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ABSTRACT

In this article, we shall show how the sigma-point based ap-

proximations that have previously been used in optimal fil-

tering can also be used in optimal smoothing. In particular,

we shall consider unscented transformation, Gauss-Hermite

quadrature and central differences based optimal smoothers.

We briefly present the smoother equations and compare per-

formance of different methods in simulated scenarios.

1. INTRODUCTION

This article is concerned with non-linear optimal smooth-

ing, which in this context refers to methodology that can

be used for computing estimates of a fixed time interval of

states of a non-linear stochastic state space model given the

measurements on the same interval. These kind of batch

estimates of the whole history of a state trajectory are of-

ten useful, for example, in target tracking, navigation, au-

dio signal processing, machine learning, time series analy-

sis and time series prediction [1, 2, 3, 4, 5].

The stochastic state space model model is assumed to

be of the form

xk = f(xk−1) + qk−1

yk = h(xk) + rk,
(1)

where xk ∈ R
n is the state, yk ∈ R

d is the measurement

at time step k, qk−1 ∼ N(0,Qk−1) is the Gaussian process

noise, rk ∼ N(0,Rk) is the Gaussian measurement noise,

f(·) is the dynamic model function and h(·) is the measure-

ment model function. On time step k = 0 the distribution of

the state is x0 ∼ N(m0,P0), where the mean and covari-

ance are known.

Classically, non-linear optimal smoothing methods have

been derived as extensions to optimal filtering methods [6,
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7, 8], which are methods for computing the optimal so-

lution of the current state given the measurements up to

the current point of time. In particular, the solutions to

the linear Gaussian smoothing problems are well known

[9, 10, 11] and well documented in many text books (see,

e.g., [12, 13, 14, 15]).

The non-linear case has been commonly tackled with

Taylor series based approximation methods, that is, with ex-

tended Kalman smoothers (EKS) or extended Rauch-Tung-

Striebel (ERTS) smoothers. The ERTS approach and the

more generalized formalism is also well documented in lit-

erature [12, 15, 16, 17, 18, 19]. The unscented transfor-

mation (UT) [20, 21] is a relatively recent alternative to

the Taylor series approximations, and it was originally ap-

plied to non-linear filtering problems under the name un-

scented Kalman filter (UKF). More recently, the unscented

transformation has also been applied to optimal smoothing

[22, 23, 24].

The UKF can be interpreted to belong to a wider class

of filters called sigma-point filters [25], which also includes

other types of filters such as central differences Kalman

filter (CDKF), Gauss-Hermite Kalman filter (GHKF) and

a few others [26, 27, 28, 29]. In this article we shall use the

general Gaussian smoothing equations derived in [30] and

show how the sigma-point approximations can also be used

in non-linear optimal smoothing.

2. SIGMA POINT BASED SMOOTHERS

2.1. General Gaussian Optimal Smoothing

Assume that we have applied a Gaussian optimal filter, such

as one of the assumed density filters (ADF) proposed in [26,

27] to the state space model in Equations (1). The result of

filtering is then given as

p(xk |y1:k) ≈ N(xk |mk|k,Pk|k),

where mk|k and Pk|k are the mean and covariance com-

puted by the filter. If we follow the unscented RTS smoother



derivation in [23, 24] and apply the assumed density ap-

proximation instead of the unscented transformation, we ar-

rive at the following equations for the general RTS smoother

[30]:

mk+1|k =

∫

f(xk)N(xk |mk|k,Pk|k) dxk

Pk+1|k =

∫

[f(xk) − mk+1|k] [f(xk) − mk+1|k]T

× N(xk |mk|k,Pk|k) dxk + Qk

Ck,k+1 =

∫

[xk − mk|k] [f(xk) − mk+1|k]T

× N(xk |mk|k,Pk|k) dxk

Gk = Ck,k+1 P−1
k+1|k

mk|T = mk|k + Gk (mk+1|T − mk+1|k)

Pk|T = Pk|k + Gk (Pk+1|T − Pk+1|k)GT
k .

(2)

That is, if we start from the filtering result on step k = T
and iterate the above equations back to k = 0, we get the

following approximate smoothing distributions:

p(xk |y1:T ) ≈ N(xk |mk|T ,Pk|T ).

A straight-forward way to approximate the integrals in Equa-

tions (2) is by Monte Carlo sampling, as has been done in

Monte Carlo Kalman filter (MCKF) [31]. This approach is

computationally heavy, but does provide very accurate ap-

proximations of the integrals when the number of Monte

Carlo samples is high enough. We shall use the Monte

Carlo approximations as reference results for evaluation of

the sigma-point methods.

2.2. Linearization Based Smoother

To illustrate the usage of the Equations (2), we show how

the linearization approximation can be used for deriving the

extended Rauch-Tung-Striebel smoother. Consider the lin-

ear approximation:

f(xk) ≈ f(mk|k) + Fx(mk|k) (xk − mk|k),

where Fx is the Jacobian matrix of f . By substituting this

into the integrals in Equations (2), we get the mean as fol-

lows:

mk+1|k =

∫

f(xk)N(xk |mk,Pk) dxk

=

∫

[f(mk) + Fx(mk) (xk − mk)]

× N(xk |mk,Pk) dxk

= f(mk|k).

Similarly, for the covariance and cross-covariance we get

the familiar equations

Pk+1|k = Fx(mk|k)Pk|k FT
x (mk|k) + Qk

Ck,k+1 = Pk|k FT
x (mk|k).

That is, the extended Rauch-Tung-Striebel smoother can be

implemented by combining the above equations with the

last three Equations in (2). In this article, this simple lin-

earization based method is used as a base line in evaluation

of the sigma-point methods.

2.3. Unscented Approximation

Unscented transformation (UT) [21] is a relatively recent

method for approximating general transformations of ran-

dom variables. As shown in [27], UT can be interpreted

as an approximation to integrals of the form appearing in

Equations (2). The underlying idea in the UT approxima-

tion is that it is easier to approximate the distribution of

random variable under a non-linear transformation than the

non-linear transformation itself [21]. In UT this is accom-

plished by using a set of sigma points, which capture the

statistics of the original distribution exactly. The moments

of the transformed distribution are then computed by feed-

ing the points through the transformation and by computing

the moments from the transformed sigma points.

In UT the approximations to the mean, covariance and

cross-covariance are formed as

mk+1|k =

2n
∑

i=0

W
(m)
i f(x

(i)
k )

Pk+1|k =

2n
∑

i=0

W
(c)
i [f(x

(i)
k ) − mk+1|k]

× [f(x
(i)
k ) − mk+1|k]T + Qk

Ck,k+1 =

2n
∑

i=0

W
(c)
i [x

(i)
k − mk|k] [f(x

(i)
k ) − mk+1|k]T

where the sigma-points x
(i)
k are the columns of the Cholesky

factor S of Pk|k such that Pk|k = SST :

x
(0)
k = mk|k

x
(i)
k = mk|k + [

√

(n + λ)]Si, i = 1, . . . , n

x
(i)
k = mk|k − [

√

(n + λ)]Si−n, i = n + 1, . . . , 2n.



The constant weights are defined as

W
(m)
0 = λ/(n + λ)

W
(c)
0 = λ/(n + λ) + (1 − α2 + β)

W
(m)
i = 1/{(2(n + λ))}, i = 1, . . . , 2n

W
(c)
i = 1/{(2(n + λ))}, i = 1, . . . , 2n,

where the scaling parameter λ is defined as λ = α2(n +
κ) − n, and α, β and κ are adjustable parameters of the

transformation.

The number of sigma points in UT is always 2n + 1,

where n is the state dimensionality and thus in that sense

the computational complexity grows linearly in the number

of state dimensions.

2.4. Gauss-Hermite Approximation

Gauss-Hermite (GH) quadrature is a well known general

method for approximating integrals of functions over one-

dimensional Gaussian functions. As shown, for example, in

[26] the method can be extended for computation of inte-

grals over multidimensional Gaussian distributions. When

applied to integrals in Equations (2), with mth order GH,

we get the following approximations:

mk+1|k =

N
∑

i=1

Wif(x
(i)
k )

Pk+1|k =

N
∑

i=1

Wi[f(x
(i)
k ) − mk+1|k]

× [f(x
(i)
k ) − mk+1|k]T + Qk

Ck,k+1 =
N
∑

i=1

Wi[x
(i)
k − mk|k][f(x

(i)
k ) − mk+1|k]T ,

where x
(i)
k are the mn quadrature points, and Wi are their

associated weights, which are formed as products of the

one-dimensional Gauss-Hermite weights.

Note that in univariate case when m = 3 the number

of points is the same as in UT and the methods can indeed

be made equal by a suitable choice of UT parameters [26].

When m > 3, the number of points is different also in sin-

gle dimension, but of course, GH is potentially more accu-

rate than UT. The disadvantage of GH is that the number

of sigma points grows exponentially with the number of di-

mensions, whereas the number of sigma points in UT is a

linear function of state dimensionality.

2.5. Central Difference Approximation

In central difference (CD) method [26] the idea is to fit a

quadratic function to the non-linearity such the values at

certain preselected points around a central point match ex-

actly. In practice, we form the approximation as follows:

f(xk) ≈ f(mk|k) +

n
∑

i=1

F̃s,i sk,i +
1

2

n
∑

i=1

F̃ss,i s
2
k,i,

where we have made the variable change xk = mk|k +

S sk. The matrices F̃s and F̃ss are the central difference

approximations for the Jacobian Fs = ∂f(xk)/∂s and di-

agonal Hessian Fss = ∂2f(xk)/∂s2 evaluated at mk|k. The

columns are given by

F̃s,i =
f(mk|k + hSei) − f(mk|k − hSei)

2h

F̃ss,i =
f(mk|k + hSei) − 2f(mk|k) + f(mk|k − hSei)

h2
,

where h is the step size of the approximation and ei the unit

vector in the direction of the coordinate axis i. Thus, the ap-

proximations for the mean, covariance and cross-covariance

are given as

mk+1|k = f(mk|k) +
1

2

n
∑

i=1

F̃ss,i

Pk+1|k =

n
∑

i=1

F̃s,iF̃
T
s,i +

1

2

n
∑

i=1

F̃ss,iF̃
T
ss,i + Qk

Ck,k+1 = S F̃T
s .

Note that central difference approximation coincides with

the linearization approximation (see, Section 2.2), if the di-

agonal second-order correction term is dropped out and the

central difference approximations are replaced with exact

derivatives.

The number of sigma points required by CD method is

also linear function of number of dimensions as in UT. Thus

the computational complexity of CD is also approximately

the same as of UT.

3. SIMULATIONS

3.1. Univariate Non-stationary Growth Model

As the first simulation example we consider the univari-

ate non-stationary growth model discussed, for example, in

[31, 32, 33], which is particularly challenging for Gaussian

approximation based filters and smoothers since it is highly

non-linear and bimodal.

The dynamic and measurement models are given by

xk = αd xk−1 + βd

xk−1

1 + x2
k−1

+ γd cos(1.2(k − 1)) + qk

yk =
x2

k

20
+ rk.



Filter RMSE Smoother RMSE

EKF 10.6 (0.06) ERTS 9.33 (0.04)

UKF 7.33 (0.02) URTS 7.05 (0.02)

GHKF 7.14 (0.02) GHRTS 6.77 (0.02)

CDKF 7.14 (0.02) CDRTS 6.77 (0.02)

MCKF 5.89 (0.02) MCRTS 4.86 (0.02)

Table 1. Univariate Non-stationary Growth Model: mean

RMSE values of tested filters and smoothers over 1000 sim-

ulations (standard errors in parentheses).

The parameters of the dynamics are αd = 0.5, βd = 25
and γd = 8, and noises are distributed as qk ∼ N(0, 1) and

rk ∼ N(0, 1). The prior distribution for the state was set to

x0 ∼ N(0.1, 1) and the true state was initialized to x0 =
0.1. The system was simulated 1000 times for 400 time

steps, and the following filters and smoothers were tested:

• EKF & ERTS: standard extended Kalman filter and

RTS smoother with closed form derivatives.

• UKF & URTS: unscented Kalman filter and unscented

RTS smoother with transformation parameters α = 1,

β = 0 and κ = 2 (which corresponds to the suggested

parameterization in [20]).

• GHKF & GHRTS: Gauss-Hermite Kalman filter and

RTS smoother with m = 3.

• CDKF & CDRTS: Central difference Kalman filter

and RTS smoother with step size h =
√

3.

• MCKF & MCRTS: Monte Carlo Kalman filter and

RTS smoother with N = 10000 Monte Carlo sam-

ples.

Table 1 lists the root mean squared error (RMSE) val-

ues for the tested filters and smoothers, which shows that

Monte Carlo approximation works best with this model, and

Gauss-Hermite and central difference based methods have

equal performance. The UT based results are slightly worse

and the errors of EKF/ERTS are much higher than of the

others.

3.2. Tracking of Maneuvering Target

As the second simulation example we consider the problem

of tracking a target in two dimensional space executing a

maneuvering turn with unknown and time-varying turn rate.

The same simulation setup was also used in [30], and very

similar simulation setup was used in [29] for assessing the

performance of the cubature Kalman filter (CKF).

The non-linear dynamic model of the coordinated turn

model [1] is

xk =















1 sin(ω∆t)
ω

0 −
(

1−cos(ω∆t)
ω

)

0

0 cos(ω∆t) 0 − sin(ω∆t) 0

0 1−cos(ω∆t)
ω

1 sin(ω∆t)
ω

0
0 sin(ω∆t) 0 cos(ω∆t) 0
0 0 0 0 1















xk−1

+ qk−1,

(3)

where the state of the target is x = (x1, ẋ1, x2, ẋ2, ω), and

x1, x2 are the coordinates and ẋ1, ẋ2 are the velocities in

two dimensional space. The process noise parameters used

in the simulation were the same as in [29].

In the simulation setup we have four sensors measuring

the angles θ between the target and the sensors. The non-

linear measurement model for sensor i can be written as

θi
k = arctan

(

yk − si
y

xk − si
x

)

+ ri
k, (4)

where (si
x, si

y) is the position of the sensor i in two di-

mensions, and ri
k ∼ N(0, σ2

θ) is the measurement noise.

The measurement noise in the angular measurement was as-

sumed to be σθ =
√

5 mrad. The target trajectory and mea-

surements were simulated 1000 times for 100 time steps by

drawing the initial state randomly from the prior on each

simulation run. The parameters of the methods were the

same as in previous section, except that the UT parameters

were α = 1, β = 0 and κ = 3 − n (corresponds to [20]).

Table 2 lists the errors for the tested filters and smoothers,

which shows that the errors of UKF, CDKF and GHKF are

quite similar, but GHKF gives slightly smaller error than

the other filters (except MCKF). The EKF errors are a cou-

ple of times higher than of the other methods. The effect

of smoothing is similar with all the methods, that is, the

smoothing simply reduces the estimation error, but the or-

dering of the methods stays practically the same.

4. DISCUSSION

The classification to sigma-point methods in [25] is based

on interpreting the methods as special cases of (weighted)

statistical linear regression [34], and within this interpreta-

tion the unscented transformation, central differences and

Gauss-Hermite based methods described in this article can

certainly be counted as sigma-point methods, but others ex-

ist also. For example, the divided difference filter (DDF)

[28] and the cubature Kalman filter (CKF) [29] can be inter-

preted as sigma-point filters and the corresponding smooth-

ers could be implemented analogously to the smoothers in

this article. The Gaussian process approximation based filter



Method pos. RMSE vel. RMSE ω RMSE

EKF 194.7 (9.6) 184.6 (9.9) 0.0820 (0.007)

UKF 67.1 (0.4) 62.3 (0.4) 0.0281 (0.0001)

CDKF 65.5 (0.3) 60.5 (0.4) 0.0281 (0.0001)

GHKF 63.7 (0.3) 58.0 (0.4) 0.0280 (0.0001)

MCKF 63.8 (0.3) 58.1 (0.4) 0.0280 (0.0001)

ERTS 150.0 (8.2) 142.8 (8.5) 0.0766 (0.008)

URTS 41.6 (0.7) 30.9 (0.9) 0.0124 (0.0005)

CDRTS 39.8 (0.7) 29.4 (0.9) 0.0121 (0.0005)

GHRTS 37.5 (0.7) 27.8 (0.9) 0.0119 (0.0005)

MCRTS 37.7 (0.7) 27.8 (0.9) 0.0120 (0.0005)

Table 2. Tracking of Maneuvering Target: mean RMSE

values of position, velocity and turn rate estimates for the

tested filters and smoothers over 1000 simulations (standard

errors in parentheses).

presented in [35] could also be included, because it can be

interpreted to use the Bayes-Hermite quadrature [36] as the

underlying approximation method.

As discussed in [25], statistical linearization is closely

related to sigma-point approximations. However, it is im-

portant to note that the statistical linear regression [34] which

is the basis of sigma-point framework [25] is not exactly

equivalent to statistical linearization [19]. In the original

statistical linearization [19] the idea is to form statistically

linearized approximation

f(xk) = b + A (xk − mk|k),

by minimizing the following kind of error function with re-

spect to the parameters A and b:

MSE(b,A) = E[(f(xk) − b − A (xk − mk|k))T

× (f(xk) − b − A (xk − mk|k)],

where the expectation is over xk ∼ N(mk|k,Pk|k). The

result is:

b = E[f(xk)]

A = E[f(xk) (xk − mk|k)T ]P−1
k|k.

By substituting this into the Equations (2), we get the statis-

tically linearized RTS (SLRTS) smoother

mk+1|k = E[f(xk)]

Pk+1|k = E[f(xk) (xk − mk|k)T ]P−1
k|k

× E[f(xk) (xk − mk|k)T ]T + Qk

Ck,k+1 = E[f(xk) (xk − mk|k)T ]T .

Thus the sigma-point methods presented in the article can

be considered as discrete approximations to these equations.

5. CONCLUSION

In this article we have shown how the same sigma point ap-

proximations that have previously been used in sigma-point

Kalman filtering can also be used in optimal smoothing.

We have shown how the unscented transformation, Gauss-

Hermite quadrature and central differences based smoothers

can be derived from the general Gaussian non-linear smooth-

ing equations and demonstrated their performance in simu-

lated applications.
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