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Bayesian Tracking [1/2]

e Uncertainties in dynamics and measurements are modeled as

probability distributions

e |n multiple target tracking the state Xk is stacked vector of targets
states, data association indicators and possibly a set of unknown

model parameters

e The ultimate goal is to compute posterior distribution of the

State:

PXk | Y1, .-+, Yk)



Bayesian Tracking [2/2]

e The posterior can be computed from the optimal filtering

equations, which can be derived from the Bayesian Theory

e If the model is completely linear and Gaussian, the equations

reduce to Kalman filter, otherwise approximations required

e Filtering algorithms are different ways to approximate the optimal

filtering equations and the posterior state distribution



Approaches to Multiple Target Tracking

e Joint Probabilistic Data Association (JPDA): Integrate over data
associations, form separate Gaussian approximations for target

states

e Multiple Hypothesis Tracking (MHT): Find the most probable
data association history and compute the state estimates

conditionally to that

e Particle Filtering: Integrate optimal filtering equations with Monte
Carlo to form sample representation of the posterior state

distribution



Particle Filtering [1/3]

e Sequential Importance Resampling (SIR) is a sequential version

of Importance Sampling with additional resampling stage

e The posterior distribution representation is a weighted set of

particles, expectations can be computed as sample averages




Particle Filtering [2/3]

e Sample representation has no limitations in shape or analytic

form of the distribution

e Multimodal distributions can be represented - they may arise

when data associations are very uncertain

e When number of particles N — o0, Monte Carlo approaches the

exact solution



Particle Filtering [3/3]

e [f distribution can be handled analytically, Monte Carlo should not

be used - it should be used as the last effort

e Efficiency of sampling depends heavily on the quality of the

Importance distribution

e There exists optimal importance distribution, which minimizes

variance of the importance weights

e When dimensionality of the state grows, more particles are

needed, especially if importance distribution is not very good



Rao-Blackwellization [1/3]

e Rao-Blackwellization of Monte Carlo sampling: Use closed form
computations always when possible and sample only part of the

State

e Analytic calculations are always more accurate - they correspond

to the case of infinite number of particles

e Rao-Blackwellized particle filter combines the benefits of Kalman

filters and particle filters



Rao-Blackwellization [2/3]

e |f the dynamic and measurement models of single targets are
linear Gaussian, given the data associations the estimation

could be performed by Kalman filter

e When the data associations are unknown the joint distribution of

data associations and states i1s hon-Gaussian

e RBMCDA: Compute Gaussian parts of the model in closed form by

Kalman filter and sample only the data association indicators



Rao-Blackwellization [3/3]

e The space of data association indicators is finite and thus the

optimal importance distribution can be used

e The marginal distributions needed by sampling procedure are

“by-products” of Kalman filter equations

e Because the data association indicators are a priori independent

and the importance distribution is good, sampling is very efficient



RBMCDA in Practice [1/5]

e An association event Ck is represented with an integer variable
with T + 1 values

ck = 0 = clutter association at time step k
ck = 1 = target 1 association at time step k
Ck = 2 = target 2 association at time step k

ck = I = target T association at time step k



RBMCDA In Practice [2/5]

e Indicators may have prior distribution:

pP(c = 0) = false alarm prior

P(C = 1) = association to target 1

P(C = T) = association to target T

e Uniform prior can be used for a representing lack of prior

Information



RBMCDA in Practice [3/5]

e The clutter originated measurements

P(Yk | Xk, Yk Isclutter) =1/V

e The target originated measurements
P(Yk | Xk, Yk Isfromtarget )
= N(Yk | Hj kXj k. Rj k)

e Target dynamics

PXj.k | Xjk=1) = NXj k | Aj k=1Xj.k=1, Qj k-1)



RBMCDA in Practice [4/5]

e Particles contain the state means and covariances for each target

on time step K, and importance weights:

particlel : {m(ll), P(ll)k, . m(Tl)k, P(Tl)k, w|(<1)}

: N N N N N
partcheN:{m(lak), P(l,k),...m(T,lz, P(le wli )}

e Particles are conditional to different data association histories.



RBMCDA in Practice [5/5]

1. Predict means and covariances of each particle using the Kalman

filter prediction equations

2. Compute association likelihoods for each target association

hypothesis

3. Draw association hypothesis for each particle from the optimal

Importance distribution

4. Update the particle weights and perform Kalman filter update

step for each particle with the given data association

5. If the estimated effective number of weights is too low, perform

resampling



MHT and RBMCDA

e Rao-Blackwellized Monte Carlo Data Association (RBMCDA) and
Multiple Hypothesis Tracking (MHT) are very similar, but

theoretical backgrounds are different

e In both methods the system state is a set of Gaussian hypotheses.

The practical difference is in hypothesis processing

e In theory, RBMCDA is Minimum Mean Square Error estimator and

MHT is Minimum Probability of Error estimator



Application: Outlier Detection [1/3]

e Simulated process is:
X(t) = sn(wt)

e Gaussian measurements noise and 50% of clutter measurements,

uniformly distributed on range [—2, 2]:

Xk 1 At Xk—_1
] = . + Qk-1
Xk 0O 1 XKk_1
1/4 , ifck=0
P(Yk | Xk, Ck) =

N(yk | (LO)xx. R) , ifcg =1



Application: Outlier Detection [2/3]
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Application: Outlier Detection [3/3]

Method RMSE STD
RBMCDA, 10 particles 0.16 0.02
RBMCDA, 100 particles 0.15 0.01
Bootstrap filter, 1000 particles 2.07 2.31
Bootstrap filter, 10000 particles 0.16 0.02
Kalman filter, assuming no clutter  0.39 0.02
Kalman filter, clutter modeled 0.32 0.03
Kalman filter, perfect associations 0.11 0.01




Application: Multiple Target Tracking [Model]

e Model for each target j:

Xj k 1 0 At O Xj k—1
Yj k O 1 0 At Yj.k—1
Xj K - 00 1 O Xj K—1
Vi k 00 0 1 Yjk—1

+ Qk-1



Application: Multiple Target Tracking [Prior]
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Application: Multiple Target Tracking [Filtered]

== EStimated Target 1
= : Estimated Target 2

. S
. .y
I
.. N $ S
. . o u"&‘o“;’é{
o ey LA REMERIT
s A%

*r
Nt s
e B




Application: Multiple Target Tracking [Smoothed]

== Smoothed Target 1
=  Smoothed Target 2




Summary

e The proposed RBMCDA is based on computing approximate
solution to the joint data association and state estimation problem

by a particle filter

e Efficiency is ensured by using Rao-Blackwellization of the particle

filter, such that only the data associations need to be sampled

e The resulting algorithm is a combination of Kalman filtering of

target states and particle filtering of data associations

e Kalman filter can be replaced by Extended Kalman Filter (EKF) or

Unscented Kalman Filter (UKF) if the model is non-linear



