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Abstract

This article presents the winning solution to the CATS time series prediction com-
petition. The solution is based on classical optimal linear estimation theory. The
proposed method models the long and short term dynamics of the time series as
stochastic linear models. The computation is based on a Kalman smoother, in which
the noise densities are estimated by cross-validation. In time series prediction the
Kalman smoother is applied three times in different stages of the method.
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1 Introduction

This article! presents the winning solution to the time series prediction competition, the
CATS benchmark [2], which was organized as a special session of the IJCNN 2004 confer-
ence. The solution is based on the classical Kalman smoother with cross-validated process
noise variances. In addition to presenting the winning solution, this article also discusses the
connection of optimal filtering to Bayesian inference, and to the Gaussian process regression
models used in Bayesian neural network literature.
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1.1 CATS Benchmark

The goal of the CATS competition [2] was to provide a new benchmark for the problem of
time series prediction and to compare different methods and models that can be used for
the prediction. The proposed time series is the CATS benchmark (Competition on Artificial
Time Series).

This artificial time series with 5,000 data was given. Within those 100 values were missing.
These missing values were divided in 5 blocks:

elements 981 to 1,000;

elements 1,981 to 2,000;
elements 2,981 to 3,000;
elements 3,981 to 4,000;
elements 4,981 to 5,000;

The purpose was to predict the 100 missing values based on the other data. The performance
criterion was the mean square error, which was computed on the 100 missing values. The
time series is shown in Figure 1.

400 | / \ .

. 200 - \ w .
0 /4 i

-200 | / .

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time

Fig. 1. The CATS benchmark time series. The purpose of the competition was to predict the missing
data (marked with arrows) such that the mean squared error is minimized.



1.2 Optimal Linear Filtering

The success of optimal linear filtering is mostly due to the seminal article of Kalman [3], which
describes a recursive solution to the optimal discrete linear filtering problem. Although the
original derivation of the Kalman filter was based on the least squares approach, the same
equations can be derived from pure probabilistic Bayesian analysis. The Bayesian analysis
of Kalman filtering is well covered in the classic book by Jazwinski [4] and more recently in
the book by Bar-Shalom et al. [5].

Kalman filtering, mostly because of its least squares interpretation, has been widely used in
stochastic optimal control. A practical reason to this is that the inventor of Kalman filter,
Rudolph E. Kalman, has also made several contributions [6] to the theory of linear quadratic
Gaussian (LQG) regulators, which are fundamental tools of stochastic optimal control [7,8].

As discussed in the book by West and Harrison [9], in the sixties, Kalman filter like recursive
estimators were used also in the Bayesian community and it is not clear whether the theory of
Kalman filtering or the theory of dynamic linear models (DLM) was the first. Although these
theories were originally derived from slightly different starting points, they are equivalent.
Because of its useful connection to the theory and history of stochastic optimal control, this
article approaches the Bayesian filtering problem from the Kalman filtering point of view.

In the early stages of its history, the Kalman filter was soon discovered to belong to the class
of Bayesian estimators [10], with the resulting generalized theory called non-linear filtering
theory [4]. An interesting historical detail is that while Kalman and Bucy were formulating
the linear theory in the United States, Stratonovich was doing the pioneering work on the
probabilistic (Bayesian) approach in Russia [11,4].

An optimal discrete filter, such as the Kalman filter, solves the discrete-time filtering problem,
which means that the underlying physical phenomenon is modeled as a discrete-time process.
However, because Nature is continuous, a physically more realistic approach is continuous-
discrete filtering [4], where state dynamics are modeled as continuous-time stochastic pro-
cesses, that is, stochastic differential equations [12,13] and measurements are assumed to be
obtained at discrete time steps. The dynamic model in this paper is also first designed as a
continuous-time process and then discretized to allow for consistent prediction over intervals
of varying length, that is, for non-uniform sampling of measurements.

2 Optimal Estimation

In this section we review the formulation of optimal filtering and smoothing as recursive
Bayesian estimation and introduce the notation used in this article. The equivalent formu-
lation is used in classical estimation theory and optimal filtering literature (e.g., [4]).



Optimal non-linear discrete-time estimation considers generic state space models of the form

X ~ p<Xk \ qu) (1)
Yie ~ P(Yr | Xk),

where x;, € R” is the unknown hidden state and y, € R™ is the measurement at time step
k. The dynamic model p(x) | xx_1) defines the Markov model for state transitions. The
measurement model p(yy | Xx) defines the distribution of measurements for given state con-
figurations. At the initial time step k = 0, the state is assumed to have the prior distribution

p(Xo)-
2.1 The Optimal Filtering Equations

The goal of filtering is to compute the posterior distribution of the state x; at time step k
given the history of the measurements up to time step &

p(Xk ‘ Yi,.-- >Yk) - p(Xk | ytk)' (2)

The recursive equations for computing the posterior state distribution above are called the
optimal filtering equations:

e The prediction step uses the Chapman-Kolmogorov equation for propagating the posterior
distribution of the previous time step p(xx_1 | y1..-1) to current time step taking into
account the uncertainties induced by the dynamic model p(xy | xx_1):

Xk | Yik-1) = /p(xk | Xp—1) P(Xk—1 | y1-1) dXp—1. (3)

e The update step fuses the information in the predicted distribution and the measurement
likelihood p(yx | xx) by using the Bayes rule:

P(ye | k) p(xk | y1:6-1)
Iolyr | k) p(xk | y1r-1) dxi’ (4)

Pk | yix) =

2.2 The Optimal Smoothing FEquations

The purpose of (fixed-interval) smoothing is to compute the posterior distribution of the
state x; at time step k after receiving the measurements up to time step T, where T" > k

Xk | y1,--.,¥7) = p(Xk | yi7). (5)

The difference between filters and smoothers is that the filter computes its estimates using
only the measurements obtained before and at time step k, but the smoother uses also the



measurements obtained after time step k. After obtaining the filtered posterior state distri-
butions, the following optimal smoothing equations can be used for computing the posterior
distribution for each time step conditional on all measurements up to time step 7"

plxees | yia) = [ P06t | x0) pOx | 1) dxe (6)

b (X Xk) P\Xk | Y1k
bl | ya) = [ PRee1 | 0) ot | 12
P(Xk+1 | y1:k;>

P(Xet1 | Y1) dXpia (7)

2.8  Continuous-Discrete Filtering and Smoothing

In continuous-discrete filtering the dynamics of the state are modeled as 1t6 stochastic dif-
ferential equations (SDE) of the form [4,12,13]

dx = f(x, t)dt + L(x, t)dB(t), (8)

where x(t) is the state, f(x,t) is the drift function, L(x, t) is the dispersion matrix, and 3(t)
is n-dimensional Brownian motion (Wiener process) with known diffusion matrix Q.(?).

In estimation context [14,5,15] and also in this article the SDE is often stated in terms of a
white noise process w(t) as

x =f(x,t) + L(x,t)w(t), 9)
where the white noise is defined as the formal derivative of the Brownian motion w(t) =
dB/dt and x = dx/dt. The theoretical problem in this white noise formulation is that white
noise as a stochastic process cannot exists in the mathematical sense, because Brownian
motion is nowhere differentiable. For this reason the integral equation formulation (8) of
the SDE is often used in mathematical analysis. In practice, models are much easier to
formulate in terms of white noise and for this reason it is often used engineering and physics
applications. Fortunately, all sensible models involving white noise can be interpreted also
in terms of Brownian motion.

In continuous-discrete filtering the measurements y;, are obtained discretely at time instances
t1,ts, ... as in the discrete model (1). To emphasize that the measurement model is function
of state at time t;, not time index k, it is written as p(yy | x(¢x)). For example, in linear
Gaussian filtering model we would have a measurement model

p(yr | x(tx)) = N(yx [ Hx (), R). (10)

The advantage of the continuous-discrete model over discrete model is that the case of non-
uniform sampling (i.e., varying sampling interval) is naturally included in the model.

In theory, any continuous-discrete filtering model can be reduced into an equivalent discrete
model by solving the transition densities p(x(tx) | x(tx—1)) from the Kolmogorov forward
partial differential equation (also called the Fokker-Planck equation) [4,12,13]. Sometimes it



is possible to solve the transition density explicitly, and the most common special cases of
this kind are the Kalman-Bucy filters [3,16], but in general numerical approximations are
required.

Because in principle a continuous-discrete filtering model can be always reduced into an
equivalent discrete model, also the optimal discrete filtering and smoothing equations apply
as such. The explicit conversion into an equivalent discrete model is not the only possible
way to go, but it is particularly useful in Kalman filtering models, which are used in this
article.

2.4 The Kalman Filter

The Kalman filter (see, e.g. [4,14,5]), which originally appeared in [3], considers discrete
filtering models, where the dynamic and measurements models are linear Gaussian

Xp = Ap_1Xp—1 + Q1
vi = Hpxp + 1,

(11)

where qx_1 ~ N(0,Q_1) and 1y ~ N(0,Ry). If the prior distribution is Gaussian, xo ~
N(myg, Py), then the optimal filtering equations can be evaluated in closed form and the
resulting distributions are Gaussian

p(Xk | y1r-1) = N(xx | m;, Py)
p(Xk ’ Y1:k) = N(Xk | mk;Pk) (12)
P(Ye | yir-1) = N(yr | Hemy , Sy).

The parameters of the distributions above can be computed with the Kalman filter prediction
and update steps:

e The prediction step is

m,; = Ak_lmk_l (13)
P, = A P A + Qi (14)

e The update step is

vi = yr — Hymy,

S, = H,P HI + Ry
K, =P, H{S;'

m; = m; + Kyvy

P, =P, - K;S.K].

o~~~ o~ o~
—_
— — ' ~— ~—



2.5 The Kalman Smoother

The Kalman smoother (see, e.g., [14,5]), which is also called the Rauch-Tung-Striebel smoother
[17] computes the state posterior distributions

p(xi | yir) = N(xi, | my, Py), (20)

for the linear filtering model (11) recursively. The difference to the posterior distributions
computed by the Kalman filter is that the smoothed distributions are conditional on the
whole measurement data y;.p, while the filtered distributions are conditional only on the
measurements obtained before and at time step k, that is, on the measurements y;.s.

In the fized interval Kalman smoother which is used in this article, the smoothed distributions
are computed from the Kalman filter results with recursions

Pr = APrAL + Qi
Ci = PLA[[P,] !
m; = my + Cymj ; — Apmy]
P =Py + Cy[Piy, — PI;Jrl]Cg?

(21)

starting from the last time step 7', with m% = my and P} = Pr.

2.6 The Continuous-Discrete Kalman Filter

In the continuous-discrete Kalman filter [4,14,5] the discrete-time dynamic model is replaced
with a continuous-time linear stochastic differential equation [12,13] model of the form

x(t) = F(t)x(t) + L(t)w(t), (22)

with the initial conditions

x(0) ~ N(m(0), P(0)). (23)
F(t) and L(¢) are time dependent matrices, and w(t) is a Gaussian white noise process with
moments

E[w(t)] =0 (24)
Elw(t) w(t +7)"] = Qc(t)d(7). (25)

The solution x(t) is a Gaussian process with its mean and covariance given by the differential
equations

(t)m(?) (26)
(OP(t) + POF' (1) + L(H)Qe(t)L' (). (27)



These equations are the classical optimal prediction equations of the Kalman-Bucy filter

[16].

In continuous-discrete filtering the measurements are obtained at discrete instances of time
and we are only interested in the state distribution at these time steps. Thus, we are interested
in forming a model that jumps from time instance t; to the first measurement at t;, then
from ¢; to the second measurement at ¢, and so on. The continuous-time linear model (22)
can be converted into the equivalent discrete model, which is of the same form as the dynamic
model of the Kalman filter (11).

The solutions to Equations (26) and (27) can be integrated exactly from measurement to
measurement using equations of the form

my = A, my_ (28)
P, = A, P, AL |+ Q. (29)

where my, = m(tx), Pr = P(¢x). This is equivalent to using the discrete dynamic model
(11) with a transition matrix Aj_; and process noise covariance Q_;. These equivalent
discrete-time matrices Ay = A(tx), Qr = Q(tx) can be solved from the differential equations

A(t) =F(t)A(1) (30)
Q(t) = F()Q(t) + Q)F () + L(t)Q.(t)L" (t). (31)

with initial conditions A (tx_1) = I and Q(tx—1) = 0. If the model is linear and time invariant
(LTT), that is, the matrices F and L do not depend on time, the discrete model matrices
will depend only on the time difference Aty = tp — tx_1, A = A(Atg), Qr = Q(Atg).
Furthermore, if also the sampling period Aty is independent of the time step index k, the
discrete model matrices will be constant.

2.7 Gaussian Processes

The continuous-discrete Kalman filter described in the previous section uses Gaussian pro-
cesses as its dynamic models. Gaussian processes are the most common signal models in
classical continuous-time signal processing, especially in communications applications. The
theory of Wiener filtering [18], which is the theoretical basis for optimal signal detection
and demodulation [19] deals with signals that can be modeled as stationary Gaussian pro-
cesses. Kalman filtering [3] and Kalman-Bucy filtering [16] can be considered as extensions to
Wiener filtering theory, in which also non-stationary Gaussian process models can be used.
Stochastic control theory [8] builds on the grounds of Kalman-Bucy filtering by including a
controller aside with the optimal state estimator.

Gaussian processes, or Gaussian random fields are also used in spatial and spatio-temporal
modeling [20,21], and in general regression and classification problems [22-26]. Furthermore,
the functional prior implied by an MLP neural network model converges to a Gaussian



process as the number of hidden units increases, provided that the MLP weight priors are
chosen suitably [27].

The relationship between the Gaussian processes used in regression and the Gaussian pro-
cesses used in filtering is that continuous-discrete filtering can be thought of as regression
from time ¢ to partially observed states x(t), which we observe through the measurements
y(t). The Gaussian process dynamic model is the prior for the functions t — x(t). The opti-
mal filter solves the state estimates recursively at each time instance, and it can be considered
the on-line learning solution to the Gaussian process regression problem. However, the filter
provides the on-line estimates only forward in time, not at arbitrary time instances, and to
compute the state estimates at arbitrary time instances the smoothing step is required. The
Gaussian processes used in regression have multidimensional time-variables (i.e., regressors)
and for this reason they are often called Gaussian random fields.

3 Description of the Model

3.1 The Long Term Model

For long term prediction, a linear dynamic model is likely to be a good approximate model
because if we ignore the short term periodicity of the data, the data could be well generated
by a locally linear Gaussian process with Gaussian measurement noise. The data seems to
consist of lines with suddenly changing derivatives. Thus, it would be reasonable to model
the derivative as Brownian noise process, which leads to a white noise model for the second
derivative. Using higher derivatives does not seem useful, because the curve consists of a set
of straight lines rather than parabolas or other higher order curves.

The dynamic model is formulated as a continuous time model, and then discretized to allow
for a varying sampling rate, that is, prediction over the missing measurements. The selected
dynamic linear model for the long term prediction is the stochastic differential equation
model

d*x(t)
o w(t), (32)
where w(t) is a continuous-time Gaussian white noise process with moments
BElw(t)] =0
Elw(t) w(t + 7)] o(T)

This can be written in equivalent discrete form as

Tk 1 At T qi .

' _ | 1 + 1,k—1 7 (34)

T 01 T 431



where the process noise, qf = (¢¥,_; ¢5,_;)", has zero mean and covariance

At* /3 At?/2)
Qkfl = q, (35>
At?/2 At

and where At is the time period between samples and ¢” defines the strength (spectral
density) of the process noise. The measurement model is

ye =+ i, 1~ N(0,07). (36)

A quick testing of the long term model produces a smooth curve as shown in Figure 2. It can
be seen that the locally linear dynamic model may be a bit too simple, because the residual
signal still seems to contain noticeable periodicity. This periodicity can be best seen from
the residual autocorrelation in Figure 3.
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Fig. 2. Data 400-500 (black) and the result of prediction with the long term model (gray).

3.2 The Short Term Model

The short term periodicity of the residual time series {ej : k = 1,..., N} can be modeled with
a time varying autoregressive (TVAR) model [9], in which as an extension to conventional
AR models [28], the weights are allowed to vary according to a Gaussian random walk model

Wi = Wi_1 + V5

ar
e = Wikeh_i + e

)

(37)

10



60 70 80 90 100

Fig. 3. Autocorrelation in the residual of the long term prediction model.

The process noise vi* has zero mean and covariance Q = ¢*I. The weight vector wy, is
estimated from the known part of the residual time series. The measurement noise has a
Gaussian distribution r2* ~ N(0,02.). In this article, we chose to use a second order AR-
model such that the weight vector was two dimensional,

A%
we=| ""|. (38)
Wa k

After the TVAR-model has been estimated from the residual time series data, the final
estimation solution is obtained from

d, = Z w; pdg—; + vF
i (39)
er =dp +1%, Th NN(O,O‘Z%),

where the process noise vf has variance ¢P. The final signal estimate is then given as g, =
Ty + dy, where 7y, is the estimate produced by applying Kalman smoother to the long term
model, and dj, is produced by the short term model.

In practice only the distributions of weight vectors wj are known, not their actual values,
and in order to use the model (39) we would have to integrate over these distributions at
every time step. In this article we have used a common approach, where this integration is
approximated by using the most likely estimate of the weight vector time series with this
single estimate regarded as being known in advance. In classical statistical signal processing
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this estimate is calculated by linear least squares (see, e.g., [28]). Because our weight vector
is allowed to vary in time, in this case the corresponding estimate is produced by applying
the Kalman smoother to the model (37).

3.8 The Prediction Method

The long term prediction is done in two steps:

(1) Run the Kalman filter over the data sequence and store the estimated means and covari-
ances. Predict the missing measurements such that the filtering result contains estimates
also for the missing steps.

(2) Run the Kalman smoother over the Kalman filter estimation result, which results in the
smoothed (MAP) estimate of the time series including the missing parts.

The short term prediction consists of four steps:

(1) Run the Kalman filter over the residual sequence with the model (37) in order to produce
a filtering estimate of the TVAR weight vectors. Predict the weights over the missing
parts.

(2) Run the Kalman smoother over the Kalman filter estimation result above, which results
in a smoothed (MAP) estimate of the weight time series including the missing parts.

(3) Run the Kalman filter over the residual sequence with the model (39) in order to produce
a filtering estimate of the short term periodicity. The periodicity is also predicted over
the missing parts.

(4) Run the Kalman smoother over the Kalman filter estimation result above, which results
in a smoothed (MAP) estimate of the periodicity time series including the missing parts.

Due to the Gaussian random walk model of the weights the short term model potentially has
a large effective number of parameters. A simple error minimization procedure with respect to
the noise parameters (e.g., Maximum Likelihood) would lead to a badly overfitted estimation
solution. By applying cross-validation we can maximize the predictive performance and avoid
the overfitting.

4 The Original Results

4.1 Selection of Measurement Noises

The long term measurement noise strength can be approximated by looking at a short time
period of the curve. If we assume that we would approximate it with a dynamic linear model,
we can approximate the standard deviation of the model’s measurement noise by looking at

12



the strengths of the residuals. The selected variance of the noise was o2 = 10%, which fits to
the observed residual as can be seen in the Figure 2 quite well.

The choices of the measurement noises both in the long and the short term models can be
done, for example, by visual inspection, because the exact choice of the noise strengths is
not crucial. In fact, the choice does not matter at all when the cost function of the CATS
competition is considered, because in this case the selection of measurement noise strength
is dependent on the selection of the process noise strength in all the models. The process
noise strength is selected based on cross-validation, which implicitly corrects also the choice
of the measurement noise strength. By visual inspection the suitable measurement noise for
the TVAR-estimation model (37) was o2, = 12.

Because we are only interested in the missing parts of data in prediction with the model
(39), the best way to do this is to follow the measurements exactly whenever there are
measurements and use the TVAR-model for prediction only when there are no measurements.
This happens when the measurement noise level is set to as low as possible and the process
noise is set to a moderate value. Our choice for the measurement noise level in model (39)
was O'g =107,

4.2 Cross-Validation of The Process Noises

The process noise parameters ¢* and ¢** were selected using a decision theoretic approach
by minimizing the expected cost, where the cost function was the target error criterion. The
expected cost can easily be computed by cross-validation, which approximates the formal
Bayes procedure of computing the expected costs.

Cross-validation methods for model selection have been proposed by several authors: for
early accounts see [29,30] and for a more recent review see [31,32]. [33] and [34] discuss how
cross-validation approximates the formal Bayes procedure of computing the expected utility
of using a model for predictions.

Based on the cross-validation, the best process noises were

T __

Zr =0.14 (40)
q* = 0.0005.

These values were based on cross-validation over a range of values, which was selected in
advance. However, it later turned out that this range could have been selected better (see
next Section). As discussed in the previous section, the only requirement for the selection of
the process noise ¢P is that it should be high enough. Because the measurement noise was
chosen to be very low, our choice was ¢? = 1.

13



4.3  The Original Prediction Results

Figure 4 shows the estimated TVAR-coefficients for each time instance. It can be seen that
the weights vary a bit over time, but the periodic short term process seems to be quite
stationary.

il (il | P H)U
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Fig. 4. Estimated filter coefficients for the TVAR-model.

Figures 5, 6, 7, 8 and 9 show the results of predicting over the missing intervals. It can be
seen that on the missing intervals the short term model differs from the long term model only
near the measurements and the combined estimate is closest to the long term prediction in
the middle of the prediction period. The result is intuitively sensible, because when we are
going away from the measurements, we have less information about the phase of the local
periodicity, and it is best just to guess the mean given by the long term model.
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The following mean squared errors were obtained by the method:

1 [ 1000 2000 3000
El:m Z (ye — 0)* + Z (e — 5e)* + Z (v, — :)°
=981 t=1981 =281
4000 5000
+ > =)+ D (ye— )| = 408
t=3981 t=4981
1 [ 1000 2000 (41)
Bm i | S - Y i
=081 +=1981
3000 4000
3 e 90%+ Y (v —1)?| = 346.
t=2081 13981

The error E; was the actual CATS competition objective, and the approach described in
this section gave the lowest error in the competition [2]. The second error criterion was used
in further analysis on the different methods in [2].
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Fig. 5. The original prediction over missing data at 981 — 1000. The gray line is the true signal, the
dashed line is the long term prediction result, and the black line is the combined long and short
term prediction result.
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Fig. 6. The original prediction over missing data at 1981 — 2000. The gray line is the true signal,
the dashed line is the long term prediction result, and the black line is the combined long and short
term prediction result.

5 Improved Results

5.1 FEatended Cross-Validation of Process Noises

Further analysis of the cross-validation results of the original prediction competition indi-
cated that if we had used a larger range of possible noise levels in the cross-validation, we
would have obtained a better prediction result. Extending the cross-validation to zero noise
levels reveals that based on the cross-validation the following parameters are better than the
original ones used in the competition:

Z.r =0.14 (42)
q> = 0.

The difference to the original parameters is that the TVAR model process noise level is
exactly zero, not only almost zero as in the original model. This means that it is better
to use a stationary AR-model, not a time-varying AR model in prediction. Fitting the AR
model to the data with the cross-validated noise parameters resulted in the following AR-
parameters:

w; = 0.6089

4
—0.1517. (43)

g
I
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Fig. 7. The original prediction over missing data at 2981 — 3000. The gray line is the true signal,
the dashed line is the long term prediction result, and the black line is the combined long and short
term prediction result.

The error criteria are also better than in the original prediction:

1 1000 2000 3000
Ev=—oo| 2 =0+ > ="+ 3 (=)’
t=981 t=1981 t=2981
4000 5000
+ 3 -9+ Y (e —0)?| =381
t=3981 t=4981
1 1000 2000 (44)
Ey=ool 2 =00+ > (=9’
t=981 t=1981
3000 4000
+ > W=+ D (m— )| =312,
t=2981 t=3981

5.2 The Improved Prediction Results

Figures 10, 11, 12, 13 and 14 show the results of predicting over the missing intervals with
the improved method. The difference in the result is that in the improved prediction the AR
model seems to get slightly less weight and the long term prediction dominates more.

17



350 T T T

300

250

200

150

100

50 L
3950 3960 3970 3980 3990 4000 4010 4020 4030 4040 4050

Fig. 8. The original prediction over missing data at 3981 — 4000. The gray line is the true signal,
the dashed line is the long term prediction result, and the black line is the combined long and short
term prediction result.

6 Conclusions

6.1 Summary of the Results

In this article we have described the winning solution to the CATS time series prediction
competition. The solution is based on applying the classical Kalman smoother method to
estimating the long term and short term statistical models for the CATS benchmark time
series. The good prediction performance is likely due to that the long term prediction gives
a very good overall approximation of the signal and the short term prediction catches the
local periodicity ignored by the long term model.

We also showed that the original prediction results can improved by simplifying the model,
namely by removing the time-dependence from the AR model. This model choice would have
turned out also in the original cross-validation if we had used a bit larger parameter range
in the cross-validation.

Although all the used models were linear (and dynamic) in nature they seem to model this
non-linear time series well. The good performance is not surprising, because the long term
Gaussian process model is very much related to the Gaussian processes which have obtained
good results in Bayesian non-linear regression. The short term prediction model is also a
Gaussian process model, but of the type which is more common in the signal processing
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Fig. 9. The original prediction over missing data at 4981 — 5000. The gray line is the true signal,
the dashed line is the long term prediction result, and the black line is the combined long and short
term prediction result.
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Fig. 10. The improved prediction over missing data at 981 — 1000.

context.

It could be possible that by using some kind of non-linear state space models (filtering
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Fig. 11. The improved prediction over missing data at 1981 — 2000.
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Fig. 12. The improved prediction over missing data at 2981 — 3000.

models) the prediction results would be better, but it is very hard to judge what kind
of model really is the best. Using more complex models would restrict the generality of
the approach and even though some specific models could improve the results with this
particular time series, finding generally better models than the classical Gaussian process
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Fig. 13. The improved prediction over missing data at 3981 — 4000.

60

40

20

-40

-60

-80

-100

20 1 1
4900 4910 4920 4930 4940 4950 4960 4970 4980 4990 5000

Fig. 14. The improved prediction over missing data at 4981 — 5000.

models is difficult.
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