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Abstract

We present a method for predicting preterm infant in-hospital mortality using

Bayesian Gaussian process classification. We combined features extracted from

sensor measurements, made during the first 72 hours of care for 598 Very Low

Birth Weight infants of birth weight <1500 g, with standard clinical features

calculated on arrival at the Neonatal Intensive Care Unit. Time periods of 12,

18, 24, 36, 48, and 72 hours were evaluated. We achieved a classification result

with area under the receiver operating characteristic curve of 0.948, which is

in excess of the results achieved by using the clinical standard SNAP-II and

SNAPPE-II scores.
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1. Introduction

This article is related to the use of data-driven methods in the context of dig-

ital healthcare and health informatics [1, 2]. In particular, our aim is to develop

machine learning methodology for integration of heterogeneous data sources in

order to more accurately predict the survival chances of preterm infants during5

treatment in the Neonatal Intensive Care Unit (NICU). First, we combine the

conventional scoring system used in clinical practice with data-driven prediction

from raw sensor data. Second, we study the prediction accuracy when the clini-

cal scores are completely replaced with measurement data. The development of

new methods for predicting neonatal in-hospital mortality is important, because10

while the global under-five mortality rate has dropped 53% since 1990, the pro-

portion of neonatal deaths is projected to increase from 45% in 2015 to 52% by

2030 [3]. The incidence of certain complications (e.g. necrotizing enterocolitis)

increases with the survival of preterm infants who previously would have died

before the onset of these problems, emphasizing the need for developing new15

methods and strategies for neonatal intensive care [4]. Furthermore, data-only

prediction is extremely important in clinical work, because the determination

of the conventional scores is labor-intensive and requires that a specific set of

diagnostic markers is available.

Routinely available markers of risk – sex, birth weight, and gestational age –20

fail to predict observed variation of mortality in NICUs [5]. This has prompted

development of illness severity scores, such as SNAP-II and SNAPPE-II [6],

which add laboratory results and physiological measurements of vital signs to

perinatal risk factors in order to better predict morbidity and mortality. These

risk scores were developed when patient records were mostly collected by hand,25

relying on simplified presentation of physiological data such as lowest tempera-

ture and mean blood pressure. Current patient information systems and patient

monitors have made collection of detailed medical data much easier. We hy-

pothesized that time series data of vital signs would help to identify patients at

risk and, when combined with traditional risk scores, would result in increased30
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predictive power.

The machine learning methodology that we use is based on the use of Gaus-

sian process (GP) classification [7] with features extracted from raw cardiac,

arterial and oximeter sensor measurements in addition to the clinical scores,

gestational age at birth, and birth weight. Our motivation for studying GP35

classifiers in this context stems from two properties of GPs. First, they are gen-

uine probabilistic models [7] and can provide information on how certain we are

about the answer. This feature is inherent in GPs whereas, for example, for sup-

port vector machines (SVMs) [8] the uncertainty needs to be estimated with an

additional model on the basic SVM [9]. Second, an even more important prop-40

erty is that GPs can flexibly be combined with first principles models [10, 11].

The resulting latent force models (LFMs) have a huge potential in medical appli-

cations especially due to their connection with time-series models used in sensor

signal processing [12, 13, 14]. As shown in these papers, it is even possible to

see that GPs models are solutions to certain stochastic partial differential equa-45

tions, which not only allow for the combination with first-principles physical

models, but also enable the use of Kalman filtering and other Bayesian filtering

methods [15] for computationally efficient implementation of GP classifiers. GP

classifiers have been previously used in health data analysis in (adult) Intensive

Care Units (ICU) [16, 17, 18] and machine learning methods have been applied50

to NICU data [19, 20].

The contribution of this paper is that using cross-validation we show that

augmenting the staff-determined SNAP-II and SNAPPE-II scores with sensor

measurements improves prediction accuracy over standard clinical measures.

We also show that a data-driven prediction from measurements alone can lead55

to better prediction accuracy than SNAP-II and SNAPPE-II. The proposed

approach gives the area under the receiver operating characteristic curve (AUC)

0.946 for mortality prediction, which compares favourably with AUC 0.9151

reported for logistic regression by Saria et al. [20], and AUC 0.913 for CRIB-

II and AUC 0.907 for SNAPPE-II reported by Reid et al. [21]. Although it60

has previously been shown [6] that in-hospital mortality of preterm infants is
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strongly correlated with birth weight and gestational age at birth, we show that

the prediction result achieved by using these two variables alone (Table 2) can

be improved by adding features extracted from measurement time series.

This article is an extended version of the conference article “Prediction of65

preterm infant mortality with Gaussian process classification” [22] presented

at the 25th European Symposium on Articial Neural Networks, Computational

Intelligence and Machine Learning (ESANN 2017), in which we looked at data

from the first postnatal 24 hours. Here the analysis has been extended to six

different time periods ranging between the first 12 and 72 postnatal hours, three70

different kernels have been used with the GP classifier, and the classification

performance has been compared to other classifiers.

2. Materials and methods

2.1. NICU database

The NICU at Helsinki University Hospital has been collecting patient data75

in a database since 1999. Data include measurements of clinical parameters

such as oxygen saturation by pulse oximetry (SpO2) and supplemental oxygen

levels, observations made by staff, and clinical outcomes. Our study cohort

includes 2059 Very Low Birth Weight (VLBW) infants (birth weight <1500 g)

admitted between 1999–2013. Median gestational age at birth was 202 days80

(H28+6 weeks) and median birth weight was 1102 g.

The NICU database contains data recorded from equipment interfaces, as

well as notations made by hand. Automatically gathered data consists of 111

different variables taken from monitor outputs of equipment used in the NICU.

As the monitoring equipment and clinical guidelines have varied during the 1585

year period under which the data has been stored, not all data is available for

all 2059 patients.

2.2. Preprocessing and feature extraction

For the experiment, we decided to study the first 72 hours from delivery

to see whether the time series data gathered during that period has predictive90
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power. Most in-hospital deaths occur within the first week; median in this

dataset is 5 days. There are 598 patients in the dataset for whom there is

complete data from the first 72 hours of their NICU stay for each of these seven

variables: gestational age at birth, birth weight, systolic, mean, and diastolic

arterial blood pressure, heart rate measured by electrocardiography (ECG), and95

SpO2. If for some sensor signal there were only a few measurements available,

the patient data was considered incomplete. Patients that died before the end

of 72 hour period were excluded as well. The in-hospital mortality rate of this

subset is 9% (53 patients), which is also the mortality rate in the full cohort.

In addition to the full 72 hour period, we also looked at the first 12, 18, 24, 36,100

and 48 hour periods.

The data was preprocessed by removing out-of-range values caused by, for

example, misplaced or removed sensors and monitoring equipment drifting out

of calibration from the time series.

For feature extraction, mean and standard deviation were calculated from105

each of the following time series for each patient: systolic, mean, and arte-

rial blood pressure, ECG heart rate, and SpO2. SNAP-II score, SNAPPE-II

score, gestational age at birth, and birth weight were directly used as features.

We chose not to use any more complicated features such as signal derivatives,

because the signals streams were very sparse and noisy, and reliably estimat-110

ing the signal derivatives would have required us to use Kalman filter type

of methods [15], which we wanted to avoid at this stage in order to keep the

preprocessing simple and robust.

2.3. Gaussian process classifier

We used a GP [7] classifier with a probit measurement model:115

f(x) ∼ GP(0, k(x,x′)), p(yi | f(xi)) =

∫ yi f(xi)

−∞
N(z | 0, 1) dz, (1)

where the classes are labeled as yi ∈ {−1, 1}. This choice of the measurement

model is standard in GP literature [7] and is supported by most GP software

packages such as the GPstuff Toolbox [23].
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The kernel was a sum of squared exponential (or radial basis function) kernel,

linear kernel, and constant kernel:120

k(x,x′) = σ2
se exp

(
−1

2
(x− x′)T Λ−1 (x− x′)

)
+ xT Σx′ + σ2, (2)

where Λ = diag(l21, . . . , l
2
d) and Σ = diag(σ2

1 , . . . , σ
2
d). The rationale behind

this kernel choice is that the constant and the linear parts of the kernel aim at

capturing the bias and the linear trend in the problem, respectively. In order

to capture the non-linear effects, we add the squared exponential kernel with

the automatic relevance determination prior, which is a commonly used general125

covariance function in Gaussian process regression [7]. This kind of 3-part co-

variance functions have also been recently used in medical applications [24, 25].

For comparison purposes, we also used the Matérn kernel with ν = 3/2

(M32) and ν = 5/2 (M52) [7, 23, 24, 25] replacing the squared exponential

kernel in the 3-part kernel:130

kν=3/2(x,x′) = σ2
m(1 +

√
3‖x− x′‖) exp(−

√
3‖x− x′‖) (3)

kν=5/2(x,x′) = σ2
m(1 +

√
5‖x− x′‖+

5‖x− x′‖2

3
) exp(−

√
5‖x− x′‖) (4)

For training the classifier we used the GPstuff Toolbox [23] with Laplace

approximation on the latent variables and circular composite design (CCD) in-

tegration over the hyperparameters. The CCD method has advantages over, for

example, marginal likelihood maximization due it better handling of uncertainty.135

In particular, the method approximates the integration over the hyperparame-

ters instead of using a plug-in point-estimate, which ensures that the uncertainly

is computed in a proper Bayesian way.

In order to evaluate the performance of the classifiers we used stratified 8-fold

cross-validation (CV) which takes the class priors into account when forming140

the partitions. Cross-validation was used to estimate the classification accuracy,

precision, specificity, and sensitivity as well as receiver operating characteristic

(ROC) curve [26] and the area under the ROC curve (AUC) [27]. In order to

reduce the variance of CV, we repeated each CV run 8 times and averaged the

results.145
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2.4. Comparison with other classifiers

We used the following classifiers in comparison with the GP classifier:

• SNAP-II/SNAPPE-II thresholding. Thresholding using only the SNAP-

II or SNAPPE-II scores (one at a time) was used to classify the patients.

The class boundary was set using one of two rules. In the first case, the150

maximum accuracy achieved with the training set was used to set the

class boundary. In the second case, the maximum value of the Youden

index [28] was used. This gave us four different rule-score combinations.

• Support vector machine classifier. A linear SVM classifier [8] was used as

the classifier and the posterior probability estimates were obtained with155

Platt scaling [9]. The ROC curve was calculated by sweeping the class

boundary from 0 to 1. The prediction was given by setting the class

boundary to 0.5.

• Linear probit model. A linear model with a probit link function was im-

plemented by using a constant plus a linear kernel in a GP classification160

model. The model was trained using the GPstuff Toolbox. The integration

over the hyperparameters was performed using the CCD method [29].

• Random classifier. This classifier assigns the class at random weighted by

class prior probabilities of the training set.

• Majority classifier. This classifier simply assumes that all patients belong165

to the larger (survivor) class.

3. Results

3.1. Classification with SNAP-II and SNAPPE-II scores

First, we tested the performance of the classifiers using only SNAP-II and

SNAPPE-II scores with gestational age at birth and birth weight. Although170

this information is equal to what the scores are traditionally computed from,

as can be seen in Tables 1 and 2, the GP classifier is able to achieve a better
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AUC (0.933) than the clinical standard SNAP-II (AUC 0.860) and SNAPPE-II

(AUC 0.878) scores, with all variants (sum, M32, M52) giving practically the

same result and linear probit classifier at a just slightly lower AUC (0.921).175

Table 1: Reference results. SNAP/SNAPPE = SNAP-II/SNAPPE-II with optimal (cross-

validated) thresholding (A = maximal accuracy, Y = Youden index), Majority = trivial

classifier that assumes all patients survive, Random = class picked at random weighted by

training set class priors. Acc = accuracy, PPV = positive predictive value, Sens = sensitivity,

Spec = specificity, AUC = area under the receiver operating characteristic curve. Values in

parentheses indicate the associated standard error. Results in all tables in descending order

by AUC.
Acc PPV Sens Spec AUC

SNAPPE A 0.914 (0.00) 0.898 (0.05) 0.056 (0.02) 0.998 (0.00) 0.875 (0.00)

SNAPPE Y 0.737 (0.01) 0.248 (0.01) 0.923 (0.02) 0.719 (0.01) 0.875 (0.00)

SNAP A 0.909 (0.00) 0.677 (0.08) 0.062 (0.02) 0.993 (0.00) 0.859 (0.00)

SNAP Y 0.713 (0.01) 0.227 (0.01) 0.895 (0.02) 0.695 (0.01) 0.859 (0.00)

Random 0.839 (0.01) 0.091 (0.02) 0.091 (0.02) 0.913 (0.01) 0.500 (0.00)

Majority 0.910 (0.00) 1.000 (0.00) 0.000 (0.00) 1.000 (0.00) 0.500 (0.00)

Table 2: Results using only SNAP-II, SNAPPE-II, gestational age at birth, and birth weight.
Acc PPV Sens Spec AUC

GP M32 0.918 (0.00) 0.611 (0.04) 0.360 (0.03) 0.974 (0.00) 0.933 (0.00)

GP 0.919 (0.00) 0.618 (0.05) 0.351 (0.03) 0.975 (0.00) 0.933 (0.00)

GP M52 0.919 (0.00) 0.615 (0.04) 0.358 (0.03) 0.974 (0.00) 0.933 (0.00)

Linear 0.914 (0.00) 0.579 (0.05) 0.260 (0.03) 0.978 (0.00) 0.921 (0.00)

SVM 0.907 (0.00) 0.857 (0.06) 0.020 (0.01) 0.994 (0.00) 0.644 (0.01)

Next, we used all available signals with the GP classifier in order to get an

upper bound on the achievable performance. All the available features were

used as classifier inputs, in other words, SNAP-II, SNAPPE-II, gestational age

at birth, birth weight, and the mean and standard deviation of each of the

following: systolic, mean, and diastolic arterial blood pressure, ECG heart rate,180

and SpO2.

Table 3 (all available features) shows GP prediction results using all available

features with three different kernels (sum, M32, and M52). Kernel choice had

a negligible effect. The highest AUC (0.948) was achieved with 48h data and

the sum kernel. All AUC values from predictions with all three kernels for time185

8



periods between 36h and 72h were within 0.007. Shortening the range of time

series data has a slight negative effect on the AUC values, with 12h data and the

sum kernel yielding AUC 0.924. However, as the range decreases, there is a drop

in both positive predictive value (PPV), from 0.708 to 0.598, and sensitivity,

from 0.463 to 0.283. SVM and the linear probit model give similar results to GP190

(Tables 4 and 5) in many of the cases, but with shorter ranges the GP models

give slightly better results.

Table 3: GP prediction results using all available features and three different kernels (sum,

M32, M52).
Acc PPV Sens Spec AUC

48h GP 0.930 (0.00) 0.660 (0.03) 0.463 (0.02) 0.975 (0.00) 0.948 (0.00)

48h GPm32 0.928 (0.00) 0.649 (0.03) 0.445 (0.02) 0.975 (0.00) 0.947 (0.00)

48h GPm52 0.928 (0.00) 0.657 (0.03) 0.442 (0.02) 0.976 (0.00) 0.946 (0.00)

36h GPm32 0.925 (0.00) 0.667 (0.03) 0.391 (0.02) 0.977 (0.00) 0.945 (0.00)

72h GP 0.932 (0.00) 0.708 (0.03) 0.449 (0.02) 0.980 (0.00) 0.942 (0.01)

72h GPm52 0.933 (0.00) 0.717 (0.03) 0.453 (0.02) 0.980 (0.00) 0.942 (0.01)

36h GPm52 0.925 (0.00) 0.669 (0.03) 0.390 (0.02) 0.977 (0.00) 0.942 (0.01)

72h GPm32 0.934 (0.00) 0.727 (0.03) 0.452 (0.02) 0.981 (0.00) 0.942 (0.01)

36h GP 0.924 (0.00) 0.670 (0.03) 0.389 (0.02) 0.977 (0.00) 0.941 (0.01)

24h GPm32 0.918 (0.00) 0.591 (0.04) 0.332 (0.03) 0.976 (0.00) 0.931 (0.01)

24h GPm52 0.919 (0.00) 0.596 (0.04) 0.331 (0.03) 0.977 (0.00) 0.930 (0.01)

18h GPm32 0.920 (0.00) 0.671 (0.03) 0.312 (0.02) 0.981 (0.00) 0.929 (0.01)

24h GP 0.919 (0.00) 0.624 (0.03) 0.335 (0.02) 0.976 (0.00) 0.929 (0.00)

18h GP 0.920 (0.00) 0.655 (0.04) 0.328 (0.02) 0.979 (0.00) 0.928 (0.01)

18h GPm52 0.922 (0.00) 0.682 (0.03) 0.335 (0.02) 0.980 (0.00) 0.928 (0.01)

12h GP 0.915 (0.00) 0.598 (0.04) 0.283 (0.02) 0.977 (0.00) 0.924 (0.01)

12h GPm32 0.913 (0.00) 0.590 (0.04) 0.295 (0.02) 0.974 (0.00) 0.923 (0.01)

12h GPm52 0.913 (0.00) 0.581 (0.03) 0.297 (0.02) 0.974 (0.00) 0.921 (0.01)

Finally, Table 6 shows the results for all non-reference classifiers using all

available features. GP kernel choice had negligible effect. The linear probit

model performs worse than GP with 12h and 18h data. With longer time195

series, GP and the linear probit model have roughly equal performance. Even

the lowest AUC (0.901), given by the SVM classifier with 12h data, is better

than SNAP-II/SNAPPE-II thresholding (AUC 0.859. . . 0.875).
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Table 4: SVM prediction results using all available features.
Acc PPV Sens Spec AUC

36h 0.931 (0.00) 0.708 (0.03) 0.443 (0.02) 0.979 (0.00) 0.947 (0.00)

48h 0.931 (0.00) 0.725 (0.03) 0.433 (0.02) 0.980 (0.00) 0.943 (0.00)

24h 0.923 (0.00) 0.665 (0.03) 0.340 (0.02) 0.981 (0.00) 0.930 (0.01)

72h 0.931 (0.00) 0.746 (0.03) 0.384 (0.02) 0.984 (0.00) 0.924 (0.01)

18h 0.918 (0.00) 0.692 (0.04) 0.259 (0.02) 0.984 (0.00) 0.922 (0.00)

12h 0.910 (0.00) 0.564 (0.04) 0.182 (0.02) 0.982 (0.00) 0.901 (0.01)

Table 5: Linear model prediction results using all available features.
Acc PPV Sens Spec AUC

48h 0.926 (0.00) 0.645 (0.02) 0.463 (0.02) 0.971 (0.00) 0.949 (0.00)

36h 0.924 (0.00) 0.652 (0.03) 0.402 (0.02) 0.975 (0.00) 0.949 (0.00)

72h 0.934 (0.00) 0.720 (0.03) 0.475 (0.02) 0.979 (0.00) 0.944 (0.00)

24h 0.919 (0.00) 0.610 (0.04) 0.348 (0.02) 0.976 (0.00) 0.931 (0.01)

18h 0.922 (0.00) 0.675 (0.04) 0.326 (0.02) 0.981 (0.00) 0.927 (0.01)

12h 0.913 (0.00) 0.583 (0.04) 0.279 (0.02) 0.976 (0.00) 0.916 (0.01)

3.2. Classification with reduced feature sets

To find out how the classifiers perform with reduced feature sets, we tested200

the classifiers without SNAP-II and SNAPPE-II scores (Table 7) and finally

with sensor signals only (dropping also gestational age at birth and birth weight,

Table 8).

Without SNAP-II/SNAPPE-II, the linear probit model and GP perform

equally well with time periods of at least 36h (AUC 0.943. . . 0.946). All classifiers205

outperform the reference results (Table 1), with the exception of SVM with

12h data (AUC 0.874) which achieves a result comparable with SNAPPE-II

thresholding.

Table 8 shows prediction results using only time series data. The best classi-

fier is GP (all kernels) with 48h data (AUC 0.925. . . 0.926) but linear classifiers210

with 48h and 72h data as well as GP with 72h data perform almost equally

well. Whereas the GP kernel choice is again practically immaterial, both AUC

and sensitivity increase as the time series grows longer, AUC from 0.787 (12h

data, M32 kernel) to 0.926 (48h data, sum kernel). Interestingly, 72h data gives

slightly lower AUC values than 48h data (AUC 0.915. . . 0.919 vs. 0.925. . . 0.926),215
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Table 6: Prediction results using all available features. Comparison of GP, SVM, and linear

probit model.
Acc PPV Sens Spec AUC

48h Linear 0.926 (0.00) 0.645 (0.02) 0.463 (0.02) 0.971 (0.00) 0.949 (0.00)

36h Linear 0.924 (0.00) 0.652 (0.03) 0.402 (0.02) 0.975 (0.00) 0.949 (0.00)

48h GP 0.930 (0.00) 0.660 (0.03) 0.463 (0.02) 0.975 (0.00) 0.948 (0.00)

36h SVM 0.931 (0.00) 0.708 (0.03) 0.443 (0.02) 0.979 (0.00) 0.947 (0.00)

48h GPm32 0.928 (0.00) 0.649 (0.03) 0.445 (0.02) 0.975 (0.00) 0.947 (0.00)

48h GPm52 0.928 (0.00) 0.657 (0.03) 0.442 (0.02) 0.976 (0.00) 0.946 (0.00)

36h GPm32 0.925 (0.00) 0.667 (0.03) 0.391 (0.02) 0.977 (0.00) 0.945 (0.00)

72h Linear 0.934 (0.00) 0.720 (0.03) 0.475 (0.02) 0.979 (0.00) 0.944 (0.00)

48h SVM 0.931 (0.00) 0.725 (0.03) 0.433 (0.02) 0.980 (0.00) 0.943 (0.00)

72h GP 0.932 (0.00) 0.708 (0.03) 0.449 (0.02) 0.980 (0.00) 0.942 (0.01)

72h GPm52 0.933 (0.00) 0.717 (0.03) 0.453 (0.02) 0.980 (0.00) 0.942 (0.01)

36h GPm52 0.925 (0.00) 0.669 (0.03) 0.390 (0.02) 0.977 (0.00) 0.942 (0.01)

72h GPm32 0.934 (0.00) 0.727 (0.03) 0.452 (0.02) 0.981 (0.00) 0.942 (0.01)

36h GP 0.924 (0.00) 0.670 (0.03) 0.389 (0.02) 0.977 (0.00) 0.941 (0.01)

24h GPm32 0.918 (0.00) 0.591 (0.04) 0.332 (0.03) 0.976 (0.00) 0.931 (0.01)

24h Linear 0.919 (0.00) 0.610 (0.04) 0.348 (0.02) 0.976 (0.00) 0.931 (0.01)

24h SVM 0.923 (0.00) 0.665 (0.03) 0.340 (0.02) 0.981 (0.00) 0.930 (0.01)

24h GPm52 0.919 (0.00) 0.596 (0.04) 0.331 (0.03) 0.977 (0.00) 0.930 (0.01)

18h GPm32 0.920 (0.00) 0.671 (0.03) 0.312 (0.02) 0.981 (0.00) 0.929 (0.01)

24h GP 0.919 (0.00) 0.624 (0.03) 0.335 (0.02) 0.976 (0.00) 0.929 (0.00)

18h GP 0.920 (0.00) 0.655 (0.04) 0.328 (0.02) 0.979 (0.00) 0.928 (0.01)

18h GPm52 0.922 (0.00) 0.682 (0.03) 0.335 (0.02) 0.980 (0.00) 0.928 (0.01)

18h Linear 0.922 (0.00) 0.675 (0.04) 0.326 (0.02) 0.981 (0.00) 0.927 (0.01)

72h SVM 0.931 (0.00) 0.746 (0.03) 0.384 (0.02) 0.984 (0.00) 0.924 (0.01)

12h GP 0.915 (0.00) 0.598 (0.04) 0.283 (0.02) 0.977 (0.00) 0.924 (0.01)

12h GPm32 0.913 (0.00) 0.590 (0.04) 0.295 (0.02) 0.974 (0.00) 0.923 (0.01)

18h SVM 0.918 (0.00) 0.692 (0.04) 0.259 (0.02) 0.984 (0.00) 0.922 (0.00)

12h GPm52 0.913 (0.00) 0.581 (0.03) 0.297 (0.02) 0.974 (0.00) 0.921 (0.01)

12h Linear 0.913 (0.00) 0.583 (0.04) 0.279 (0.02) 0.976 (0.00) 0.916 (0.01)

12h SVM 0.910 (0.00) 0.564 (0.04) 0.182 (0.02) 0.982 (0.00) 0.901 (0.01)

but with better PPV and sensitivity (PPV 0.804. . . 0.813 vs. 0.639. . . 0.645, sen-

sitivity 0.347. . . 0.361 vs. 0.320. . . 0.335). Time periods shorter than 36h do not

give better than reference results with any of the classifiers.

The best SVM result (AUC 0.899, 48h data) equals the performance of GP

and linear classifiers with 36h data, but loses to both with time periods of 48h220

and 72h. SVM performance degrades markedly with 24h and shorter data, not
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beating even the reference (SNAP-II/SNAPPE-II) classifiers.

Table 7: Prediction results using all available features except SNAP-II and SNAPPE-II.
Acc PPV Sens Spec AUC

48h GPm32 0.928 (0.00) 0.680 (0.03) 0.442 (0.02) 0.976 (0.00) 0.947 (0.00)

48h Linear 0.926 (0.00) 0.655 (0.03) 0.464 (0.02) 0.971 (0.00) 0.947 (0.00)

48h GP 0.929 (0.00) 0.678 (0.03) 0.445 (0.02) 0.976 (0.00) 0.946 (0.00)

48h GPm52 0.926 (0.00) 0.668 (0.03) 0.433 (0.02) 0.975 (0.00) 0.946 (0.00)

72h GPm32 0.934 (0.00) 0.735 (0.02) 0.445 (0.02) 0.981 (0.00) 0.946 (0.00)

36h GP 0.922 (0.00) 0.634 (0.03) 0.400 (0.02) 0.973 (0.00) 0.945 (0.00)

36h GPm52 0.922 (0.00) 0.617 (0.03) 0.403 (0.02) 0.973 (0.00) 0.945 (0.00)

36h GPm32 0.923 (0.00) 0.627 (0.03) 0.412 (0.02) 0.973 (0.00) 0.945 (0.00)

72h Linear 0.934 (0.00) 0.705 (0.02) 0.503 (0.02) 0.976 (0.00) 0.945 (0.00)

36h Linear 0.927 (0.00) 0.655 (0.03) 0.457 (0.02) 0.973 (0.00) 0.945 (0.00)

72h GPm52 0.933 (0.00) 0.723 (0.02) 0.448 (0.02) 0.980 (0.00) 0.944 (0.01)

72h GP 0.932 (0.00) 0.713 (0.03) 0.439 (0.02) 0.980 (0.00) 0.943 (0.01)

48h SVM 0.927 (0.00) 0.691 (0.03) 0.413 (0.02) 0.978 (0.00) 0.941 (0.00)

36h SVM 0.930 (0.00) 0.699 (0.03) 0.413 (0.02) 0.981 (0.00) 0.941 (0.00)

24h Linear 0.924 (0.00) 0.639 (0.03) 0.396 (0.03) 0.976 (0.00) 0.931 (0.00)

24h GP 0.921 (0.00) 0.608 (0.03) 0.357 (0.03) 0.977 (0.00) 0.930 (0.00)

24h GPm52 0.919 (0.00) 0.590 (0.03) 0.349 (0.03) 0.975 (0.00) 0.930 (0.00)

24h GPm32 0.918 (0.00) 0.570 (0.04) 0.343 (0.03) 0.975 (0.00) 0.930 (0.00)

18h GPm52 0.921 (0.00) 0.674 (0.03) 0.328 (0.02) 0.980 (0.00) 0.925 (0.01)

18h GPm32 0.921 (0.00) 0.670 (0.03) 0.333 (0.02) 0.980 (0.00) 0.925 (0.01)

18h GP 0.923 (0.00) 0.678 (0.03) 0.345 (0.02) 0.981 (0.00) 0.924 (0.01)

72h SVM 0.932 (0.00) 0.742 (0.03) 0.405 (0.02) 0.984 (0.00) 0.923 (0.01)

18h Linear 0.921 (0.00) 0.659 (0.03) 0.337 (0.02) 0.979 (0.00) 0.920 (0.01)

24h SVM 0.924 (0.00) 0.733 (0.03) 0.306 (0.02) 0.985 (0.00) 0.919 (0.01)

12h GPm32 0.914 (0.00) 0.586 (0.04) 0.258 (0.02) 0.979 (0.00) 0.914 (0.01)

12h GPm52 0.913 (0.00) 0.591 (0.04) 0.253 (0.02) 0.979 (0.00) 0.913 (0.01)

12h GP 0.912 (0.00) 0.562 (0.04) 0.253 (0.02) 0.977 (0.00) 0.912 (0.01)

18h SVM 0.921 (0.00) 0.738 (0.03) 0.259 (0.02) 0.987 (0.00) 0.907 (0.01)

12h Linear 0.915 (0.00) 0.594 (0.04) 0.256 (0.02) 0.981 (0.00) 0.900 (0.01)

12h SVM 0.909 (0.00) 0.622 (0.05) 0.084 (0.01) 0.990 (0.00) 0.874 (0.01)

3.3. The effect of varying input combinations and time series lengths

Figure 1 shows the ROC curves for classifier results using all features, with-

out SNAP-II/SNAPPE-II, and time series data only for the two extremes (12h,225

72h) of time series lengths. The classification performance is improved with

longer time series in all three cases.
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Table 8: Prediction results using only time series data.
Acc PPV Sens Spec AUC

48h GP 0.923 (0.00) 0.640 (0.03) 0.335 (0.02) 0.981 (0.00) 0.926 (0.00)

48h GPm52 0.923 (0.00) 0.639 (0.04) 0.322 (0.02) 0.981 (0.00) 0.925 (0.00)

48h GPm32 0.923 (0.00) 0.645 (0.04) 0.320 (0.02) 0.982 (0.00) 0.925 (0.00)

72h GPm32 0.932 (0.00) 0.813 (0.03) 0.347 (0.02) 0.989 (0.00) 0.919 (0.00)

72h GPm52 0.933 (0.00) 0.820 (0.03) 0.361 (0.02) 0.989 (0.00) 0.917 (0.00)

48h Linear 0.922 (0.00) 0.674 (0.04) 0.315 (0.02) 0.982 (0.00) 0.917 (0.00)

72h GP 0.932 (0.00) 0.804 (0.03) 0.352 (0.02) 0.989 (0.00) 0.915 (0.00)

72h Linear 0.933 (0.00) 0.798 (0.03) 0.360 (0.02) 0.988 (0.00) 0.913 (0.00)

36h GPm52 0.922 (0.00) 0.715 (0.04) 0.261 (0.02) 0.986 (0.00) 0.902 (0.01)

36h GPm32 0.922 (0.00) 0.716 (0.04) 0.259 (0.02) 0.987 (0.00) 0.902 (0.01)

36h GP 0.923 (0.00) 0.734 (0.04) 0.266 (0.02) 0.988 (0.00) 0.900 (0.01)

48h SVM 0.922 (0.00) 0.747 (0.04) 0.261 (0.02) 0.986 (0.00) 0.899 (0.01)

36h Linear 0.923 (0.00) 0.740 (0.04) 0.272 (0.02) 0.987 (0.00) 0.898 (0.01)

72h SVM 0.932 (0.00) 0.863 (0.03) 0.287 (0.02) 0.994 (0.00) 0.892 (0.01)

36h SVM 0.925 (0.00) 0.874 (0.03) 0.213 (0.02) 0.995 (0.00) 0.881 (0.01)

24h GPm32 0.918 (0.00) 0.701 (0.05) 0.194 (0.02) 0.990 (0.00) 0.868 (0.01)

24h GPm52 0.917 (0.00) 0.690 (0.05) 0.194 (0.02) 0.989 (0.00) 0.864 (0.01)

24h GP 0.919 (0.00) 0.703 (0.04) 0.208 (0.02) 0.989 (0.00) 0.857 (0.01)

24h Linear 0.917 (0.00) 0.665 (0.05) 0.186 (0.02) 0.989 (0.00) 0.857 (0.01)

18h GPm52 0.921 (0.00) 0.788 (0.04) 0.191 (0.02) 0.994 (0.00) 0.846 (0.01)

18h GPm32 0.920 (0.00) 0.796 (0.04) 0.181 (0.02) 0.994 (0.00) 0.845 (0.01)

18h GP 0.921 (0.00) 0.789 (0.04) 0.186 (0.02) 0.994 (0.00) 0.844 (0.01)

18h Linear 0.914 (0.00) 0.714 (0.04) 0.145 (0.02) 0.991 (0.00) 0.831 (0.01)

12h GP 0.914 (0.00) 0.737 (0.05) 0.101 (0.01) 0.994 (0.00) 0.799 (0.01)

24h SVM 0.912 (0.00) 0.798 (0.04) 0.089 (0.01) 0.994 (0.00) 0.793 (0.01)

12h GPm52 0.914 (0.00) 0.734 (0.05) 0.102 (0.01) 0.993 (0.00) 0.791 (0.01)

12h GPm32 0.913 (0.00) 0.727 (0.05) 0.101 (0.01) 0.993 (0.00) 0.787 (0.01)

12h Linear 0.910 (0.00) 0.701 (0.05) 0.076 (0.01) 0.992 (0.00) 0.779 (0.01)

12h SVM 0.910 (0.00) 0.969 (0.02) 0.000 (0.00) 0.999 (0.00) 0.669 (0.02)

18h SVM 0.909 (0.00) 0.935 (0.03) 0.012 (0.01) 0.999 (0.00) 0.597 (0.02)

Figure 2 shows the effect of varying the length of the time series. Increasing

time series length improves the prediction result up to 48h for GP and the linear

model. There is no marked difference between the 48h and 72h predictions.230

SVM performance peaks at 32h.

Using only time series data AUC is initially low, surpassing that of the

SNAP-II/SNAPPE-II combination with 36h and longer time series. The best

AUC was achieved with 48h data. Using the full 72h time series results in
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Figure 1: ROC curves for 12h and 72h classifiers. The ROCs of SNAP-II, SNAPPE-II, and

the random classifier are also shown. Top row: all available features. Middle row: time series

data + GA + BW. Bottom row: time series data only.

slightly lower AUC scores. The addition of GA and BW improves the result235

with short time series (12h and 18h), but has little effect with 24h and longer
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Figure 2: AUC values for different time series lengths. Top left: all variables. Top right: time

series data with GA and BW. Bottom: time series data only.

time series.

4. Discussion

In another study [30], birth weight alone was found to have AUC 0.74 and

gestational age alone had AUC 0.71. Both were inferior to the Clinical Risk240

Index for Babies (CRIB) [31], which had AUC 0.82. CRIB-II [32] was also

found to have inferior predictive power at AUC 0.69. A comparison study of

CRIB-II and SNAPPE-II [21] found the two scores performing equally well, with

CRIB-II AUC 0.913 (SE 0.014) and SNAPPE-II AUC 0.907 (SE 0.012), while

another comparison study [33] found CRIB (AUC 0.90) and CRIB-II (AUC245

0.91) superior to SNAPPE-II (AUC 0.84, which is close to our SNAPPE-II

thresholding result).
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While our best prediction results were achieved using all available variables,

adding SNAP-II and SNAPPE-II to time series data with gestational age and

birth weight did not markedly improve the results. This is not surprising given250

that both scores are influenced by GA and BW to a great extent.

Both GP classification and the linear probit model gave practically identical

results with time series of 36h and longer. With time series data only, GP and

the linear probit model lose to SNAP-II/SNAPPE-II thresholding with 12h and

18h data, achieve roughly equal performance with 24h data, and beat them with255

36h and longer time series, as does SVM. However, SVM performs significantly

worse than SNAP-II/SNAPPE-II with 12h to 24h data.

In Figure 2 there is a slight drop in performance when using 72h data instead

of 48h data. Although this may look surprising, it could be explained by the

fact that the feature computations did not explicitly take the length of the time260

interval into account. It is thus possible that by, for example, liming the feature

computations to the end of the time series or by taking the length of the time

interval otherwise into account could improve the predictions.

The highest sensitivity achieved was 0.475 for the linear probit model using

all variables with 72h data. GP sensitivies varied from 0.283 to 0.453 using all265

variables, dropping down markedly (0.101. . . 0.361) with only time series data.

It is worth noting that low sensitivities of predictions do not necessarily mean

that the clinical value of the predictions is low. From the clinical viewpoint,

specificity is more important than sensitivity when predicting mortality. If the

clinicians suspect that there is a high risk that the preterm infant will die,270

this can affect decisions to perform risky operations or start resource-intensive

treatments. These kinds of decisions require careful consideration of the clinical

situation and never rely on a single factor, such as predictive models. The goal

is to have as high specificity as possible to avoid withholding treatment.

The prediction of in-hospital death in itself is not something that would be a275

major factor in how to treat the patient, but it can be useful in deciding whether

to use some heavy means of care such as complex operations which themselves

can be a risk to the patient. For that reason we have chosen to use data from

16



the early phase of the NICU stay. In the early stages the medical personnel

have not yet been able to form a complete view of the patient’s state.280

5. Conclusions

Time series data from the initial hours of a preterm infant’s intensive care

unit stay can be used to improve the accuracy of existing methods for predicting

in-hospital death. A Bayesian Gaussian process classifier can be used to create

a predictive model. Combining features extracted from time series data with285

clinical scores calculated on arrival gives classification results in excess of clinical

standards. Using only time series data gives results comparable with existing

clinical standards, given a long enough time series.

As current NICU patient data systems already collect sensory data used

in this paper, predictive modeling could be included in the care process to290

give physicians advance warning of increased risk of in-hospital death. The

model already outperforms existing methods in our retrospective cohort and

with further refinement could prove to be a valuable clinical tool.
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