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What we are aiming to do

Eliminate cardiac and respiration (physiological signals) from
fMRI measurements

Separate signals to physiological and brain activation related
components

Bayesian stochastic dynamic model based approach
Particularly well suited for fast fMRI (> 10Hz).
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Utilization of reference signals

* Frequency trajectories of cardiac and respiration
estimated from reference signals

* Used as the known oscillator frequencies in the
Bayesian dynamic model of fMRI signal

RESPIRATORY BELT



Mathematical model for oscillator

* Cardiac and respiration are modeled as superposition
of oscillators c(t):

A non NN

d—Clo(T) =— Q21 f())* ¢;(t)
dt-
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 The frequency is assumed to be time-varying
* Frequency trajectories f(t) estimated from reference signals
* Uncertainties modeled with stochastic processes



Oscillator with Harmonics
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Stochastic models for signals

e Brain signal b(t) in a voxel is modeled with Wiener velocity
model, which contains white noise process e,(t):

d>b(1)
dr?

* The uncertainty in each harmonic oscillator ¢, (t) is modeled
as white noise e, (t):

LD e f0 ) + e

* Frequencies f(t) modeled as Hidden Markov Model (HMM):
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State space model for references

 The models for reference signals can be written into state
space model form

dX,(1)
dt
yrc(tk) — Hrc Yrc(lk) + Ve, Vie ™~ N((), O-;2~C),

=F rc(f C(Z)) ?I(‘ + Ly grc

* Herey,/(t,)is the measured signal and x, (t) is the state
consisting of bias and oscillators:

T
Yo =(b dbjdt ¢ deyjdt - ey, dey,/di)

e Bayesian solution with interacting multiple models (IMM)
algorithm (a parallel set of Kalman filters)



State space model for brain signal

* Brain signal consists of spatio-temporal process
defined in each voxel location r:

0x(t,7)
ot

Y, P) = H X(tx, F) + v(P),
* The state x(t,r) contains brain, cardiac and respiration
signals in each voxel

e Bayesian solution can be computed with Kalman filter
and RTS smoother

* Because voxels are treated independently,
computations remain light

= F X(t,7¥) + Lé(t,7)



fMRI measurement setup

Data was acquired with AMI-Centre's 3.0T
scanner at Aalto University, Finland

Stimuli consisted of photos in the center of the
visual field in a block design

Only 2 slices were measured with repetition time
(TR), 100 ms; echo time (TE), 20 ms; flip angle
(FA), 60; field-of-view (FOV), 20 cm; matrix size,
64x64; and slice thickness, 5 mm.

During the EPI-runs, physiological signals were
recorded at 1kHz.




Results: Analysis of reference signals

e Estimated frequency trajectories from the

reference signals:
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Results: Separation of sighal into
components

ONE VOXEL OF FMRI DATA
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Results: Increase of SNR

 Removal of physiological and other noises improves
the signal-to-noise-ratio (SNR):
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Results: SPM results
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Summary

We aim to eliminate physiological noise from fMRI by
Bayesian stochastic dynamic modeling

Frequency trajectories of cardiac and respiration are
estimated from references with IMM algorithm

Brain signal and physiological signals in brain are modeled
with state space models and estimated with Kalman filter
and RTS smoother

The result is separation of fMRI signal into physiological,
activation and noise components

The separated activation signal has better SNR than the raw
signal and results in better BOLD detection in SPM.

Comparison to other approaches (RETROICOR) in progress
Testing in normal (“slow”) fMRI in progress



