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ABSTRACT

We consider joint estimation of state and time-varying noise
covariance matrices in non-linear stochastic state space mod-
els. We propose a variational Bayes and Gaussian non-linear
filtering based algorithm for efficient computation of the
approximate filtering posterior distributions. The formula-
tion allows the use of efficient Gaussian integration methods
such as unscented transform, cubature integration and Gauss-
Hermite integration along with the classical Taylor series
approximations. The performance of the algorithm is illus-
trated in a simulated application.

Index Terms— variational Bayes, unknown noise covari-
ance, adaptive filtering, non-linear Kalman filtering

1. INTRODUCTION

In this paper, we propose a method for Bayesian inference
on the state xk and noise covariances Σk in heteroscedastic
non-linear stochastic state space models (see, e.g., [1]) of the
form

xk ∼ N (f(xk−1), Qk)

yk ∼ N (h(xk),Σk)

Σk ∼ p(Σk |Σk−1),

(1)

where xk ∈ Rn is the state at time step k, and yk ∈ Rd
is the measurement, Qk is the known process noise covari-
ance and Σk is the measurement noise covariance. The non-
linear functions f(·) and h(·) form the dynamic and measure-
ment models, respectively, and the last equation defines the
Markovian dynamic model for the dynamics of the unknown
noise covariances Σk. We aim at computing the joint poste-
rior (filtering) distribution of the states and noise covariances
p(xk,Σk | y1:k). Although the formal Bayesian solution to
this problem is well-known (see, e.g., [1]), it is computation-
ally intractable and we can only approximate it.

In a recent article, Särkkä and Nummenmaa [2] intro-
duced the variational Bayesian (VB) adaptive Kalman filter
(VB-AKF), which can be used for estimating the measure-
ment noise variances along with the state in linear state space
models. In this paper, we extend the method to allow es-
timation of the full noise covariance matrix and non-linear

state space models. The idea is similar to what was recently
used by Piché et al. [3] in the context of outlier-robust fil-
tering, which in turn is based on the linear results of [4]. VB
methods have been applied to parameter identification in state
space models also in [5, 6, 7] and various other (Bayesian)
approaches have can be found, for example, in references
[8, 9, 10, 11, 12].

1.1. Gaussian Filtering

If the covariances in the model (1) were known, the filtering
problem would reduce to the classical non-linear (Gaussian)
optimal filtering problem [13, 8, 14, 1]. This non-linear filter-
ing problem can be solved in various ways, but one quite gen-
eral approach is the Gaussian filtering approach [8, 15, 16],
where the idea is to assume that the filtering distribution is
approximately Gaussian. That is, we assume that there ex-
ist means mk and covariances Pk such that p(xk | y1:k) ≈
N(xk |mk, Pk).

The Gaussian filter prediction and update steps can be
written as follows [15]:

• Prediction:

m−
k =

∫
f(xk−1) N(xk−1 |mk−1, Pk−1) dxk−1

P−
k =

∫
(f(xk−1)−m−

k ) (f(xk−1)−m−
k )T

×N(xk−1 |mk−1, Pk−1) dxk−1 +Qk.

(2)

• Update:

µk =

∫
h(xk) N(xk |m−

k , P
−
k ) dxk

Sk =

∫
(h(xk)− µk) (h(xk)− µk)T

×N(xk |m−
k , P

−
k ) dxk + Σk

Ck =

∫
(xk −m−) (h(xk)− µk)T

×N(xk |m−
k , P

−
k ) dxk

Kk = Ck S
−1
k

mk = m−
k +Kk (yk − µk)

Pk = P−
k −Kk SkK

T
k .

(3)
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With different selections for the Gaussian integral approxi-
mations, we get different filtering algorithms [16] such as the
unscented Kalman filter (UKF) [17], Gauss-Hermite Kalman
filter (GHKF) [15], cubature Kalman filter (CKF) [18], and
various others [19, 20, 21] along with the classical methods
[13, 8].

1.2. Variational Approximation

In this paper, we approximate the joint filtering distribution of
the state and covariance matrix with the free-form variational
Bayesian (VB) approximation (see, e.g., [22, 23, 24, 5]):

p(xk,Σk | y1:k) ≈ Qx(xk)QΣ(Σk), (4)

whereQx(xk) andQΣ(Σk) are the yet unknown approximat-
ing densities. The VB approximation can be formed by min-
imizing the Kullback-Leibler (KL) divergence between the
true distribution and the approximation:

KL[Qx(xk)QΣ(Σk) || p(xk,Σk | y1:k)]

=

∫
Qx(xk)QΣ(Σk) log

(
Qx(xk)QΣ(Σk)

p(xk,Σk | y1:k)

)
dxk dΣk.

Minimizing the KL divergence with respect to the probability
densities, we get the following equations:

Qx(xk) ∝ exp

(∫
log p(yk, xk,Σk | y1:k−1)QΣ(Σk) dΣk

)
QΣ(Σk) ∝ exp

(∫
log p(yk, xk,Σk | y1:k−1)Qx(xk) dxk

)
.

(5)

The solutions to these equations can be found by a fixed-point
iteration for the sufficient statistics of the approximating den-
sities.

2. VARIATIONAL BAYESIAN ADAPTATION OF
NOISE COVARIANCE

2.1. Estimation of Full Covariance in Linear Case

We start by considering the linear state space model with un-
known covariance as follows:

p(xk |xk−1) = N(xk |Ak xk−1, Qk)

p(yk |xk,Σk) = N(xk |Hk xk,Σk),
(6)

where Ak and Hk are some known matrices. We assume that
the dynamic model for the covariance is independent of the
state and of the Markovian form p(Σk |Σk−1), and set some
restrictions to it shortly. In this section we follow the deriva-
tion in [2], and extend the scalar variance case to the full co-
variance case.

Assume that the filtering distribution of the time step k−1
can be approximated as product of Gaussian distribution and
inverse Wishart (IW) distribution as follows:

p(xk−1,Σk−1 | y1:k−1) =

N(xk−1 |mk−1, Pk−1) IW(Σk−1 | νk−1, Vk−1),
(7)

where the densities, up to non-essential normalization terms,
can be written as [25]:

N(x |m,P ) ∝ |P |−1/2 exp

(
−1

2
(x−m)T P−1 (x−m)

)
IW(Σ | ν, V ) ∝ |Σ|−(ν+n+1)/2 exp

(
−1

2
tr
(
V Σ−1

))
.

That is, in the VB approximation (4), Qx(xk) is the Gaussian
distribution and QΣ(Σk) is the inverse Wishart distribution.

We now assume that the dynamic model for the covari-
ance is of such form that it maps an inverse Wishart distribu-
tion at the previous step into inverse Wishart distribution at
the current step. This gives (cf. [2])

p(Σk | y1:k−1) = IW(Σk | ν−k , V
−
k )

p(xk | y1:k−1) = N(xk |m−
k , P

−
k ),

where ν−k and V −
k are certain parameters (see Section 2.2),

and m−
k and P−

k are given by the standard Kalman filter pre-
diction equations:

m−
k = Akmk−1

P−
k = Ak Pk−1A

T
k +Qk.

(8)

Because the distribution and the previous step is separable,
and the dynamic models are independent we thus get the fol-
lowing joint predicted distribution:

p(xk,Σk | y1:k−1) =

N(xk |m−
k , P

−
k ) IW(Σk | ν−k , V

−
k ).

(9)

We are now ready to form the actual VB approximation to the
posterior. The integrals in the exponentials of (5) can now be
expanded as follows (cf. [2]):∫

log p(yk, xk,Σk | y1:k−1)QΣ(Σk) dΣk

= −1

2
(yk −Hk xk)T 〈Σ−1

k 〉Σ(yk −Hk xk)

− 1

2
(xk −m−

k )T
(
P−
k

)−1
(xk −m−

k ) + C1∫
log p(yk, xk,Σk | y1:k−1)Qx(xk) dxk

= −1

2
(ν−k + n+ 2) log |Σk| −

1

2
tr
{
V −
k Σ−1

k

}
− 1

2
〈(yk −Hk xk)T Σ−1

k (yk −Hk xk)〉x + C2,

(10)



where 〈·〉Σ =
∫

(·)QΣ(Σk) dΣk, 〈·〉x =
∫

(·)Qx(xk) dxk,
and C1, C2 are some constants. If we have that QΣ(Σk) =
IW(Σk | νk, Vk), then the expectation in the first equation of
(10) is

〈Σ−1
k 〉Σ = (νk − n− 1)V −1

k . (11)

Furthermore, if Qx(xk) = N(xk |mk, Pk), then the expecta-
tion in the second equation of (10) becomes

〈(yk −Hk xk)T Σ−1
k (yk −Hk xk)〉x

= tr
{
Hk PkH

T
k Σ−1

k

}
+ tr

{
(yk −Hkmk) (yk −Hkmk)T Σ−1

k

}
.

(12)

By substituting the expectations (11) and (12) into (10) and
matching terms in left and right hand sides of (5) results in
the following coupled set of equations:

Sk = Hk P
−
k HT

k + (νk − n− 1)−1 Vk

Kk = P−
k HT

k S
−1
k

mk = m−
k +Kk (yk −Hkm

−
k )

Pk = P−
k −Kk SkK

T
k

νk = ν−k + 1

Vk = V −
k +Hk PkH

T
k + (yk −Hkmk) (yk −Hkmk)T .

(13)

The first four of the equations have been written into such
suggestive form that they can easily be recognized to be the
Kalman filter update step equations with measurement noise
covariance (νk − n− 1)−1 Vk.

2.2. Dynamic Model for Covariance

In analogous manner to [2], the dynamic model p(Σk |Σk−1)
needs to be chosen such that when it is applied to an inverse
Wishart distribution, it produces another inverse Wishart dis-
tribution. Although, the explicitly construction of the density
is hard, all we need to do is to postulate a transformation rule
for the sufficient statistics of the inverse Wishart distributions
at the prediction step. Using similar heuristics as in [2], we
arrive at the following dynamic model:

ν−k = ρ (νk−1 − n− 1) + n+ 1

V −
k = B Vk−1B

T ,
(14)

where ρ is a real number 0 < ρ ≤ 1 and B is a matrix 0 <
|B| ≤ 1. A reasonable choice for the matrix is B =

√
ρ I , in

which case parameter ρ controls the assumed dynamics: value
ρ = 1 corresponds to stationary covariance and lower values
allow for higher time-fluctuations. The resulting multidimen-
sional variational Bayesian adaptive Kalman filter (VB-AKF)
is shown in Algorithm 1.

Predict: Compute the parameters of the predicted distribution
as follows:

m−
k = Akmk−1

P−
k = Ak Pk−1A

T
k +Qk

ν−k = ρ (νk−1 − n− 1) + n+ 1

V −
k = B Vk−1B

T ,

Update: First set m(0)
k = m−

k , P (0)
k = P−

k , νk = 1 + ν−k ,
and V (0)

k = V −
k and the iterate the following, say N , steps

i = 1, . . . , N :

S
(i+1)
k = Hk P

−
k HT

k + (νk − n− 1)−1 V
(i)
k

K
(i+1)
k = P−

k HT
k [S

(i+1)
k ]−1

m
(i+1)
k = m−

k +K
(i+1)
k (yk −Hkmk)

P
(i+1)
k = P−

k −K
(i+1)
k S

(i+1)
k [K

(i+1)
k ]T

V
(i+1)
k = V −

k +Hk P
(i+1)
k HT

k

+ (yk −Hkm
(i+1)
k ) (yk −Hkm

(i+1)
k )T

and set Vk = V
(N)
k , mk = m

(N)
k , Pk = P

(N)
k .

Algorithm 1: The multidimensional Variational Bayesian
Adaptive Kalman Filter (VB-AKF) algorithm

2.3. Extension to Non-Linear Models

In this section we extend the results in the previous section
into non-linear models of the form (1). We again start with
the assumption that the filtering distribution is approximately
product of a Gaussian term and inverse Wishart (IW) term
as in Equation (7). The prediction step can be handled in
similar manner as in the linear case, except that the computa-
tion of the mean and covariance of the state should be done
with the Gaussian filter prediction equations (2) instead of the
Kalman filter prediction equations (8). The inverse Wishart
part of the prediction remains intact. After the prediction step,
the approximation is again a product of Gaussian and inverse
Wishart distributions as in Equation (9).

The expressions corresponding to (10) now become:∫
log p(yk, xk,Σk | y1:k−1)QΣ(Σk) dΣk

= −1

2
(yk − h(xk))T 〈Σ−1

k 〉Σ(yk − h(xk))

− 1

2
(xk −m−

k )T
(
P−
k

)−1
(xk −m−

k ) + C1∫
log p(yk, xk,Σk | y1:k−1)Qx(xk) dxk

= −1

2
(ν−k + n+ 2) log |Σk| −

1

2
tr
{
V −
k Σ−1

k

}
− 1

2
〈(yk − h(xk))T Σ−1

k (yk − h(xk))〉x + C2.

(15)



The expectation in the first equation is still given by the equa-
tion (11), but the resulting distribution in terms of xk is in-
tractable in closed form due to the non-linearity h(xk). For-
tunately, the approximation problem is exactly the same as
encountered in the update step of Gaussian filter and thus we
can directly use the equations (3) for computing Gaussian ap-
proximation to the distribution.

The simplification (12) does not work in the non-linear
case, but we can rewrite the expectation as

〈(yk − h(xk))T Σ−1
k (yk − h(xk))〉x

= tr
{
〈(yk − h(xk)) (yk − h(xk))T 〉x Σ−1

k

}
,

(16)

where the expectation can be separately computed using some
of the Gaussian integration methods in [16]. Because the re-
sult of the integration is just a constant matrix, we can now
substitute (11) and (16) into (15) and match the terms in equa-
tions (5) in the same manner as in linear case. This results in
equations which consist of the Gaussian filter update step (3)
with measurement noise Σk = (νk − n− 1)−1 Vk along with
the following two additional equations:

νk = ν−k + 1

Vk = V −
k +

∫
(yk − h(xk)) (yk − h(xk))T

×N(xk |mk, Pk) dxk.

(17)

2.4. The Adaptive Filtering Algorithm

The general filtering method for the full covariance and non-
linear state space model is shown in Algorithm 2. Various
useful special cases and extensions can be deduced from the
equations:

• The Gaussian integration method [15, 16, 17, 18, 26,
19, 20, 21] will result in different variants of the al-
gorithm. For example, the Taylor series based approxi-
mation could be called VB-AEKF, unscented transform
based method VB-AUKF, cubature based VB-ACKF,
Gauss-Hermite based VB-AGHKF and so on.

• The diagonal covariance case, which was considered
in [2], can be recovered by updating only the diagonal
elements in the last equation of the algorithm and keep-
ing all other elements in the matrices V (i)

k zero. The
matrix B in the prediction step then needs to be diago-
nal also. Although the inverse Wishart parametrization
does not reduce to the inverse Gamma parametrization,
the formulations are equivalent.

• Non-additive dynamic models can be handled by sim-
ply replacing the state prediction with the non-additive
counterpart.

Predict: Compute the parameters of the predicted distribution
as follows:

m−
k =

∫
f(xk−1) N(xk−1 |mk−1, Pk−1) dxk−1

P−
k =

∫
(f(xk−1)−m−

k ) (f(xk−1)−m−
k )T

×N(xk−1 |mk−1, Pk−1) dxk−1 +Qk

ν−k = ρ (νk−1 − n− 1) + n+ 1

V −
k = B Vk−1B

T ,

Update: First set m(0)
k = m−

k , P (0)
k = P−

k , νk = 1 + ν−k ,
and V (0)

k = V −
k and precompute the following:

µk =

∫
h(xk) N(xk |m−

k , P
−
k ) dxk

Tk =

∫
(h(xk)− µk) (h(xk)− µk)T N(xk |m−

k , P
−
k ) dxk

Ck =

∫
(xk −m−) (h(xk)− µk)T N(xk |m−

k , P
−
k ) dxk

Iterate the following, say N , steps i = 1, . . . , N :

S
(i+1)
k = Tk + (νk − n− 1)−1 V

(i)
k

K
(i+1)
k = Ck [S

(i+1)
k ]−1

m
(i+1)
k = m−

k +K
(i+1)
k (yk − µk)

P
(i+1)
k = P−

k −K
(i+1)
k S

(i+1)
k [K

(i+1)
k ]T

V
(i+1)
k = V −

k +

∫
(yk − h(xk)) (yk − h(xk))T

×N(xk |m(i+1)
k , P

(i+1)
k ) dxk.

and set Vk = V
(N)
k , mk = m

(N)
k , Pk = P

(N)
k .

Algorithm 2: The Variational Bayesian Adaptive Gaussian
Filter (VB-AGF) algorithm

3. NUMERICAL RESULTS

3.1. Multi-Sensor Bearings Only Tracking

As an example, we consider the classical multi-sensor bear-
ings only tracking problem with coordinated turning model
[14], where the state x = (u, u̇, v, v̇, ω) contains the 2d loca-
tion (u, v) and the corresponding velocities (u̇, v̇) as well as
the turning rate ω of the target. The dynamic model was the
coordinated turn model and the measurements consisted of
bearings reported by four sensors with unknown (joint) noise
covariance matrix.

We simulated a trajectory and measurements from the
model and applied different filters to it. We tested various
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Fig. 1. The simulated trajectory and the estimate obtained
with VB-ACKF.
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Gaussian integration based methods (VB-AEKF, VB-AUKF,
VB-ACKF, VB-AGHKF) and because the results were quite
much the same with different Gaussian integration meth-
ods, we only present the results obtained with VB-ACKF.
Figure 1 shows the simulated trajectory and the VB-ACKF
results with the full covariance estimation. In the simula-
tion, the variances of the measurement noises as well as the
cross-correlations varied smoothly over time. The simulated
measurements are shown in Figure 2.

Figure 3 shows the root mean squared errors (RMSEs)
for CKF with the true covariance matrix (CKF-t), CKF with
a diagonal covariance matrix with diagonal elements given
by the value on the x-axis (CKF-o), CKF with full covari-
ance estimation (VBCKF-f), and CKF with diagonal covari-
ance estimation (VBCKF-d). As can be seen in the figure, the
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Fig. 3. Root mean squared errors (RMSEs) for different meth-
ods.

results of filters with covariance estimation are indeed better
than the results of any filter with fixed diagonal covariance
matrix. The filter with the known covariance matrix gives the
lowest error, as would be expected, and the filter with full
covariance estimation gives a lower error than the filter with
diagonal covariance estimation.

4. CONCLUSION AND DISCUSSION

In this paper, we have presented a variational Bayes and non-
linear Gaussian (Kalman) filtering based algorithm for joint
estimation of state and time-varying noise covariances in non-
linear state space models. The performance of the method has
been illustrated in a simulated application.

There are several extensions that could be considered as
well. For instance, we could try to estimate the process noise
covariance in the model. However, it is not as easy as it
sounds, because the process noise covariance does not appear
in the equations in such simple conjugate form as the mea-
surement noise covariance. Another natural extension would
be the case of smoothing (cf. [3]). Unfortunately the cur-
rent dynamic model makes things challenging, because we do
not know the actual transition density at all. This makes the
implementation of a Rauch–Tung–Striebel type of smoother
impossible—although a simple smoothing estimate for the
state can be obtained by simply running the RTS smoother
over the state estimates while ignoring the noise covariance
estimates completely. However, it would be possible to con-
struct an approximate two-filter smoother for the full state
space model, but even in that case we need to put some more
constraints to the model, for example, assume that the covari-
ance dynamics are time-reversible.
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