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Abstract—In this paper, we present an UHF RFID location 

tracking system, which is based on measuring the phases of 
backscattered signals from RFID tag using multiple spatially 
distributed antennas at a single carrier frequency. The 
wavelength ambiguity of the phase measurements is resolved by 
using the extended Kalman filter (EKF) and the Rauch-Tung-
Striebel (RTS) smoother, where the state includes the position, 
velocity and the phase offsets of antennas. The performance of 
the method is experimentally verified at 890 MHz using a 
commercially available RFID reader. 
 

Index Terms—RFID, tracking, transponders, wireless sensors, 
extended Kalman filter, RTS smoother 
 

I. INTRODUCTION 

UTURE ubiquitous sensing, manufacturing, and 
computing systems will necessitate automatic location 

sensing. Examples include indoor localization of people (e.g., 
customers in a mall, medical personnel and patients in a 
hospital, and first responders and victims in a rescue 
operation) and asset tracking (e.g., products in a warehouse 
and equipment and machinery in a laboratory or a workshop). 

Location sensing utilizes typically microwaves, visible light 
or infrared [1]–[3], or sound [4]. The advantages of 
microwaves over other sensing principles include long range 
(e.g., the GPS), operation in dark and adverse conditions, 
immunity to wind, and no need for a line-of-sight between the 
object and the sensing system. Reviews of location sensing 
systems can be found in [5]–[7]. 

RFID is almost exclusively used for identification, but 
could offer several advantages as a short range location 
sensing system. RFID tags are very inexpensive and offer 
sophisticated features including non-volatile memory and anti-
collision protocols. In addition, reader infrastructure already 
exists in many locations. 

RFID has been traditionally used for proximity location 
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sensing. Enhanced accuracy is obtained estimating the 
distance from the signal attenuation, that is, using the received 
signal strength indicator (RSSI) [8]–[11]. In the RSSI-based 
methods, only free space attenuation is assumed and other 
unknown attenuation mechanisms affecting the signal level, 
such as polarization mismatch, multipath propagation and 
antenna gain variation due to tag alignment cause large 
distance errors. 

The phase of the backscattered signal can also be exploited 
for enhanced positioning accuracy, see for example a review 
of RFID phase-based location methods [14]. The phase-based 
positioning methods can be divided into time-, frequency-, and 
spatial domain (TD, FD, SD) methods. The time-domain 
methods can solve the axial velocity of the tag based on the 
Doppler-frequency (phase-difference of the backscattered 
signal at different time instants). However, the method does 
not give information on the absolute position of the tag. 

In frequency-domain methods, the distance of an RFID tag 
is measured by sweeping the carrier frequency [12]. An 
accurate distance measurement, however, necessitates a 
bandwidth that does not comply with the frequency 
regulations set for RFID in Europe (865 MHz – 868 MHz) 
[13]. 

Spatial domain methods exploit spatially diverse antennas 
and beam-forming for solving the tag’s location. Narrow-band 
beam-forming techniques, however, suffer from the position 
ambiguity due to unknown number of full wavelengths. In 
narrow-band systems, such as in UHF RFID, spatial methods 
can only be used to measure the direction to the tag, but not 
the distance. In this paper, we present an RFID-based tracking 
system, which operates using phase measurements from 
multiple spatially distributed reader antennas at a single 
frequency. The phase ambiguity biases (that is the unknown 
number of full wavelengths between the object and the reader) 
related to continuous wave (CW) measurements are solved by 
applying a state-space model using the position, velocity and 
the phase offsets as components. The estimation of the whole 
state trajectory is then performed with extended Kalman filter 
(EKF) and Rauch-Tung-Striebel (RTS) smoother (see, e.g., 
[15], [16]). The method combines the spatial- and time-
domain positioning techniques utilizing a dynamical model for 
the target and can thus provide both the velocity and absolute 
position of the tag, which cannot be solved using any single 
positioning method. It is also straightforward to exploit broad-
band measurements (frequency domain) with the method if 
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needed. 
The tracking system is being developed for purposes of 

biological studies aiming to follow the activity and 
movements of a butterfly called Granville Fritillary (Melitaea 
cinxia) in an indoor cage. The first generation of the UHF 
RFID-based butterfly tracking system is presented in [10] and 
a photograph of a butterfly equipped with a UHF RFID 
transponder is shown in Fig. 1. In addition to insect tracking 
for biological studies, the system could be used in various 
other applications including indoor positioning and asset 
tracking. 

 

 
Fig. 1. A butterfly equipped with an UHF RFID transponder. 

 
Several remote sensing and telemetric insect tracking 

techniques have been developed for the demands of biological 
and agricultural studies [17]. The proposed techniques include 
radar, video graphic and other optical techniques, X-ray 
imaging, and passive and active acoustical techniques. One of 
the most common techniques is the secondary or harmonic 
radar [18], in which the tracked objects are equipped with a 
passive transponder that scatters harmonic products of radar 
signal. Harmonic radar for insect tracking is discussed in [19]–
[21] and the concept is also utilized in other wireless sensors 
[22]–[25]. 

An advantage of the RFID tracking principle over almost all 
other insect tracking techniques is that RFID can be used to 
track and identify multiple targets simultaneously. In addition, 
the RFID-based location sensing system is realized in a 
straightforward way using commercially available RFID 
reader. 

II. LOCATION SENSING SYSTEM 

The location sensing system consists of spatially distributed 
RFID reader antennas in known locations. Each antenna 
measures the complex response of the tag (phase and 
amplitude of the modulated backscatter). When the tag moves 
relative to the antennas, its position is solved using a state 
space model for the target. 

A. Spatial Response of the Tag 

Consider isotropic and identical RFID reader antennas at 
fixed positions aaaa� and an RFID tag, whose position at a time � 
is pppp���. The reader illuminates the tag by a continuous wave 
(CW) from one antenna at a time and the tag produces 
modulated backscattering by alternating its reflection 
coefficient. Assuming an isotropic tag antenna and the free-
space attenuation to the signal and neglecting possible 
multipath propagation effects and polarization mismatch, the 
measured modulated response of the tag from ith antenna is 
given as 
 

Δ�	��
� � �
|pppp�t���aaaa�|� ���
��� |pppp�t���aaaa�| � �	��
�, (1) 

 
where �� is a complex gain constant, � is the angular 
frequency, � is the speed of light, and �	 is a noise term. 

B. Estimating Pseudo-Distances from Phase 

 If we assume that the measurement noise is small, we can 
compute an estimate of the distance from the instantaneous 
phase 
 

∠Δ�	��
� � � � 
! "p(t
� � a�" � 2$%	, (2) 

 
where %	 is the unknown number of multiples of a half of the 
wave length. Solving for the distance &	 between the ith 
antenna  and the tag at �
 gives 
 

&	��
� � "p(t
� � a�" � � !
� ∠Δ�	��
� � !'() , (3) 

 
where the integer %	 is unknown. Assuming that the speed of 
the tag does not exceed */�2��
,- � �
�� (i.e., the tag is not 
displaced more than half wavelength between adjacent 
measurements) we can compute an estimate of the distance, or 
the pseudo-distance using the following recursion:  
 

&./��
� � &./��
�-� � !
� ∠ 0 12)�3��12)�3�45�6. (4) 

 
The recursion can be started from some guess of the initial 
position 8/���� as follows: 
 &./���� � "8/(t�� � a�". (5) 
 
The computed pseudo-distance will then have an unknown 
offset 9	 with respect to the actual distance: 
 &./��
� � "p(t
� � a�" � 9	 . (6) 
 

Actually, the constant is of the form 9	 � !':)  where ;	 is an 

antenna-specific integer, but we shall simply consider it as a 
constant real number.  
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C. State Space Model for Dynamic Tracking 

 
 Consider the following Wiener velocity model or 
continuous white noise acceleration (CWNA) model [15]: 
 
<�8�3�
<3� � =>���, (8) 

 
where =>��� is a continuous time white noise process with 
spectral density @> � ABC, where the constant AB models the 
assumed amount of  perturbations on the path. By introducing 
the temporally varying velocity D��� � 	F8�t� F�⁄ , the model 
can be written in the following state space form: 
 
<
<3 H8���D���I � 	 JK CK KL H8���D���I � JKCL	=>���. (9) 

 
Although the biases 9	 remain constants from physical 
grounds, they are modeled as variables with a random walk 
(Brownian motion). This approach is chose to assure the 
convergence of the estimation across phase wraps.The biases 
at different time instants are related by 
 <M)�3�<3 � NM	���, (10) 

 
where NM	��� is a continuous time white noise process with 
(small) spectral density AM. Let’s now define state O��� as 
follows (here F � 2 for 2d-tracking and F � 3 for 3d): 
 O��� � �Q-, … , Q< , 9-, … , 9S, T-, … , T<�. (11) 
 
In terms of the state, the dynamic model and measurement 
model can be combined into the following continuous-discrete 
state space model: 
 <O�3�
<3 � UO��� � V=���  

&./��
� � ℎ	XO��
�Y � Z	 , (12) 
 
where [ � 1,… , ], (and ] is the number of the reader antenna) 
and Z	 is Gaussian noise related to the measurements. 
 

U � ^K ⋯ C⋮ ⋱K Kb      V � JKCL, 	
ℎ	�O� � |p� a�| � 9	 (13)	
 
and =��� is a white noise process with spectral density @ � diag�AM , … , AM , AB , … , AB�.	 

D. Estimating the Initial Position of the Tag 

The initial position of the tag is estimated using the received 
signal attenuation indicator (RSSI), although other estimation 
methods are possible too. According to our experiments, even 
a very coarse initial position estimate is sufficient. The 
algorithm rapidly converges to the correct place if the center 
of the tracking area is used as the initial position and the 

covariance matrix is set to represent a Gaussian distribution 
covering the whole observation area. 

In our experiments, the initial position is estimated from 
logarithmic received signal strength assuming free-space 
propagation conditions. The position is calculated as 

 

minp∑ iln J �
|p�k)|� ∙ -|2)|Lm
�

	 , (14) 

 
where �� is a gain constant, pppp is the initial position, k	 is the 
position of the ith reader antenna, and �	 is the measured 
response of the tag. Logarithmic least squares estimation is 
chosen because it provides better accuracy than a linear least 
squares fit under multipath propagation conditions. 

E. Estimating the Trajectory of the Tag 

The state-space model is converted into more compatible 
form by forming a weak solution to the stochastic differential 
equation at the measurement steps as 

 n
 � �U∆3� 	
p
 � q �U�∆3��r�V@Vs�Us�∆3��r�∆3�K Ft, (15) 

 
where ∆�
 � �
,- � �
. Let us also combine the 
measurements from individual antennas into a single vector u
 � �&-/��
�, … , &S/��
��, and further define v�O� ��ℎ-�O�,… , ℎS�O�� and w � �Z-, … , ZS�. Then, the model can be 
written as a standard discrete-time non-linear Gaussian state 
space model 

 O��
,-� � n
O��� � =
,		  =
~N�K,p
� 		u
 � vXO��
�Y � z. (16) 
 

The standard state estimation algorithms such as extended 
Kalman filter (EKF) and Rauch-Tung-Striebel (RTS) 
smoother can be used for estimating the state from the 
measurements. Note that perfectly concurrent measurements 
form different antennas are assumed for simplicity. The 
extension to the non-synchronized case is straightforward. 

The EKF algorithm processes the measurements one at a 
time and at each measurement, performs the following 
prediction and update steps for each { � 1,2,3, …: 
 
Prediction: 
 O|���
� � n
�-O|��
�-� 	}���
� � n
�-}��
�-�n
�-~ �p
�- (17) 
 
Update: 
 �
 � ��XO|���
�Y}���
���~XO|���
�Y � σ�C 	�
 � }���
���~XO|���
�Y�
�- 	O|��
� � O|���
� � �
[u
 � vXO|���
�Y] 	}��
� � }���
� � �
�
�
~  (18)	
 
where ���O� denotes the Jacobian matrix of v�O�. The initial 
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estimate O|���� and its covariance }���� encode the prior 
information about the initial position.  
 
The EKF only computes causal estimates, which means that 
the estimates are conditioned only on the previous and current 
measurements, not on the measurements obtained after a given 
step {. After obtaining a set of measurements u-, … , u( it is 
also possible to compute MMSE estimate of the whole 
trajectory, which is conditioned on all the measurements: 
 O| S��
� � E[O��
�	|	u-, … , u(], (19) 
 
where % is the number of measurements. The estimate can be 
computed with the Rauch-Tung-Striebel smoother (see, [16]). 
Because the estimates are conditioned on the whole set of 
measurements, it provides higher precision than the filtering 
estimates. After the filtering estimates have been computed, 
the smoothed state estimate and its covariance can be 
computed with the following backward recursion for { � % �1,… ,0: 
 O|���
,-� � n
O|��
� 	}���
,-� � n
}��
�n
~ �p
 	�
 � }��
�n
~ [}���
,-�]�- 	O| S��
� � O|��
� � �
[O| S��
,-� � O|���
,-�] 	}S��
� � }��
� � �
[}S��
,-� � }���
,-�]�
~ (20) 
 
The recursion is started from the filter results at the last time 
step: O|S��(� � O|��(�, }S��(� � }��(�. 

When the data set is limited and the assumed initial position 
differs significantly from the true initial position, it is possible 
that the bias estimation does not converge close enough to the 
true bias during one run of the filter and the smoother. Then, it 
is possible to iteratively run the filter and smoother back and 
forth until the change in the bias between adjacent iterations is 
below a predetermined threshold value. 

The used linear model for the target dynamics and relatively 
simple measurement model are suitable for the basic EKF. If 
nonlinear model for the dynamics or other type of 
measurement than phases should be incorporated, the tracking 
could be realized using unscented Kalman filters [26], [27], 
more general Gaussian integration based filters [28], [29] or 
corresponding smoothers [30], [31] in the estimation instead. 

III.  EXPERIMENTS 

A. Measurement Setup 

The UHF RFID based location sensing system is tested in 
an anechoic chamber before an installation in the indoor 
butterfly cage. Four reader antennas (SPA 8090/75/8/0/V, 
Huber Suhner, Switzerland) are located at the corners of a 
square with 3 m face length. The antennas are 1.5 m above 
floor and they are directed towards the center of the square. 

The tracked RFID tag (Dogbone, UPM RFID, Pirkkala, 
Finland) is mounted on a movable stand at 1.5 m height. The 
tag is moved by manually sliding the stand along a predefined 
trajectory marked on the floor. 

The response of the tag from each antenna is measured at 
890 MHz with an RFID reader (INfinity™ 510 UHF Reader, 
Sirit Inc., Toronto, Canada). An average read-out speed of the 
reader is 400 times per second (100 read-outs per second from 
each reader antenna). Fig. 2 shows a schematic layout and Fig. 
3 a photograph of the measurement setup. 

 

 
Fig. 2. Measurement setup for tracking an object equipped with an RFID tag. 

 

 
Fig. 3. Photograph of the measurement setup in an anechoic chamber. 

B. Measured Response of the Tag 

Fig. 4 shows the pseudo-distances of the tag from different 
reader antennas during one experiment. The pseudo-distances 
have been calculated from the raw phase measurements using 
the procedure described in Section II.B and thus they contain 
an unknown constant offset. The pseudo-distances from 
different antennas change smoothly in time and no 
discontinuities due to possible phase-wraps are seen. 
Furthermore, no significant random noise can be observed on 
the curves. 
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Fig. 4. Pseudo-distances (with unknown constant bias) of the tag from 
different antennas during one measurement. 

 
In this experiment the tag was moved along the coordinate 

lines shown in Fig. 5. The solid blue line in Fig. 5 shows the 
trajectory obtained with a simple point-wise least squares 
trilateration with the correct initial position. The dashed red 
line shows the same trajectory when the initial position of the 
tag is unknown and assumed to be in the middle of the 
measurement area. As can be seen in the figure, the bias in the 
pseudo-measurement causes a significant non-linear distortion 
to the estimated trajectory even though the initial position is 
only 1 meter off. 

 
Fig. 5. Trajectory of the tag obtained trilateration with correct (solid blue) and 
wrong (dashed red) initial position. 

 

C. Dynamic Tracking Using EKF and Smoother 

Fig. 6 shows the estimates produced by EKF and RTS when 
the initial position is estimated with the RSSI-based method 
assuming a priori standard deviation of 3 meters. As can be 
seen in the figure, the EKF estimate starts approximately at a 

60 cm distance from the true position. As the tag moves, the 
estimate converges towards the correct trajectory and ends 
very close to the true position. The RTS smoother produces a 
better estimate of the early part of the trajectory. The root 
mean squared errors (RMSE) of the EKF and RTS position 
estimates and the intended trajectory are 3.2 cm and 1.5 cm, 
respectively. However, we estimate that the RMSE between 
the intended trajectory and the true trajectory is in the order of 
1 – 2 cm due to the inaccurate manual movement of the tag. 

 
Fig. 6. Experiment 1: trajectories obtained with the EKF (dot dashed red) and 
RTS smoother (dashed blue) after single iteration. 

 
As discussed in Section II.E, the estimates of EKF and RTS 

can be improved by setting the initial mean position of filters 
and smoothers to the estimate produced by RTS on the first 
round and re-running the algorithms. Fig. 7 shows the results 
after this iteration. As can be seen in the figure, the EKF 
estimate is still slightly biased in the beginning due to the 
remaining inaccuracy of the initial position, but it quickly 
converges to the right trajectory. The RMSEs of EKF and RTS 
were roughly 2.2 cm and 1.5 cm after this second iteration and 
further iterations did not significantly decrease the error. 
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Fig. 7. Experiment 1: trajectories obtained with the EKF (dot dashed red) and 
RTS smoother (dashed blue) after the second iteration. 

The accuracy provided by the proposed method is compared 
to that of the RSSI-based positioning method of Section II.D. 
The trajectories obtained with the smoother and the RSSI-
based method are shown in Fig. 8. The RMSE of the smoother 
is 1.5 cm and that of the RSSI-method is 35 cm. 

 
Fig. 8. Experiment 1: trajectories obtained with the RTS smoother (after the 
third iteration) and the RSSI-based method. 

D. Obtained Trajectories 

We recorded different sets of measurements and estimated 
the position trajectories using the EKF and RTS smoother. In 
the following Figs. 9-11, we show selected results. In the first 
of these experiments, the actual trajectory coincided with the 
coordinate lines and thus we were able to reconstruct the true 
trajectory in full for visualization and estimation of RMSEs. In 
the other two experiments, the routes are not aligned with the 
coordinate lines, but instead, they pass through reference 
points. The reference points represented with circular markers 
in the figures. 

 

 
 
Fig. 9. Experiment 2: Trajectories obtained with the EKF and RTS smoother 
on the first iteration (left) and on the second iteration (right). The RMSE 
values were 1.9 cm / 1.3 cm for EKF / RTS after the first iteration, 
respectively, and 1.6 cm / 1.3 cm after the second iteration. 
 

 
 
Fig. 10. Experiment 3: Trajectories obtained with the EKF and RTS smoother 
on the first iteration (left) and on the second iteration (right). The RMSE 
values were 5.2 cm / 1.7 cm for EKF / RTS after the first iteration, 
respectively, and 1.7 cm / 1.3 cm after the second iteration. 
 

 
 
Fig. 11. Experiment 4: Trajectories obtained with the EKF and RTS smoother 
on the first iteration (left) and on the second iteration (right). The RMSE 
values were 4.2 cm / 2.0 cm for EKF / RTS after the first iteration, 
respectively, and 1.8 cm / 2.0 cm after the second iteration. 
 

IV.  CONCLUSION 

In this paper we have presented an UHF RFID tracking 
system, which is based on measuring phases of backscattered 
signals at a single carrier frequency from multiple spatially 
distributed antennas. The phase ambiguity arising from the 
usage of single frequency is resolved using a state space 
model for position, velocity and distance offsets, and the states 
in the model are estimated with extended Kalman filter and 
Rauch-Tung-Striebel smoother algorithms. The performance 
of the method was experimentally verified at a carrier 
frequency of 890 MHz and the results indicate an RMS 
accuracy of 1-2 centimeters on a 3 m by 3 m square shaped 
measurement area with 4 antennas in the corners. The 
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deviations are assumed to partly derive from the inaccuracies 
in the manual movement of the tag. 
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