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Continuous

Problem Formulation

@ Estimate the unobserved continuous-time signal from
noisy discrete-time measurements
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Problem Formulation

@ The dynamics of state x(t) modeled as a stochastic
differential equation (diffusion process)

dx = f(x, t) dt + LdB(1).
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Problem Formulation

Mathematic

@ The dynamics of state x(t) modeled as a stochastic
differential equation (diffusion process)

dx = f(x, t)dt + LdB(1).
@ Measurements yy are obtained at discrete times
Yk ~ P(Yi | X(t))-
@ Formal solution: Compute the posterior distribution(s)

p(x(t)|y17"'7yk)7 tZtk
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Problem Formulation

Formal solutio

Optimal filter

@ Prediction step: Solve the Kolmogorov-forward
(Fokker-Planck) partial differential equation.

—;a%(f/(x Hp ZZMXI (iLaL;p)
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Problem Formulation

Formal solutio

Optimal filter

@ Prediction step: Solve the Kolmogorov-forward
(Fokker-Planck) partial differential equation.

—;a%(f/(x Hp ZZMXI (iLaL;p)

@ Update step: Apply the Bayes’ rule.

P(Yk | X(t)) P(X(t) | Y1:k-1)
I p(Yk [ X(t)) P(X(tc) [ Y1:k—1) dX(tk)

P(X(tc) [ Y1:4) =
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Problem Formulation

Numerical

@ Gaussian models and approximations, extended Kalman
filters and unscented Kalman filters.
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Problem Formulation

Numerical

@ Gaussian models and approximations, extended Kalman
filters and unscented Kalman filters.

@ FEM and finite difference based approximations to the
Kolmogorov forward PDE.

@ Bootstrap filter: Simulates trajectories from the SDE.
@ Sequential importance resampling: Not applicable!
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Problem Formulation

Sequential Importance Resampling
@ Draw a random sample from the importance distribution

x(i)(tk) ~ q(x(i)(tk) | X(i)(tk_1)) (1)

Simo Sarkka <simo.sarkka@hut.fi>



Problem Formulation

Sequential Importance Resampling
@ Draw a random sample from the importance distribution

x(i)(tk) ~ q(x(i)(tk) | X(i)(tk_1)) (1)

©@ Evaluate the importance weight

P(Yx | X (1)) p(xD () [ XD (t_1))
w q(x(t) [ XD (t_1))
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Problem Formulation

Sequential Importance Resampling
@ Draw a random sample from the importance distribution

x(i)(tk) ~ q(x(i)(tk) | X(i)(tk_1)) (1)

©@ Evaluate the importance weight

P(Yx | X (1)) p(xD () [ XD (t_1))
w q(x(t) [ XD (t_1))

© Do resampling if needed.
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Problem Formulation

The Proble

@ The weight evaluation of SIR is of the form

PYk XD (4) p(xD (1) | XD (B_+))
q(x () | xD(t_1))

W
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Problem Formulation

The Proble

@ The weight evaluation of SIR is of the form

(i) o PYk] x(8)) p(x (1) | XD (1))
q(xO () [ x(D(t_1))

@ But p(x(fx) | X(t—1)) is the solution of an arbitrary second
order partial differential equation and cannot be solved.

Simo Sarkka <simo.sarkka@hut.fi>



Problem Formulation

The Proble

@ The weight evaluation of SIR is of the form

(i) o PYk] x(8)) p(x (1) | XD (1))
q(xO () [ x(D(t_1))

@ But p(x(fx) | X(t—1)) is the solution of an arbitrary second
order partial differential equation and cannot be solved.

@ Actually we only need the likelihood ratio

Simo Sarkka <simo.sarkka@hut.fi>



Problem Formulation

The Proble

@ The weight evaluation of SIR is of the form

(i P | XD (t) p(x (1) [ X (1))
XX - p

q(xO (1) [ xO)(t-1))

@ But p(x(fx) | X(t—1)) is the solution of an arbitrary second
order partial differential equation and cannot be solved.

@ Actually we only need the likelihood ratio

px(t) | X(t—1))
q(x(t) [ X(tk—1))

@ This can be computed with the Girsanov theorem without
solving the PDE.
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Continuous-Discrete SIR

Girsanov T

@ Let 0(t) be a stochastic process, which is driven by
(“adapted t0”) a Brownian motion 3(t).

Simo Sarkka <simo.sarkka@hut.fi>



Continuous-Discrete SIR

Girsanov T

@ Let 0(t) be a stochastic process, which is driven by
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@ The likelihood ratio between 6(t) and 3(t) is:
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Continuous-Discrete SIR

Girsanov T

@ Let 0(t) be a stochastic process, which is driven by
(“adapted t0”) a Brownian motion 3(t).

@ The likelihood ratio between 6(t) and 3(t) is:

t t
e ([[o70a00)- 3 [ 0P ar)

@ The likelihood ratio can be exactly computed by above
stochastic integral.

@ Efficient simulation based numerical solutions possible.
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Continuous-Discrete SIR

Evaluating t

@ With Girsanov theorem, we can derive expression for
likelihood ratio of two SDEs:

dx = f(x, t)dt + LdgB
ds = g(s,t)dt + Bdg.
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Continuous-Discrete SIR

Evaluating

@ With Girsanov theorem, we can derive expression for
likelihood ratio of two SDEs:
dx = f(x, t)dt + Ld3
ds = g(s,t)dt + Bdg.
@ Process s(t) can be the importance process for estimated
process X(1).

@ It is a stochastic integral: Well known numerical methods
for SDEs can be used.
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Continuous-Discrete SIR

Evaluating

@ With Girsanov theorem, we can derive expression for
likelihood ratio of two SDEs:

dx = f(x, t)dt + LdgB
ds = g(s,t)dt + Bdg.

@ Process s(t) can be the importance process for estimated
process X(1).

@ It is a stochastic integral: Well known numerical methods
for SDEs can be used.

@ Itis a Monte Carlo solution: Solution converges to the
exact solution.

Simo Sarkka <simo.sarkka@hut.fi>



Continuous-Discrete SIR

Continuous

@ Similar to SIR, but the importance samples and
importance weights are computed by simulating a set of
SDEs numerically.
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Continuous
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Continuous-Discrete SIR

Continuous

@ Similar to SIR, but the importance samples and
importance weights are computed by simulating a set of
SDEs numerically.

@ The importance processes can be obtained by
continuous-discrete EKF or UKF.

@ Conditionally Gaussian parts can be integrated out -
Rao-Blackwellized - analytically.

@ Static parameters, when in suitable conjugate form, can
also be integrated out.

@ Could be extended to Lévy process driven stochastic
differential equations.
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Example Problem

@ Model of noisy simple pendulum:
2

d<x .
FTE & sin(x) = w(t).
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Example Problem

@ Model of noisy simple pendulum:

d2x .

T & sin(x) = w(t).

@ In Brownian motion notation:
dx
dt
dx, = —a? sin(xy)dt + dg,
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Example Problem

@ Model of noisy simple pendulum:

x5

— 4+ a sin(x) = w(t).

@ In Brownian motion notation:
dx
dt
dx, = —a? sin(xy)dt + dg,

@ Measurements:

Yk ~ N(x1(t), %)
02 ~ |nV-X2(l/0,0‘g),
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Example Problem

Simulation

Evolution of signal estimate (left) and variance estimate (right):

2 2(m
° ° — True Signal 1
1.8
15 . s ° Measurements
Sk . o| — Estimate !
° . —__95% Quantiles 161y 1
14! R
1
1.2 | 1
i ]
1
osfl, 1
.
06 1
\
'
0.4 ‘«‘«‘~"~~-,-~ U—
o~ ~ -
XY TR e L 5|
2 . . . . . 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Time

Simo Sarkka <simo.sarkka@hut.fi>



Conclusion

@ The discrete-time Sequential importance resampling (SIR)
is not applicable to continuous-discrete filtering problems,
because p(x(f) | X(f—1)) cannot be computed.
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Conclusio

@ The discrete-time Sequential importance resampling (SIR)
is not applicable to continuous-discrete filtering problems,
because p(x(f) | X(f—1)) cannot be computed.

@ By using the Girsanov theorem a stochastic integral
formula for the importance weights can be derived.

@ The weight evaluation and importance process simulation
can be done with numerical methods for SDEs.

@ The same efficiency improvement strategies (EKF
proposal, Rao-Blackwellization, etc.) can be applied as in
the discrete-time case.
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