. We shall show how this framework
can be used for modeling physical processes involved in measurement of
the GP and for encoding physical prior information into regression mod-
els in form of stochastic partial differential equations (SPDE). We shall
also illustrate the practical applicability of the theory in a simulated
application.
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1 Introduction

This paper is concerned with Gaussian process (GP) regression [1, 2], which
refers to a Bayesian machine learning approach, where the regression functions
are modeled non-parametrically as Gaussian processes. In the approach, we first
postulate a Gaussian process prior for the unknown function f(x) and then
compute the posterior distribution of the function by conditioning to observed
measurements D = {(xi,yi) : i = 1, . . . , n}. The predicted function values at
arbitrary points x∗ are then estimated by computing the posterior predictive
distributions of the unknown function values.

Linear operators and functionals, which act on functions in Hilbert spaces [3]
are commonly used models in engineering and physics applications. In telecom-
munications [4], statistical signal processing [5] and image processing [6] the lin-
ear operators are typically integral operators in the form of convolution kernels,
which model the effect of a linear system to the input or measurement signal. In
physics [7, 8] the linear operators are typically differential operators, which ap-
pear as parts of partial differential equation (PDE) models of the Nature. When
PDE models include stochastic terms, they become stochastic partial differential
equations (SPDE) [9], which can be used for modeling spatial physical processes
with unknown sub-phenomena.
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In this paper we shall show how linear operators can be naturally included
into GP regression and used for encoding physical and other background infor-
mation into the models. The information can be encoded either by including
a linear operator to the measurement model or by forming the prior covari-
ance function as a solution to a stochastic partial differential equation (SPDE).
Similar ideas have been previously used, for example, in Kriging [10–14], image
processing [15, 16, 6], Kalman filtering [17, 18], and physical inverse problems
[19–21]. In the machine learning context, the inclusion of linear operators into
GP regression models has also been previously proposed. For example, convolved
multi-output Gaussian processes [22, 23], latent force models [24], noisy opera-
tor equations [25, 26], as well as measurement and estimation of derivatives and
integrals [27, 28] fall into this class of models. In this paper we shall formulate a
general model, which includes all of these models and present its solution.

2 Linear Operators and Functionals of GPs

In this article we shall denote the application of linear operator Lx to the function
f(x), which results in another function g(x) as g(x) = Lx f(x). We shall assume
that the operator produces functions with the same input domain as its input
function has – if the input function is f : R

d 7→ R
mf then the output function

is g : R
d 7→ R

mg . That is, the output dimensionality might change, but input
not. We shall explicitly allow vector and matrix valued operators, because scalar
models are too restricted for most modeling purposes. Examples of allowed linear
operators are, for example integration Lx f(x) =

∫ xi

−∞
f(x) dxi, and computation

of the Jacobian matrix [Lx f(x)]ij = ∂fi(x)/∂xj .
We shall also need linear functionals Hx, which are just like linear operators,

but produce vectors or matrices instead of functions. Functionals can be con-
sidered as operators combined with evaluation of the result function at certain
point. For example the derivative Hx f(x) = ∂f(x)/∂xi evaluated at fixed point
x̂ is a functional as well as integral of f(x) over a fixed area. The mathemati-
cal treatment of functionals is similar to operators, because functionals can be
considered as a restricted class of operators.

In this article we are interested in the case where f(x) is modeled as a zero
mean Gaussian process with covariance function E[f(x) fT (x′)] = Kff(x,x

′),
which is denoted as

f(x) ∼ GP(0,Kff(x,x
′)). (1)

By applying the well known rules for linear transformations of Gaussian processes
[29, 2], we get that if g(x) = Lx f(x), then we have

Kgf(x,x
′) = LxKff(x,x

′)

Kfg(x,x
′) = Kff(x,x

′)LT
x′

Kgg(x,x
′) = Lx Kff(x,x

′)LT
x′ .

(2)

Here one has to be careful with the notation – the transpose is just a normal
matrix transpose, but by operator application from the right we mean an anal-
ogous operation for kernels as right multiplication by matrix in linear algebra
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is. The multiplication from right here means operating to the second argument
of the kernel Kff(x,x

′) and this is here emphasized by writing Lx′ instead of
Lx. This convention is required to be able to consistently cope with vector and
matrix operators.

To illustrate the right multiplication, we may consider the operator Lx =
(1, ∂/∂x) acting on scalar Gaussian process f(x) with scalar input and covariance
function kff(x, x

′). The cross covariance Kfg(x, x
′) is then given as

Kfg(x, x
′) = kff(x,x

′)
(

1 ∂/∂x′
)

=
(

kff(x,x
′) ∂kff(x,x

′)/∂x′
)

. (3)

The rules for computation with functionals are analogous to the rules for op-
erators, but of course, the result of applying functional to the function, say,
h = Hx f(x) is a random variable having the covariance matrix

Khh = Hx Kff(x,x
′)HT

x′ , (4)

not a covariance function.

3 GP Regression Model with Linear Operators

If we model the unknown regression function f : R
d 7→ R

m as a zero mean
Gaussian process with covariance function Kff(x,x

′), then a basic multi–input
multi–output Gaussian process regression model can be stated as

f(x) ∼ GP(0,Kff(x,x
′))

yi = f(xi) + ei,
(5)

where yi, ei ∈ R
m. The joint covariance of errors e = (e1, . . . , en) is assumed to

be given by the matrix Σ. The equations for the posterior mean and covariance
given the concatenated vector of measurements y = (y1, . . . ,yn) are then given
by the well-known GP regression equations (see, e.g., [1, 2]):

E[f(x) |y] = Kff(x,x1:n) [Kff(x1:n,x1:n) +Σ]
−1

y

Cov[f(x) |y] = Kff(x,x)−Kff(x,x1:n) [Kff(x1:n,x1:n) +Σ]
−1

KT
ff (x,x1:n),

(6)

where Kff(x,x1:n) is a block matrix formed of blocks Kff(x,xj) where j =
1, . . . , n and Kff(x1:n,x1:n) is a block matrix with blocks Kff(xi,xj) where i =
1, . . . , n and j = 1, . . . , n.

In image processing [6] and physical inverse problems [19, 20] the Gaussian
process based models are often stated in more general form than Equation (5).
In order to model linear processes such as motion blur or physical phenomena
occurring in the measurement process, the measurements are assumed to be
linear functionals of the underlying Gaussian process, not direct (noisy) values
of the process. Furthermore, the estimation objective often is not the underlying
Gaussian process, but some linear operator transformation of it, such as its
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derivative or integral. With this motivation, a suitably generalized Gaussian
process regression model can be stated as

f(x) ∼ GP(0,Kff(x,x
′))

yi = Hx,i f(x) + ei,
(7)

where Hx,i is a deterministic linear functional and the objective is to estimate a
linear operator transformation of the signal d(x) = Lx f(x), where Lx is a linear
operator. As in the basic model in Equation (5), {yi : i = 1, . . . , n} are the
m-dimensional measurements and the errors e = (e1, . . . , en) have zero mean
and joint covariance matrix Σ.

With these assumptions the posterior process d(x), after conditioning to
measurements, will be a Gaussian process and the mean and covariance can
be derived as follows. The joint distribution of y = (y1, . . . ,yn) and d(x) is
multidimensional Gaussian with zero mean and covariance

Cov

[(

y

d(x)

)]

=

(

Hx Kff(x,x
′)HT

x′ +Σ Hx Kff(x,x
′)LT

x′

Lx Kff(x,x
′)HT

x′ Lx Kff(x,x
′)LT

x′

)

∣

∣

∣

∣

∣

x
′=x

, (8)

where Hx = (Hx,1, . . . ,Hx,n). The substitution x′ = x after performing all the
operations is needed just to get the notation consistent, that is, to make it clear
that to which variables do the operators operate to. By the elementary rules for
Gaussian random variables we can compute the conditional mean and covariance
of d(x):

E[d(x) |y] = Lx Kff(x,x
′)HT

x′

[

Hx Kff(x,x
′)HT

x′ +Σ
]−1

y

Cov[d(x) |y] = Lx Kff(x,x
′)LT

x′

−Lx Kff(x,x
′)HT

x′

[

Hx Kff(x,x
′)HT

x′ +Σ
]−1

Hx Kff(x,x
′)LT

x′

∣

∣

∣

x
′=x

,

(9)

where the substitution x′ = x is understood to be done for all instances of x′

after all the operations in the expression have been performed.

4 Stochastic Partial Differential Equations

Linear stochastic partial differential equation (SPDE) is an operator equation of
the form

Dx g(x) = n(x), (10)

where Dx is a linear differential operator and n(x) is a Gaussian process with
zero mean and covariance function Knn(x,x

′). Note that often SPDE refers to
the special case where n(x) is a Gaussian white noise process [9], that is, a
process with covariance function Knn(x,x

′) = Q δ(x − x′), but here we shall
define SPDE in the above generalized sense.
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Assume that we now want to solve the corresponding inverse problem, that
is, estimate n(x) in the Equation (10), based on the measurements of g(x). If
we convert this into Gaussian process regression model, denote the unknown
function as f(x), and include the measurement functional, the general model
can be written in form

f(x) ∼ GP(0,Kff(x,x
′))

Dx g(x) = f(x)

yi = Hx,i g(x) + ei.

(11)

Unfortunately this model is incompatible with the GP model in Equation (7).
Fortunately, we can convert the model into compatible form by introduc-

ing the Green’s function G(x,x′) of the operator, which can be interpreted
as inverse of the operator Dx. Thus we get the formal solution for g(x) =
∫

X
G(x,x′) f(x′) dx′ and the model can be rewritten as

f(x) ∼ GP(0,Kff(x,x
′))

yi = Hx,i

∫

X

G(x,x′) f(x′) dx′ + ei,
(12)

which is compatible with the model (7).
Physical laws such as the laws of electromagnetism are often linear PDEs.

When linear PDE is driven by Gaussian process, we get a SPDE, whose solution
is a Gaussian process. By suitable formulation of the Gaussian process regression
model and the covariance functions is it also possible to encode physical laws
into the model.

5 Simulation: Electrostatic Inverse Problem

Assume that we are measuring electrostatic potential φ(x) of a stationary charge
density at some predefined points xi. If we denote the unknown charge density as
f(x), then from Maxwell’s equations (see, e.g., [8]) we know that the potential
is the solution to the Poisson equation ∇2ϕ(x) = −f(x)/ǫ0. If we model the
unknown charge density as a Gaussian process, then by using the procedure
presented in Section 4 the model can be converted into the form

f(x) ∼ GP(0, kff(x,x
′))

yi =
1

4πǫ0

∫

R3

f(x′)

||xi − x′||
dx′ + ei,

(13)

which indeed has the form of the extended GP regression model (7) with the
measurement model functional defined as

Hx,i f(x) =
1

4πǫ0

∫

R3

f(x′)

||xi − x′||
dx′. (14)
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In this case we assume that due to the physical setup we know that the charge
density is confined into the area of radius r0 = 12 centered at origin and outside
that area the charge density is identically zero. If we assume that the prior
covariance function of f(x) is a squared exponential inside the specified area,
the suitable non-stationary covariance function is

kff(x,x
′) = σ2 exp

(

−
1

2l2
||x− x′||2

)

I(||x|| < r0) I(||x
′|| < r0), (15)

where the I denotes the indicator function, which takes the value 1 when the
argument is true, zero otherwise.

In the simulation, three charged objects were placed on the xy plane and
electrostatic potential measurements were obtained on circle of radius r = 12
around the origin in xy-plane, as shown in Figure 1 (a). The measurements
were corrupted by Gaussian noise with standard deviation 0.01. Note that the
selection of the finite support covariance function also ensures that the singular-
ities in the integrands disappear, because the measurements are strictly on the
area with no charge. The electrostatic potential measurements obtained from
the simulated measurement points are shown in Figure 1 (b).

The computation was performed by simple Euler discretization of the integral
operator in Equation (14), but more efficient quadrature or cubature integration
methods could be applied instead. With this approximation the mean and co-
variance Equations (9) reduced to matrix expressions for the grid points. The
estimated charge density with prior parameter values σ2 = 10−12, l = 2 is shown
in Figure 1 (c) and the corresponding predicted potential is shown in Figure 1
(d). As can be seen in the figures, both the estimated charge density and po-
tential indeed visually resemble the true quantities, and the estimates are quite
reasonable given that we have only observed the 20 measurements in Figure 1
(b). However, due to the ambiguities in the physical setup, the prior covariance
defines the size and shape of the charge areas and with the current selection the
change areas and the corresponding potentials are always smoother and flatter
than the true ones.

6 Conclusion

In this article we have discussed an extended Gaussian process regression model
for machine learning problems, which allows modeling of linear functionals in
measurement process and estimation of the result of a linear operator applied
to the Gaussian process. We have also demonstrated how this extended model
can be used for formulating Gaussian process based solutions to physical inverse
problems. The practical applicability of the theory was illustrated in a simulation
of a classical electrostatic inversion problem.
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putational Complex Systems Research of Academy of Finland for the financial
support and also likes to thank Aki Vehtari and Jouko Lampinen for helpful
comments on the manuscript.
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Fig. 1. (a) Charges, potential and measurements points. The measurement points are
located at radius r = 12 around the origin. (b) Measured point potentials. (c) Estimated
charge density. (d) Estimated potential.
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