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Continuous-Discrete Filtering Problem

Estimate the unobserved continuous-time signal from

noisy discrete-time measurements
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Mathematical Problem Formulation

The dynamics of state x(t) modeled as a stochastic

differential equation (diffusion process)

dx = f(x, t) dt + L dβ(t).

Measurements yk are obtained at discrete times

yk ∼ p(yk |x(tk )).

Formal solution: Compute the posterior distribution(s)

p(x(t) |y1, . . . , yk ), t ≥ tk .
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Formal solution

Optimal filter

1 Prediction step: Solve the Kolmogorov-forward

(Fokker-Planck) partial differential equation.

∂p

∂t
= −

∑

i

∂

∂xi
(fi(x, t) p) +

1

2

∑

ij

∂2

∂xi∂xj

(

[L Q LT ]ij p
)

2 Update step: Apply the Bayes’ rule.

p(x(tk ) |y1:k ) =
p(yk |x(tk )) p(x(tk ) |y1:k−1)

∫

p(yk |x(tk )) p(x(tk ) |y1:k−1) dx(tk )
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Numerical Approximations

Gaussian models and approximations, extended Kalman

filters and unscented Kalman filters.

FEM and finite difference based approximations to the

Kolmogorov forward PDE.

Bootstrap filter: Simulates trajectories from the SDE.

Sequential importance resampling: Not applicable!
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Sequential Importance Resampling

Sequential Importance Resampling

1 Draw a random sample from the importance distribution

x(i)(tk ) ∼ q(x(i)(tk ) |x(i)(tk−1)) (1)

2 Evaluate the importance weight

w
(i)
k ∝

p(yk |x
(i)(tk )) p(x(i)(tk ) |x(i)(tk−1))

q(x(i)(tk ) |x(i)(tk−1))

3 Do resampling if needed.

Simo Särkkä <simo.sarkka@hut.fi>



Problem Formulation

Continuous-Discrete SIR

Example Problem

Conclusion

Sequential Importance Resampling

Sequential Importance Resampling

1 Draw a random sample from the importance distribution

x(i)(tk ) ∼ q(x(i)(tk ) |x(i)(tk−1)) (1)

2 Evaluate the importance weight

w
(i)
k ∝

p(yk |x
(i)(tk )) p(x(i)(tk ) |x(i)(tk−1))

q(x(i)(tk ) |x(i)(tk−1))

3 Do resampling if needed.

Simo Särkkä <simo.sarkka@hut.fi>



Problem Formulation

Continuous-Discrete SIR

Example Problem

Conclusion

Sequential Importance Resampling

Sequential Importance Resampling

1 Draw a random sample from the importance distribution

x(i)(tk ) ∼ q(x(i)(tk ) |x(i)(tk−1)) (1)

2 Evaluate the importance weight

w
(i)
k ∝

p(yk |x
(i)(tk )) p(x(i)(tk ) |x(i)(tk−1))

q(x(i)(tk ) |x(i)(tk−1))

3 Do resampling if needed.

Simo Särkkä <simo.sarkka@hut.fi>



Problem Formulation

Continuous-Discrete SIR

Example Problem

Conclusion

The Problem of SIR Weight Evaluation

The weight evaluation of SIR is of the form

w
(i)
k ∝

p(yk |x
(i)(tk )) p(x(i)(tk ) |x(i)(tk−1))

q(x(i)(tk ) |x(i)(tk−1))

But p(x(tk) |x(tk−1)) is the solution of an arbitrary second

order partial differential equation and cannot be solved.

Actually we only need the likelihood ratio

p(x(tk) |x(tk−1))

q(x(tk ) |x(tk−1))

This can be computed with the Girsanov theorem without

solving the PDE.
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Girsanov Theorem

Let θ(t) be a stochastic process, which is driven by

(“adapted to”) a Brownian motion β(t).

The likelihood ratio between θ(t) and β(t) is:

dPθ

dPβ

= exp

(
∫ t

0

θT (t) dβ(t) −
1

2

∫ t

0

||θ(t)||2 dt

)

.

The likelihood ratio can be exactly computed by above

stochastic integral.

Efficient simulation based numerical solutions possible.
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Evaluating the Likelihood Ratio

With Girsanov theorem, we can derive expression for

likelihood ratio of two SDEs:

dx = f(x, t) dt + L dβ

ds = g(s, t) dt + B dβ.

Process s(t) can be the importance process for estimated

process x(t).

It is a stochastic integral: Well known numerical methods

for SDEs can be used.

It is a Monte Carlo solution: Solution converges to the

exact solution.
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Continuous-Discrete SIR Algorithm

Similar to SIR, but the importance samples and

importance weights are computed by simulating a set of

SDEs numerically.

The importance processes can be obtained by

continuous-discrete EKF or UKF.

Conditionally Gaussian parts can be integrated out -

Rao-Blackwellized - analytically.

Static parameters, when in suitable conjugate form, can

also be integrated out.

Could be extended to Lévy process driven stochastic

differential equations.
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Noisy Simple Pendulum Problem

Model of noisy simple pendulum:

d
2x

dt2
+ a2 sin(x) = w(t).

In Brownian motion notation:

dx1

dt
= x2

dx2 = −a2 sin(x1) dt + dβ,

Measurements:

yk ∼ N(x1(tk ), σ2)

σ2 ∼ Inv-χ2(ν0, σ
2
0),
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Simulation Results

Evolution of signal estimate (left) and variance estimate (right):

0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

True Signal
Measurements
Estimate
95% Quantiles

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

True Variance
Estimate
95% Quantiles

Simo Särkkä <simo.sarkka@hut.fi>



Problem Formulation

Continuous-Discrete SIR

Example Problem

Conclusion

Conclusion

The discrete-time Sequential importance resampling (SIR)

is not applicable to continuous-discrete filtering problems,

because p(x(tk ) |x(tk−1)) cannot be computed.

By using the Girsanov theorem a stochastic integral

formula for the importance weights can be derived.

The weight evaluation and importance process simulation

can be done with numerical methods for SDEs.

The same efficiency improvement strategies (EKF

proposal, Rao-Blackwellization, etc.) can be applied as in

the discrete-time case.
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