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Abstract—In this paper, we present an UHF RFID location
tracking system, which is based on measuring the pkes of
backscattered signals from RFID tag using multiplespatially
distributed antennas at a single -carrier frequency. The
wavelength ambiguity of the phase measurements igsolved by
using the extended Kalman filter (EKF) and the Raub-Tung-
Striebel (RTS) smoother, where the state includeshé position,
velocity and the phase offsets of antennas. The femance of
the method is experimentally verified at 890 MHz usg a
commercially available RFID reader.

Index Terms—RFID, tracking, transponders, wireless sensors,
extended Kalman filter, RTS smoother

|I. INTRODUCTION

F UTURE ubiquitous sensing, manufacturing,
computing systems will necessitate automatic locati
sensing. Examples include indoor localization dcbgie (e.g.,
customers in a mall, medical personnel and patiémts
hospital, and first responders and victims in acues
operation) and asset tracking (e.g., products imasehouse
and equipment and machinery in a laboratory or &ks¥mp).

Location sensing utilizes typically microwaves,ibis light
or infrared [1]-[3], or sound [4].
microwaves over other sensing principles includegloange
(e.g., the GPS), operation in dark and adverse itons,
immunity to wind, and no need for a line-of-sigletween the
object and the sensing system. Reviews of locatemsing
systems can be found in [5]-[7].

RFID is almost exclusively used for identificatiobut
could offer several advantages as a short rangatidoc
sensing system. RFID tags are very inexpensive cifet
sophisticated features including non-volatile meyreord anti-
collision protocols. In addition, reader infrasture already
exists in many locations.

RFID has been traditionally used for proximity ldoa
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sensing. Enhanced accuracy is obtained estimathmg t
distance from the signal attenuation, that is, gisire received
signal strength indicator (RSSI) [8]-[11]. In th&&R-based
methods, only free space attenuation is assumedotret
unknown attenuation mechanisms affecting the sidgnadl,
such as polarization mismatch, multipath propagatamd
antenna gain variation due to tag alignment cawusgel
distance errors.

The phase of the backscattered signal can alsaieited
for enhanced positioning accuracy, see for exarapleview
of RFID phase-based location methods [14]. The plased
positioning methods can be divided into time-, frecy-, and
spatial domain (TD, FD, SD) methods. The time-domai
methods can solve the axial velocity of the tagedasn the
Doppler-frequency (phase-difference of the backecad

anOsignal at different time instants). However, thetmd does

not give information on the absolute position & thg.

In frequency-domain methods, the distance of arDREh
is measured by sweeping the carrier frequency [11].
accurate distance measurement, however, necessitate
bandwidth that does not comply with the frequency
regulations set for RFID in Europe (865 MHz — 868 M
[13].

Spatial domain methods exploit spatially diverséeanas
and beam-forming for solving the tag’s locationrida-band
beam-forming techniques, however, suffer from tositon
ambiguity due to unknown number of full wavelengths
narrow-band systems, such as in UHF RFID, spatethods
can only be used to measure the direction to thehtat not
the distance. In this paper, we present an RFI2damcking
system, which operates using phase measurements fro
multiple spatially distributed reader antennas atsiagle
frequency. The phase ambiguity biases (that isutii@iown
number of full wavelengths between the object d&redreader)
related to continuous wave (CW) measurements dvedby
applying a state-space model using the positiolgcitg and
the phase offsets as components. The estimatitimeofvhole
state trajectory is then performed with extendetim@a filter
(EKF) and Rauch-Tung-Striebel (RTS) smoother (seg,,
[15], [16]). The method combines the spatial- ammet
domain positioning techniques utilizing a dynamiceidel for
the target and can thus provide both the velogity absolute
position of the tag, which cannot be solved using single
positioning method. It is also straightforward t@lit broad-
band measurements (frequency domain) with the rdetho



needed. A. Spatial Response of the Tag

The tracking system is being developed for purpasles Consider isotropic and identical RFID reader anésnat
biological studies aiming to follow the activity @n fixed positionsa; and an RFID tag, whose position at a time
movements of a butterfly called Granville FritijafMelitaca g p(0). The reader illuminates the tag by a continuousewa
cinxia) in an indoor cage. The first generation of theFUH(CW) from one antenna at a time and the tag prosluce
RFID-based butterfly tracking system is presenteflld] and yqdulated backscattering by alternating its reitect
a photograph of a butterfly equipped with a UHF BRFI coefficient. Assuming an isotropic tag antenna #rel free-

transponder is shown in Fig. 1. In addition to eétseacking
for biological studies, the system could be used/anious
other applications including indoor positioning armdset
tracking.

&

Fig. 1. A butterfly equipped with an UHF RFID trgosder.

Several remote sensing and telemetric insect tngcki

techniques have been developed for the demandslofizal
and agricultural studies [17]. The proposed tealmesginclude
radar, video graphic and other optical techniquésay
imaging, and passive and active acoustical teclesigOne of
the most common techniques is the secondary or dracm
radar [18], in which the tracked objects are eqegpmith a
passive transponder that scatters harmonic prodfctadar
signal. Harmonic radar for insect tracking is dissed in [19]-
[21] and the concept is also utilized in other WEiss sensors
[22]-[25].

An advantage of the RFID tracking principle ovenast all
other insect tracking techniques is that RFID canubed to
track and identify multiple targets simultaneoustyaddition,
the RFID-based location sensing system is realizech
straightforward way using commercially available IRF
reader.

Il. LOCATION SENSINGSYSTEM
The location sensing system consists of spatiadiyiduted

RFID reader antennas in known locations. Each aaten

measures the complex response of the tag (phase
amplitude of the modulated backscatter). When digentoves
relative to the antennas, its position is solvethgis state
space model for the target.

space attenuation to the signal and neglecting itdess
multipath propagation effects and polarization nageh, the

measured modulated response of the tag fitbmantenna is
given as

Ao

2w
Ao -ipttw)-ail
Ip(tn)_ailz e ¢ + gl(tn)!

AY;(ty) = 1)
where 4, is a complex gain constanty is the angular
frequency is the speed of light, argj is a noise term.

B. Estimating Pseudo-Distances from Phase
If we assume that the measurement noise is smallcan
compute an estimate of the distance from the itest@ous
phase
2w
2AY(ty) = —— |p(t) — a;| + 27N, 2
whereN; is the unknown number of multiples of a half o th

wave length. Solving for the distanee between theith
antenna and the tagtgtgives

ctN;

ri(tn) = [p(t,) — & = — - 2AYi(6) + =,

w

®)

where the integeN; is unknown. Assuming that the speed of
the tag does not excedd(2(t,.,, — t,)) (i.e., the tag is not
displaced more than half wavelength between adfacen
measurements) we can compute an estimate of tteandés or
the pseudo-distance using the following recursion:

{ AY;(tn)

AYi(tn—l)}' (4)

f(tn) = 7(th-1) — ié
The recursion can be started from some guess ointtial
positionp(t,) as follows:
fito) = |B(ty) — ail. (5)
The computed pseudo-distance will then have an awkn
offsetb; with respect to the actual distance:

7ty = |p(t,) — a;| + b;. (6)

. k; .
Avdually, the constant is of the forlm = % wherek; is an

antenna-specific integer, but we shall simply cdesiit as a
constant real number.



C. State Space Model for Dynamic Tracking

Consider the following Wiener velocity model
continuous white noise acceleration (CWNA) modél|{1

a’p(t)
dtz = wv(t),

8

or

covariance matrix is set to represent a Gaussistnitition
covering the whole observation area.

In our experiments, the initial position is estisttfrom
logarithmic received signal strength assuming &paee
propagation conditions. The position is calculaied

Ao 1

ming ¥, [ln (Ip—ailz ﬁ)r

(14)

wherew,,(t) is a continuous time white noise process with

spectral densitW,, = q,I, where the constarnt, models the
assumed amount of perturbations on the path. Bgduocing
the temporally varying velocity(t) = dp(t)/dt, the model
can be written in the following state space form:

2B = (¢ HED)+(0) wo. ©

whereA, is a gain constanp is the initial positiona; is the

position of theith reader antenna, and is the measured
response of the tag. Logarithmic least squaresnatitin is

chosen because it provides better accuracy tharearlleast
squares fit under multipath propagation conditions.

E. Estimating the Trajectory of the Tag
The state-space model is converted into more cobipat

Although the biasesh; remain constants from physical form by forming a weak solution to the stochastiftedential

grounds, they are modeled as variables with a randalk
(Brownian motion). This approach is chose to asshe
convergence of the estimation across phase wrapdiEses
at different time instants are related by

dbi(t) _

at Wbi(t)' (10)

wherew,;(t) is a continuous time white noise process witdn = (7A(tn), -, T (tn)),

(small) spectral density,. Let's now define statx(t) as
follows (hered = 2 for 2d-tracking andl = 3 for 3d):

X(t) = (Py, o r Pg» b1y wer Dg, V1, e, Vg)- (12)
In terms of the state, the dynamic model and measent
model can be combined into the following continudiscrete
state space model:

d’;(t” = Fx(t) + Lw(t)

Aty = hi(x(ty) + €

(12)

eqguation at the measurement steps as

An — eFAtn
W, = foAtn eF(Atn—‘r)LQLTeFT(Atn—T) dr, (15)
where At, =t,,; —t,. Let us also combine the

measurements from individual antennas into a singleor
and further define h(x) =
(hi(x%), ..., hs(x)) ande = (€4, ..., €5). Then, the model can be
written as a standard discrete-time non-linear Gaunsstate
space model

x(tn+1) = Anx(t) +wy,
z, = h(x(t,)) + €.

w,~N(0, W;,)
(16)

The standard state estimation algorithms such #&snded
Kalman filter (EKF) and Rauch-Tung-Striebel (RTS)
smoother can be used for estimating the state ftben
measurements. Note that perfectly concurrent measamts
form different antennas are assumed for simplicithe
extension to the non-synchronized case is straigh#frd.

wherei = 1, ..., s, (@nds is the number of the reader antenna) The EKF algorithm processes the measurements ome at

ande; is Gaussian noise related to the measurements.

(7)o

hi(x) = |p— &l + b; (13)

and w(t) is a white noise process with spectral density

Q = diag(‘]b' o qpy Qyy s qv)
D. Estimating the Initial Position of the Tag

The initial position of the tag is estimated usihg received
signal attenuation indicator (RSSI), although otéestimation
methods are possible too. According to our expetis)eeven
a very coarse initial position estimate is suffitie The
algorithm rapidly converges to the correct placéhd center
of the tracking area is used as the initial positand the

time and at each measurement, performs the folepwin
prediction and update steps for eack 1,2,3, ...:

Prediction:

b (tn) = An—lﬁ(tn—l)

P_(tn) = An—lp(tn—l)A:L—l + W, (17)
Update:

S, = H (R (t))P~ (6 )HE (R (tn)) + 01

K, = P~ (t,)HI (R (t,))S:*

ﬁ(tn) =% (tn) + K, [Zn - h(ﬁ_ (tn))]

P(tn) = P_(tn) - KnSnKE (18)

whereH,(x) denotes the Jacobian matrixlofx). The initial



estimateX(t,) and its covarianceP(t,) encode the prior  The response of the tag from each antenna is nmeshsur
information about the initial position. 890 MHz with an RFID reader (INfinity™ 510 UHF Resad
Sirit Inc., Toronto, Canada). An average read-paes of the
The EKF only computesausal estimates, which means thatreader is 400 times per second (100 read-outsggensd from
the estimates are conditioned only on the prevamdscurrent each reader antenna). Fig. 2 shows a schematiatlayal Fig.
measurements, not on the measurements obtainechafieen 3 a photograph of the measurement setup.
stepn. After obtaining a set of measuremenis...,zy it is
also possible to compute MMSE estimate of the whol
trajectory, which is conditioned on all the measweats:

Reader
R5(tn) = E[x(t) | 24, .., Zn], (19) antenna

whereN is the number of measurements. The estimate can )
computed with the Rauch-Tung-Striebel smoother, (Ees3). r‘z;‘; ::
Because the estimates are conditioned on the wdstleof T M
measurements, it provides higher precision thanfittexing
estimates. After the filtering estimates have beemputed, Computer
the smoothed state estimate and its covariance bmn
computed with the following backward recursion fioe N —

1,..,0: Anechoic
chamber

N |
I
I
I

R (the1) = AR(ty)

P~ (tns1) = A P(t)A] + W,

G, = P(t,)AR [P (£ )]

R(tn) = R(ty) + Gu[R°(tns1) — X (tnet)]

Pi(t,) = P(t) + Gu[P*(tns1) — P~ (tns1)]1Gh (20)

The recursion is started from the filter resultgheg last time
step:R°(ty) = X(ty), P (ty) = P(ty). Reader

When the data set is limited and the assumed lipitisition antenna
differs significantly from the true initial positig it is possible
that the bias estimation does not converge closaginto the
true bias during one run of the filter and the sthen Then, it
is possible to iteratively run the filter and sntoeat back and
forth until the change in the bias between adjaiterdtions is

below a predetermined threshold value. Tréjcctory B
The used linear model for the target dynamics afatively drawn on

simple measurement model are suitable for the HasIe. If coordinate

nonlinear model for the dynamics or other type off system

measurement than phases should be incorporatettattking  Fig. 3. Photograph of the measurement setup imaotmic chamber.
could be realized using unscented Kalman filte®],[227],
more general Gaussian integration based filter$, [28] or

corresponding smoothers [30], [31] in the estinmatitstead.

B. Measured Response of the Tag

Fig. 4 shows the pseudo-distances of the tag frifferent
reader antennas during one experiment. The psestindes
have been calculated from the raw phase measurersing
the procedure described in Section I1.B and they ttontain

A. Measurement Setup an unknown constant offset. The pseudo-distances fr

The UHF RFID based location sensing system isdeiste different antennas change smoothly in time and no
an anechoic chamber before an installation in th#odr discontinuities due to possible phase-wraps aren.see
butterfly cage. Four reader antennas (SPA 8090(0&/8 Furthermore, no significant random noise can besotesl on
Huber Suhner, Switzerland) are located at the ceroé a the curves.
square with 3 m face length. The antennas are ldbaove
floor and they are directed towards the centehefsquare.

The tracked RFID tag (Dogbone, UPM RFID, Pirkkala,

Finland) is mounted on a movable stand at 1.5 rghteilrhe
tag is moved by manually sliding the stand alongeslefined
trajectory marked on the floor.

I1l. EXPERIMENTS
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Fig. 4. Pseudo-distances (with unknown constans)bif the tag from
different antennas during one measurement.

In this experiment the tag was moved along the dinate
lines shown in Fig. 5. The solid blue line in Figshows the
trajectory obtained with a simple point-wise leasfuares
trilateration with the correct initial position. €hdashed red
line shows the same trajectory when the initialitpes of the
tag is unknown and assumed to be in the middlehef t
measurement area. As can be seen in the figuréjaken the
pseudo-measurement causes a significant non-ldistartion
to the estimated trajectory even though the injiasition is
only 1 meter off.
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C. Dynamic Tracking Using EKF and Smoother

Fig. 6 shows the estimates produced by EKF and Wi&h
the initial position is estimated with the RSSI-®adsnethod
assuming a priori standard deviation of 3 meters.cAn be
seen in the figure, the EKF estimate starts apprately at a

60 cm distance from the true position. As the tagy@s, the
estimate converges towards the correct trajectoy ends
very close to the true position. The RTS smoothiedpces a
better estimate of the early part of the trajectdrfie root
mean squared errors (RMSE) of the EKF and RTS ipasit
estimates and the intended trajectory are 3.2 ainlah cm,
respectively. However, we estimate that the RMSE&véen
the intended trajectory and the true trajectorinithe order of
1 — 2 cm due to the inaccurate manual movemeriteofag.
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Fig. 6. Experiment 1: trajectories obtained with KF (dot dashed red) and
RTS smoother (dashed blue) after single iteration.

As discussed in Section Il.E, the estimates of EKE RTS
can be improved by setting the initial mean positid filters
and smoothers to the estimate produced by RTS erfirtt
round and re-running the algorithms. Fig. 7 showes results
after this iteration. As can be seen in the figuree EKF
estimate is still slightly biased in the beginnidge to the
remaining inaccuracy of the initial position, butquickly
converges to the right trajectory. The RMSEs of Efld RTS
were roughly 2.2 cm and 1.5 cm after this secosdiion and
further iterations did not significantly decreabke error.
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The accuracy provided by the proposed method ipaoed
to that of the RSSI-based positioning method oftiSed|.D.
The trajectories obtained with the smoother and R&SI-
based method are shown in Fig. 8. The RMSE of tihgo¢her
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Fig. 10. Experiment 3: Trajectories obtained with EKF and RTS smoother
on the first iteration (left) and on the secondat®n (right). The RMSE
values were 5.2 cm / 1.7 cm for EKF / RTS after firet iteration,
respectively, and 1.7 cm / 1.3 cm after the sedimdtion.
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D. Obtained Trajectories

We recorded different sets of measurements anthatstd
the position trajectories using the EKF and RTS aitmer. In
the following Figs. 9-11, we show selected resuttghe first
of these experiments, the actual trajectory comtidith the
coordinate lines and thus we were able to recocisthe true
trajectory in full for visualization and estimatiofiRMSEs. In
the other two experiments, the routes are not atignith the
coordinate lines, but instead, they pass throudkremce
points. The reference points represented with Eramarkers
in the figures.

Fig. 11. Experiment 4: Trajectories obtained with EKF and RTS smoother
on the first iteration (left) and on the seconddat®n (right). The RMSE
values were 4.2 cm / 2.0 cm for EKF / RTS after fivet iteration,
respectively, and 1.8 cm / 2.0 cm after the sedimdtion.

IV. CONCLUSION

In this paper we have presented an UHF RFID trackin
system, which is based on measuring phases of tettded
signals at a single carrier frequency from multipfeatially
distributed antennas. The phase ambiguity arisiognfthe
usage of single frequency is resolved using a ssptce
model for position, velocity and distance offsetsd the states
in the model are estimated with extended Kalmaerfiand
Rauch-Tung-Striebel smoother algorithms. The peréorce
of the method was experimentally verified at a iearr
frequency of 890 MHz and the results indicate an RM
accuracy of 1-2 centimeters on a 3 m by 3 m sqehaped
measurement area with 4 antennas in the corners. Th



deviations are assumed to partly derive from tleedaracies
in the manual movement of the tag.
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