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∗
Pete Bunch

∗∗
Simon J. Godsill

∗∗∗

∗ Aalto University, P.O. Box 12200. FI-00076 AALTO, Finland. (Tel:
+358 50 512 4393; e-mail: simo.sarkka@aalto.fi)

∗∗ University of Cambridge, Department of Engineering, Trumpington
Street, Cambridge CB2 1PZ, UK (e-mail: pb404@cam.ac.uk)

∗∗∗ University of Cambridge, Department of Engineering, Trumpington
Street, Cambridge CB2 1PZ, UK (e-mail: sjg@cam.ac.uk)

Abstract: In this article, we develop a new Rao-Blackwellized Monte Carlo smoothing
algorithm for conditionally linear Gaussian models. The algorithm is based on the forward-
filtering backward-simulation Monte Carlo smoother concept and performs the backward
simulation directly in the marginal space of the non-Gaussian state component while treating
the linear part analytically. Unlike the previously proposed backward-simulation based Rao-
Blackwellized smoothing approaches, it does not require sampling of the Gaussian state
component and is also able to overcome certain normalization problems of two-filter smoother
based approaches. The performance of the algorithm is illustrated in a simulated application.
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1. INTRODUCTION

In this paper we derive a novel Rao-Blackwellized particle
smoother for conditionally linear Gaussian models [see
Doucet et al., 2000] of the form

uk ∼ p(uk | uk−1)

zk = A(uk−1) zk−1 + qk−1

yk = H(uk) zk + rk,

(1)

where the Gaussian process noise qk−1 ∼ N(0, Q(uk−1))
and observation noise rk ∼ N(0, R(uk)) are assumed to be
time-white. The state consists of two parts xk = (uk, zk),
where zk ∈ R

nz is conditionally Gaussian given the non-
Gaussian part uk ∈ R

nu . Here we formally treat the
variable uk as having a probability density with respect
to the Lebesgue measure, but all the results apply or can
be easily generalized to random variables without such
densities.

The key feature of the novel smoother is that it does
not require sampling of the linear portion of the state zk.
This feature is required for the smoother to be truly Rao-
Blackwellized (marginalized) as opposed to, for example,
smoothers presented by Fong et al. [2002] and Lindsten
and Schön [2011], which also sample the linear part.
The proposed smoother is based on the forward-filtering
backward-sampling approach of Godsill et al. [2004].

The structure of the paper is as follows: In Section 2 we
briefly review the background theory of particle filtering,
particle smoothing, and Rao-Blackwellization. In Section
3 we derive the novel Rao-Blackwellized particle smoother
algorithm and finally in Section 4 we demonstrate the

performance of the proposed algorithm in a simulated
application.

2. BACKGROUND

2.1 Particle filters and smoothers

The theory of optimal Bayesian filtering and smoothing
[Ho and Lee, 1964, Lee, 1964] is considered with state
estimation in probabilistic state space models of the form

xk ∼ p(xk | xk−1)

yk ∼ p(yk | xk),
(2)

where k = 1, . . . , n, xk ∈ R
dx is the state of the system,

yk ∈ R
dy is the observation at time step k, p(xk | xk−1)

is the Markovian dynamic model probability density and
p(yk | xk) is the measurement model probability density.

As the Bayesian filtering equations do not in general
admit closed form solutions, approximations are needed.
A general class of these is the particle filter [Gordon
et al., 1993, Kitagawa, 1996, Doucet et al., 2000, Ristic
et al., 2004, Cappé et al., 2007], which generates a Monte
Carlo approximation to the filtering distribution using
the sequential importance resampling (SIR) algorithm.
Formally this means the following approximation to the
probability density, which consists of a weighted sum of
Dirac delta functions:

p(xk | y1:k) ≈
∑

i

w
(i)
k δ(xk − x

(i)
k ). (3)

Analogously to particle filters, particle smoothers can
be used to form approximate solutions to the Bayesian
smoothing equations, which also do not admit closed form



solutions in general. The particle smoother of Kitagawa
[1996] is based on direct use of SIR for smoothing: If
we simply store the entire sample histories and resample
these instead of single-step samples, we obtain a smoothing
solution alongside the filtering solution.

The problem with this approach is that its estimate of
the smoothing distribution tends to be quite degenerate
[Kitagawa, 1996]. For this reason, various alternative parti-
cle smoothers have been proposed. One possible approach
is to approximate the two-filter formula using particle
methods [Kitagawa, 1996, Briers et al., 2010, Fearnhead
et al., 2010]. The disadvantage of such two-filter type
smoothers is that the construction of the backward filter
can be quite troublesome. Another way is to compute
new weights for the particle filter results using an addi-
tional backward sweep, as is done in particle smoothers
of Hürzeler and Kunsch [1998] and Doucet et al. [2000].
Because these approaches only approximate the marginal
smoothing distributions without generating explicit trajec-
tories from the joint smoothing distribution, their usage
in Rao-Blackwellized particle smoothing is not straight-
forward.

In this article we shall use the backward-simulation based
particle smoothing approach proposed by Godsill et al.
[2004]. We first run a particle filter over the measurement
sequence and store all the intermediate results. State
trajectories are then generated by first sampling x̃n from
the filtering distribution, then x̃n−1 conditional on the
sampled x̃n, and so on. The approach works because of
the following simple Markovian property of the model:

p(xk |xk+1:n, y1:n) ∝ p(xk+1 |xk) p(xk | y1:k). (4)

Furthermore, because p(xk | y1:k) is the filtering distribu-
tion at step k, we can draw from the above distribution

simply by drawing a filter sample x
(i)
k with probability

p(x̃k+1 |x
(i)
k )w

(i)
k . Thus the algorithm is:

Algorithm 2.1. (Backward-simulation smoother). Given the

weighted set of particles {w
(i)
k , x

(i)
k | i = 1, . . . , N, k =

1, . . . , n} representing the filtering distributions:

• Choose x̃n = x
(i)
n with probability w

(i)
n .

• For k = n− 1, . . . , 0:
(1) Compute new weights by

w
(i)
k|k+1 ∝ w

(i)
k p(x̃k+1 |x

(i)
k ) (5)

(2) Choose x̃k = x
(i)
k with probability w

(i)
k|k+1

Given S iterations of the above procedure resulting in

samples x̃
(j)
1:n for j = 1, . . . , S the smoothing distribution

can now be approximated as

p(x1:n | y1:n) ≈
1

S

∑

j

δ(x1:n − x̃
(j)
1:n). (6)

2.2 Rao-Blackwellized particle filters and smoothers

Although the generic particle filters and smoothers can be
used in almost any kind of models, the required number of
samples for a sufficient accuracy can be high. The efficiency
of sampling can be improved by Rao-Blackwellization
[Doucet et al., 2000], where part of the state is marginal-
ized out in closed form, and only the remaining part

is sampled. Because the sampled space has a lower di-
mension, fewer particles are required. Such closed form
marginalization is possible, for example, in conditionally
linear Gaussian models in Equations (1).

The Rao-Blackwellized particle filter (RBPF) [Doucet
et al., 2000, Chen and Liu, 2000] is the algorithm which
results if we marginalize the linear state zk from the con-
ditionally linear Gaussian model (1), and use SIR for the
non-Gaussian part uk only. At each step the approximation
to the filtering density is a mixture of Gaussians:

p(uk, zk | y1:k) =
∑

i

w
(i)
k N(zk |m

(i)
k , P

(i)
k ) δ(uk − u

(i)
k ),

where u
(i)
k are the latent variable samples and m

(i)
k , P

(i)
k

are the mean and covariance of the Kalman filter condi-
tioned on the corresponding history of latent variables.

Analogously to the non-Rao-Blackwellized case, we can
obtain a Kitagawa [1996] type of approximation to the
smoothing solution along with the filtering by storing

and resampling the histories u
(i)
1:k and the corresponding

Kalman filter means and covariances as well. The marginal

smoothing solution for u
(i)
1:k is then the following:

p(u1:k | y1:k) ≈
∑

i

w
(i)
k δ(u1:k − u

(i)
1:k). (7)

The approximation to the linear part of the smoothing
distribution can then be obtained by running Rauch-Tung-
Striebel (RTS) smoothers for each of the histories to yield

smoothed means and covariances m
s,(i)
1:n and P

s,(i)
1:n . The

approximation to the marginal smoothing density at step
k is then

p(uk, zk | y1:n) =
∑

i

w
(i)
k N(zk |m

s,(i)
k , P

s,(i)
k ) δ(uk − ũ

(i)
k ),

where ũ
(i)
k is the ith component of the history u

(i)
1:k.

A class of simple approximate Rao-Blackwellized particle
smoothers (RBPSs) can be obtained by using Kim’s ap-
proximation [Kim, 1994, Barber, 2006]:

p(uk |uk+1:n, y1:n)

=

∫

p(uk |uk+1, zk+1, y1:k) p(zk+1 |uk+1, y1:n) dzk+1

≈ p(uk |uk+1, y1:k).

(8)

In other words, we smooth the non-Gaussian variables uk

by ignoring the effect of Gaussian variables zk completely.
The backward-simulation smoother based on Kim’s ap-
proximation amounts to replacing the transition density
p(xk+1 |xk) in the Algorithm 2.1 with p(uk+1 |uk). Given
a trajectory of the non-Gaussian variable, the linear Gaus-
sian part may be estimated with Kalman filter and RTS
smoother.

Another possible approach for the RBPS is to use the
two-filter formula, and form the smoothing solution by
combining two RBPFs, one running forward and one
backwards in time [Briers et al., 2010, Fearnhead et al.,
2010].

The RBPSs introduced by Fong et al. [2002] and Lindsten
and Schön [2011] are based on simulating backward trajec-
tories from the joint distribution (zk, uk). However, these
smoothers are not really Rao-Blackwellized backward-



simulation smoothers, because they require sampling of
the linear part of the state as well.

A related, but slightly different approach to inference
in conditionally linear Gaussian models uses mixture-of-
Gaussians approximations, presented, for example, in Kim
[1994], Bar-Shalom et al. [2001], Barber [2006].

3. NOVEL RAO-BLACKWELLIZED
BACKWARD-SIMULATION PARTICLE SMOOTHER

3.1 Idea of Marginal Simulation

In the Rao-Blackwellized case, we cannot do backward

simulation just by drawing samples u
(i)
k one step at a time

from the filter results (as in Algorithm 2.1), because the
linear part of the state (and thus the likelihood of the

measurements) depends on the entire history u
(i)
1:k. Thus

we need to sample whole trajectories from the sample
histories produced by RB filter/smoother. Furthermore,
the marginalized state uk does not have a simple Markov
property such as (4) and thus we need to condition on the
whole future instead of just on the next time step. Thus,

we must calculate weights for each filtering trajectory, u
(i)
1:k,

when it is paired with the sampled (fixed) future state
sequence, ũk+1:n.

In order to do backward sampling for u1:n, we will need
an efficient way to evaluate the following distribution for
different values of u0:k:

p(u0:k |uk+1:n, y1:n) =
p(u0:n | y1:n)

p(uk+1:n | y1:n)
. (9)

Because we are sampling a single trajectory, we can
consider the denominator in (9) as fixed. Thus we are
interested in evaluating

p(u0:n | y1:n) ∝ p(y1:n |u0:n) p(u0:n). (10)

The prior p(u0:n) = p(u0)
∏n

j=1 p(uj |uj−1) is easy to
evaluate; the problematic term is the marginal likelihood
p(y1:n |u0:n). It could be calculated in a brute force way,
by running a Kalman filter through the data. However,
at each sampling time k we then would need to run the
Kalman filters in each particle i over the entire sampled
future ũk+1:n. Thus we need a more efficient approach.

3.2 Recursion Equations

We can split up the dependency between the past and
future in the marginal likelihood by augmenting with zk,
which gives:

p(y1:n, zk |u0:n)

= p(yk+1:n | zk, u0:n, y1:k) p(y1:k, zk |u0:n)

= p(yk+1:n | zk, uk:n) p(zk | y1:k, u0:n) p(y1:k |u0:n)

= p(yk+1:n | zk, uk:n) p(zk | y1:k, u0:k) p(y1:k |u0:k).

(11)

The last two terms in Equation (11) are given by:

p(zk | y1:k, u0:k) = N(zk |mk, Pk)

p(y1:k |u0:k) =
k
∏

j=1

N(yj |H(uj)m
−
j , Sj),

(12)

where the means and covariance can be computed with
the Kalman filter recursions

m−
k = A(uk−1)mk−1

P−
k = A(uk−1)Pk−1A

T (uk−1) +Q(uk−1)

Sk = H(uk)P
−
k HT (uk) +R(uk)

Kk = P−
k HT (uk)S

−1
k

mk = m−
k +Kk [yk −H(uk)m

−
k ]

Pk = P−
k −Kk Sk K

T
k .

(13)

The first term in Equation (11) can be computed with
a backward Kalman filter. First assume that there exists
a mean and covariance mb

k+1, P
b
k+1 and a normalization

constant Zk+1 such that

p(yk+1:n|zk+1, uk+1:n) = Zk+1N(zk+1|m
b
k+1, P

b
k+1). (14)

By the two-filter smoother equations we then get

p(yk+1:n | zk, uk:n)

=

∫

p(yk+1:n | zk+1, uk+1:n) p(zk+1 | zk, uk) dzk+1

= Zk+1| detA(uk)|
−1N(zk |m

−b
k , P−b

k ),

(15)

where

m−b
k = A−1(uk)m

b
k+1

P−b
k = A−1(uk) (Q(uk) + P b

k+1)A
−T (uk),

(16)

and

p(yk:n | zk, uk:n)

= p(yk | zk, uk:n) p(yk+1:n | zk, uk:n)

= Zk+1| detA(uk)|
−1 N(yk |µ

b
k, S

b
k)N(zk |m

b
k, P

b
k)

= Zk N(zk |m
b
k, P

b
k),

(17)

where

µb
k = H(uk)m

−b
k

Sb
k = H(uk)P

−b
k HT (uk) +R(uk)

Kb
k = P−b

k HT (uk) (S
b
k)

−1

mb
k = m−b

k +Kb
k [yk − µb

k]

P b
k = P−b

k −Kb
k S

b
k (K

b
k)

T

Zk = Zk+1 | detA(uk)|
−1 N(yk|µ

b
k, S

b
k).

(18)

Substituting the results into Equation (11) and integrating
over zk then gives

p(y1:n |u0:n)

= Zk+1 | detA(uk)|
−1N(mk |m

−b
k , Pk + P−b

k )

×

k
∏

j=1

N(yj |H(uj)m
−
j , Sj).

(19)

By combining with the prior of u0:n and ignoring the terms
that only depend on uk+1:n, we get

p(u0:k |uk+1:n, y1:n)

∝ | detA(uk)|
−1N(mk |m

−b
k , Pk + P−b

k ) p(uk+1 |uk)

× p(u0)

k
∏

j=1

p(uj |uj−1)N(yj |H(uj)m
−
j , Sj).

(20)

The term on the second line is just the distribution
approximated by the RBPF, (Eq. (7)). Substituting the
particle approximation then gives



p(u0:k |uk+1:n, y1:n)

∝ | detA(uk)|
−1N(mk |m

−b
k , Pk + P−b

k ) p(uk+1 |uk)

×

[

N
∑

i=1

w
(i)
k δ(u0:k − u

(i)
0:k)

]

.

(21)

3.3 Initialization

The recursion in the previous section is based on the
assumption that the normalization constant in the Equa-
tion (14) exists and is finite, making the “inversion” of
the Gaussian density possible. Unfortunately, at the last
step, when k + 1 = n it is often the case that such
a normalization constant does not exist. This issue is
related to the well-known normalization problem of two-
filter smoothers. In the case of linear smoothing this prob-
lem can be overcome by using an information filter and
defining the distribution at the last step as being formally
singular. Unfortunately, although we only need to use a
linear smoother, this approach does not solve the problem
of undefined normalization constant in our case.

Fortunately, if the system is observable, the normalization
constant is guaranteed to become finite at some point. One
simple, approximate way to initialize the filter is to start by
using the Kim’s approximation based smoother until the
normalization constant becomes finite (say s steps). An
alternative, exact method is to calculate the first term of
Equation (11) directly, using the observation density with
an augmented vector of all the observations from k+1 to n.
The form for this augmented observation density is given
by Kitagawa [1994]. Thus, it is not necessary to invert
the Gaussian to calculate the sampling weights until the
normalization constant becomes finite.

3.4 Practical Implementation

The final algorithm is the following:

Algorithm 3.1. (Rao-Blackwellized smoother). Given the

weighted set of particles {w
(i)
k , u

(i)
1:k | i = 1, . . . , N, k =

1, . . . , n} representing the filtering results and their histo-
ries at different times:

• Choose ũn = u
(i)
n with probability w

(i)
n .

• For k = n− 1, . . . , 0:
(1) Compute new weights by

w
(i)
k|k+1 ∝ w

(i)
k p(ũk+1 |u

(i)
k ) | detA(u

(i)
k )|−1

×N(m
(i)
k |m

−b,(i)
k , P

(i)
k + P

−b,(i)
k ),

(22)

wherem
(i)
k and P

(i)
k are the forward Kalman filter

mean and covariance for the trajectory u
(i)
1:k, and

m
−b,(i)
k and P

−b,(i)
k are the backward filter results

backward predicted to step k using u
(i)
k .

(2) Choose ũk = u
(i)
k with probability w

(i)
k|k+1.

• The smoothing solution to the linear part can be com-
puted by running a Kalman filter and RTS smoother
over the generated trajectory ũ1:n. In practice, we can
also compute the solution during the backward simu-
lation by combining the computed forward and back-
ward filtering solutions using the two-filter smoother
formulas.

Given S iterations of the above procedure resulting in

samples ũ
(j)
1:n for j = 1, . . . , S as well as the correspond-

ing smoother means and covariances m
s,(j)
1:n , P

s,(j)
1:n , the

smoothing distribution can be approximated as

p(uk, zk | y1:n) =
1

S

∑

j

N(zk |m
s,(j)
k , P

s,(j)
k ) δ(uk − ũ

(j)
k ).

4. NUMERICAL RESULTS

For testing the practical performance of the proposed
algorithm, we used a model in which the linear Gaussian
part of the state zk is 2-dimensional and the non-Gaussian
part is an indicator variable taking discrete values ck ∈
{1, 2}. The model is the following:

• If the latent variable ck−1 = 1, then the dynamic
model for the step tk−1 → tk is the Wiener velocity
model [cf. Bar-Shalom et al., 2001] z̈ = w(t), where
w(t) is a white noise process with spectral density
qc = 0.01

• If the latent variable ck−1 = 2 then the dynamic
model is a damped harmonic force model z̈ = −z/10−
ż/10 + w(t).

• If ck = 1 then we measure z with variance 1, otherwise
with variance 52.

The transition probabilities for ck were Π1 | 1 = 0.8,
Π1 | 2 = 0.2, Π2 | 1 = 0.2, and Π2 | 2 = 0.8. The initial
distributions were P (c0 = 1) = 0.9, P (c0 = 2) = 0.1 and
z0 ∼ N((0 1)T , I). The sampling period was ∆t = 0.1
and the continuous time models were discretized using
the standard procedure [see Bar-Shalom et al., 2001]. The
“optimal importance distribution” [Doucet et al., 2000]
was used as a proposal for the filter.

The following methods were tested:

• RBPF: Rao-Blackwellized particle filter.
• KiS: Rao-Blackwellized Kitagawa [1996] smoother.
• KGS: Kim’s approximation based Rao-Blackwellized
Godsill et al. [2004] smoother.

• FGS: Fong et al. [2002] smoother.
• RBG: The proposed Rao-Blackwellized Godsill et al.
[2004] smoother in Algorithm 3.1.

Performance was assessed by comparison of the root mean
square error in the linear part of the state (RMSE). In ad-
dition, at each time step a maximum a posteriori estimate
for the value of the indicator variable was made by se-
lecting the option with the greater weight. The proportion
of errors in these estimates was then calculated (ErrRate).
Furthermore, by averaging the total weight assigned to the
unselected indicator values, we can calculate the error rate
predicted by each algorithm (PredRate). A comparison of
the predicted and observed error rates gives an additional
measure of how accurately the algorithms characterize the
posterior distribution.

The results from 1000 independent simulation runs using
100 particles in each of the methods are shown in Table
1. The RMSE results of the smoother methods are almost
equal, except KiS gives a slightly higher RMSE on average
than the other smoothers. The error rate of KiS is higher
than of the other smoothers although the predicted error
rate is significantly lower than of the others. The RMSEs,



error rates and predicted errors of the smoothers as a
function of time are shown in Figures 1–3. It can be seen
that RMSE and error rate of KiS increases (relative to
other methods), and the predicted error rate decreases
toward the beginning of the data. These effects are likely
to be due to the degeneracy of KiS. The error rate and
predicted error rate of KGS are slightly higher than those
of FGS and RBG, whereas the results of the latter seem
to be practically identical.

Method RMSE ErrRate PredRate

RBPF 0.49 0.16 0.16

KiS 0.27 0.16 0.09

KGS 0.26 0.14 0.13

FGS 0.26 0.13 0.12

RBG 0.26 0.13 0.12

Table 1. Simulation results with 100 particles
averaged over 1000 runs.
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Fig. 1. RMSEs with 100 particles averaged over 1000 runs.
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Fig. 2. Error rates with 100 particles averaged over 1000
runs.

To test the effect of using a small number of particles,
we also ran 1000 simulation runs with only 10 particles.
The results are shown in Table 2 and they seem to be
consistent with the 100 particle results. Now the RMSE of

0 10 20 30 40 50
0

0.05

0.1

0.15

time

 

 

KiS
KGS
FGS
RBG

Fig. 3. Predicted error rates with 100 particles averaged
over 1000 runs.

Method RMSE ErrRate PredRate

RBPF 0.52 0.18 0.14

KiS 0.30 0.18 0.02

KGS 0.29 0.16 0.11

FGS 0.30 0.15 0.10

RBG 0.29 0.15 0.10

Table 2. Simulation results with 10 particles
averaged over 1000 runs.

FGS is slightly higher on average than that of RBG. This
is to be expected, because the linear state in FGS is now
represented by 10 samples whereas RBG maintains the
whole Gaussian distribution. The higher RMSE of FGS
can also be clearly seen in the Figure 4.

0 10 20 30 40 50

10
−0.5

10
−0.4

time

 

 
KiS
KGS
FGS
RBG

Fig. 4. RMSEs with 10 particles averaged over 1000 runs.

5. CONCLUSION AND DISCUSSION

In this article we have derived a novel Rao-Blackwellized
particle smoother, which is based on the backward simula-
tion approach of Godsill et al. [2004]. Unlike the schemes
of Fong et al. [2002] and Lindsten and Schön [2011], the
proposed smoother does not require sampling of the linear



part of the state. The resulting algorithm is similar to
the pure particle smoother of Godsill et al. [2004], but
now the computation of weights is a function of forward
and backward Kalman filter estimates, conditioned on the
sampled trajectory of the non-Gaussian part of the state.

The performance of the smoother was illustrated in a
simulated application, which shows a slight improvement
by the RBG over the other schemes. However, we expect
to see a more significant difference when more complex
models are used. In particular, the linear state component
in the test presented is only two-dimensional, meaning that
the distribution is well characterized by few samples. Fur-
thermore, by using the optimal importance distribution,
samples are in fact being drawn directly from the condi-
tional posterior distribution, so very few are “wasted” in
areas of low probability. If the linear state dimensionality
were increased or no optimal importance distribution were
available, more samples would be required for an accurate
estimate. Thus we expect the RMSE performance of the
FGS scheme to deteriorate faster than that of RBG. Such
studies are currently the subject of further investigation.
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