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ABSTRACT
In this paper, the connection between the Matérn kernel and
scale mixtures of squared exponential kernels is explored. It is
shown that the Matérn kernel can be approximated by a finite
scale mixture of squared exponential kernels through a quad-
rature approximation which in turn allows for (i) state space
approximations of the Matérn kernel for arbitrary smoothness
parameters using established state space approximations of
the squared exponential kernel and (ii) exact calculation of the
Bayesian quadrature weights for the approximate kernel under
a Gaussian measure. The method is demonstrated in inference
in a log-Gaussian Cox process as well as in approximating
a Gaussian integral arising from a financial problem using
Bayesian quadrature.

Index Terms— Gaussian process regression, Matérn cov-
ariance, scale mixture representation, state space approxima-
tion, Bayesian quadrature

1. INTRODUCTION

Gaussian processes [1] are a prominent tool in signal pro-
cessing, statistics, and machine learning. Selection of the
covariance kernel k of the Gaussian process can have a drastic
effect on the performance in any application, be it for example
regression [1, 2] or Bayesian quadrature [3, 4]. The Matérn
kernel is often seen as the ideal choice since it allows to specify
smoothness of the process and contains many other kernels as
a special cases [1, Sec. 4.2]. However, the Matérn model be-
comes intractable in the aforementioned applications because
computational cost of Gaussian process regression is cubic in
the number of data points (see Eq. (1)) and integrals of the
form

∫
Ω
k(x, x′)π(x) dx (see Sec. 4.1) need to be evaluated

efficiently in Bayesian quadrature.
The aim of this paper is to develop an approximation to

the Matérn model that addresses the above challenges. To this
end, we establish a connection between Matérn kernels and
scale mixtures of squared exponential kernels. This enables
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the approximation of the Matérn kernel in terms of a finite
mixture of squared exponential kernels. Consequently, (i) state
space approximations—with their associated linear compu-
tational complexity—of the Matérn kernel become possible
when additional approximations to the squared exponential
kernel [5, 6, 7] are employed and (ii) Bayesian quadrature for
the approximate kernel is made tractable since integrals of
squared exponential kernels are computable in many settings
of interest. More specifically, our contributions include

1. Demonstration of a link between squared exponential
scale mixtures and the Matérn kernel.

2. Construction of a finite squared exponential mixture
approximation (SEMA) to the Matérn kernel based on
generalised Gauss–Laguerre quadrature [8]; see Eq. (8).
A similar approximation for the rational quadratic kernel
has been developed by Solin and Särkkä [9]. In contrast
to our approximation, theirs is based on a well-known
scale mixture representation of the rational quadratic
kernel [1, Eq. (4.20)].

3. Use of established state space approximations of the
squared exponential kernel [5, 6, 7] for constructing
state space approximations to the Matérn kernel for
arbitrary smoothness parameters, thus allowing for in-
ference in linear time complexity [10].

4. Application of the developed mixture approximation to
Bayesian quadrature.

The method is demonstrated in a log-Gaussian Cox process
regression and pricing a zero coupon bond under the Vasicek
model using Bayesian quadrature.

2. SCALE MIXTURE REPRESENTATION OF THE
MATÉRN CLASS

This sections develops a squared exponential scale mixture
representation and finite mixture approximations for Matérn
kernels defined in Eq. (2).
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2.1. Gaussian processes

A zero mean isotropic Gaussian process f is para-
metrised by its positive-definite covariance kernel k:
C[f(x), f(x′)] = k(x, x′) = k(‖x− x′‖). For a given data
set D = {(xn, f(xn)}Nn=1 = (X, fX), the posterior process
is again Gaussian with mean and covariance functions

µD(x) = kTX(x)K−1
X fX ,

kD(x, x′) = k(x, x′)− kTX(x)K−1
X kX(x′),

(1)

where [kX(x)]n = k(x, xn) and [KX ]nm = k(xn, xm). A
major obstacle in applying Gaussian processes is the cubic
computational cost of solving the linear systems in Eq. (1).

2.2. Scale mixture for the Matérn class

Matérn kernels are defined as

kM(τ ; ρ, ν) =
21−ν

Γ(ν)

(√
2ντ

ρ

)ν
Kν

(√
2ντ

ρ

)
, (2)

where τ = ‖x− x′‖ and ‖·‖ is the Euclidean norm on the in-
put space, Γ(·) the gamma function, Kν(·) the Bessel function
of the second kind, and ν a smoothness parameter that can be
used in encoding prior beliefs about smoothness of the process
being modelled. Denote the squared exponential covariance
kernel by

kSE(τ ; `) = exp

(
− τ2

2`2

)
,

where ` > 0 is the length-scale parameter. A squared exponen-
tial scale mixture model is then given by

s ∼ pS(s),

f | s ∼ GP
(
0, σ2kSE(· ;

√
s)
)
,

where pS is a density on [0,∞). The marginal covariance at
distance τ can then be calculated as

C[f(x), f(x′)] = σ2

∫ ∞
0

kSE(τ ;
√
s )pS(s) ds. (4)

Now, if pS is selected as a reciprocal gamma density,
pS(s) = G−1(s;α, α`2RQ), then the rational quadratic is re-
covered [1, Sec. 4.2]:

kRQ(τ ;α, `2RQ) =

∫ ∞
0

kSE(τ ;
√
s)G−1(s;α, α`2RQ) ds.

As it turns out, the integral in Eq. (4) is tractable for also for
other choices of pS . In particular, the Matérn class can be
retrieved by setting pS to a gamma density.

Theorem 1. Let the process f and the random variable s > 0
be governed by the probabilistic model

s ∼ G(ν, ν/ρ2),

f | s ∼ GP
(
0, σ2kSE(· ;

√
s )
)
.

Then the covariance at distance τ = ‖x− x′‖ is

C[f(x), f(x′)] = σ2kM(τ ; ρ, ν).

Proof. The covariance is

C[f(x), f(x′)]

= σ2

∫ ∞
0

kSE(τ ;
√
s )G(s; ν, ν/ρ2) ds

= σ2 (ν/ρ2)ν

Γ(ν)

∫ ∞
0

sν−1 exp

(
− τ2

2
s−1 − 2ν

2ρ2
s

)
ds.

The integral is then evaluated as in [11]:∫ ∞
0

sν−1 exp

(
− τ2

2
s−1 − 2ν

2ρ2
s

)
ds

=
2Kν

(√
2ντ2/ρ2

)
(2ν/ρ2τ2)ν/2

= 2

(
ρ2τ2

2ν

)ν/2
Kν

(√
2ντ2

ρ2

)
.

(6)

Putting everything together gives

C[f(x), f(x′)] = 2σ2 2−ν(2ν/ρ2)ν

Γ(ν)

(
ρτ√
2ν

)ν
Kν

(√
2ντ2

ρ2

)

= σ2 21−ν

Γ(ν)

(√
2ντ

ρ

)ν
Kν

(√
2ντ

ρ

)
,

which is precisely the Matérn kernel in Eq. (2).

2.3. Squared exponential mixture approximation

While there is no problem in evaluating the Matérn kernel
using standard libraries, the kernel tends to be under-utilised
(the exception being when ν is a half-integer: ν = n + 1/2
for n ∈ N) in applications such as sparse time series regres-
sion and Bayesian quadrature due to non-Markovianity and
intractability of the kernel mean. Therefore, for general ν an
approximation scheme would be beneficial. Here we employ
generalised Gauss–Laguerre quadrature as was done in [9].
Making a change of variables z = ν/ρ2s in Eq. (6) gives the
Matérn kernel as

kM(τ ; ρ, ν) =
1

Γ(ν)

∫ ∞
0

zν−1 exp

(
− z − τ2ν

2ρ2z

)
dz.

Now, zν−1 exp(−z) corresponds to the weight function in
generalised Gauss–Laguerre quadrature [8]. Hence, a squared
exponential mixture approximation (SEMA) of the Matérn
kernel is given by

σ2kM(τ ; ρ, ν) ≈ σ2

Γ(ν)

J∑
j=1

wj exp

(
− τ2ν

2ρ2zj

)
,
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Fig. 1. Error between the exact Matérn kernel and the
SEMA (8) for ρ = σ = 1 and J = 3 (top), J = 6 (middle),
and J = 12 (bottom) Gauss–Laguerre nodes.

where the nodes zj are the roots of Lν−1
J , the generalised

Laguerre polynomial [12, Ch. 22] of degree J and index ν−1,
and the weights wj are

wj =
Γ(J + ν)zj

Γ(J + 1)(N + 1)2[Lν−1
J+1(zj)]2

.

Error of this approximation can be assessed using [13, Thm. 1].
Define

σ̂2
j =

σ2wj
Γ(ν)

and ˆ̀2
j =

zjρ
2

ν
. (7)

Then the approximation takes the form of a sum of J independ-
ent Gaussian processes with squared exponential covariance
kernels of varying length-scales:

σ2kM(τ ; ρ, ν) ≈ σ2k̂JM(τ ; ρ, ν) =

J∑
j=1

σ̂jkSE(τ ; ˆ̀
j). (8)

The accuracy of the approximation for various parameter
selections is depicted in Fig. 1. As can be seen, the approxim-
ation quality improves as ν, τ , and J become large.

3. APPLICATION I: STATE SPACE
APPROXIMATIONS

Our first application of the SEMA in Eq. (8) is to state space
approximations of Gaussian processes using the Matérn kernel,
enabling inference in linear time complexity [10].

3.1. Stationary Gaussian state space models

A large class of single input (here denoted by t) zero mean
stationary Gaussian process can be represented as a stochastic
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Fig. 2. The logarithm of the absolute value of the error between
the exact Matérn kernel and the generalized Gauss–Laguerre
approximation, using a state space dimension of M = 6 to
approximate the squared exponential, for ρ = σ = 1 and
J = 3 nodes (top), J = 6 nodes (middle), and J = 12 nodes
(bottom).

differential equation as follows [14]:

du(t) = Au(t) dt+Q1/2 dB(t),

f(t) = Hu(t),

where A is a matrix corresponding to an asymptotically stable
dynamic system, Q1/2 is the diffusion matrix, B(t) is a vector
of standard Brownian motions, and the initial distribution is

u(0) ∼ N (0,Σ(0)),

where the stationary covariance matrix Σ(0) solves the Lya-
punov equation 0 = AΣ(0) + Σ(0)AT +Q. For a time grid
{tn}Nn=1, the equivalent discrete-time system is

u(tn) | u(tn−1) ∼ N
(
Φ(∆n)u(tn−1), Q(∆n)

)
,

f(tn) = Hu(tn),

where ∆n = tn − tn−1 and

Φ(τ) = exp(Aτ),

Q(τ) =

∫ ∆n

0

exp(As)Q exp(ATs) ds.

Furthermore, the covariance kernel of f(t) is given by

k(τ) =

{
HΣ(0)ΦT (τ)HT, τ ≥ 0,

HΦ(−τ)Σ(0)HT, τ ≤ 0.
(9)



3.2. State space approximation of the Matérn kernel for
arbitrary smoothness parameters

While the Matérn kernels admit state space representations
when the smoothness parameter is a half-integer [6, 10], this
does not hold in general. Therefore, for the purposes of Gaus-
sian process regression with linear time complexity, approx-
imations need to be used. In essence this amounts to finding
model matrices A, Q, and H such that the covariance kernel
in Eq. (9) is a good approximation to the true kernel.

Finding suitable model matrices can be tricky in general.
State space approximations for the squared exponential kernel
go back at least to [5]. More recent approximations based
on Taylor and Padé expansions appear in [6, 7]; see also [15].
This means that the sum of squared exponential kernels in
Eq. (8), and thus the Matérn kernel for arbitrary smoothness
parameter, can be approximated as a state space model using
any of the aforementioned techniques.

To demonstrate the approximation quality, the Taylor series
method [6, 7] with a state space dimension of M = 6 is
used to approximate the squared exponential kernels. The
resulting covariance kernel is compared to exact evaluations
of the Matérn kernel for various parameter values in Fig. 2. It
is again noted that the approximation quality improves when
ν, τ , and J are increased. As expected, some accuracy is lost.

3.3. Numerical example

Here the preceding state space approximation of the Matérn
kernel is evaluated on inference in a log-Gaussian Cox process.
The data consists of 191 time stamps of coal mine explosion
that killed ten or more people in Britain between the years 1851
and 1962 [16]. The time span is partitioned into 28 intervals
and the number of events in each interval is modelled as an
independent Poisson random variable conditioned on a latent
intensity process that is modelled as a log-Gaussian process:

f(t) ∼ GP(0, kM),

y(tn) ∼ Po(λ(tn)), λ(t) = exp(f(t)).

The smoothness parameter is fixed to ν = 1, while the range
ρ = exp(θ1) and standard deviation σ = exp(θ2) are estim-
ated by the maximum marginal likelihood method for both
exact evaluations of the Matérn covariance kernel and a state
space approximation using J = 6 nodes in the generalised
Gauss–Laguerre quadrature and the Taylor series method [6]
with M = 8 state dimensions to approximate the squared
exponential covariance kernels. A comparison between exact
inference and the described state-space SEMA (SEMA-SSM)
is shown in Fig. 3. While a disagreement between the estimates
is visible, qualitative features are similar.

4. APPLICATION II: BAYESIAN QUADRATURE

This section presents an application of the SEMA to approx-
imating kernel means needed in Bayesian quadrature.
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Fig. 3. The exponentiated posterior mean for SEMA-SSM
(red) and exact covariance function evaluations (blue).

4.1. Bayesian quadrature

Bayesian quadrature [3, 4] is a probabilistic approach to com-
puting a numerical approximation of the integral

π(f†) =

∫
Ω

f†(x)π(x) dx

of a deterministic function f† : Ω→ R, Ω ⊂ Rd, with respect
to a probability density function π. The integrand is assigned
a Gaussian process prior f ∼ GP(0, k) that is conditioned
on the noiseless data D of N evaluations of the integrand.
Because integration is a linear operation, the integral π(f) has
a Gaussian posterior distribution: π(f) | D ∼ N (µπ,D, σ2

π,D).
By the Gaussian process posterior equations (1), the mean and
variance are

µπ,D = kTπ,XK
−1
X f†X ,

σ2
π,D = π(kπ)− kTπ,XK−1

X kπ,X ,
(10)

where kπ(x) =
∫

Ω
k(x, x′)π(x) dx is the kernel mean func-

tion and [kπ,X ]n = kπ(xn). The posterior mean µπ,D
provides a point estimate for the unknown integral π(f†) while
σπ,D can be used to assess uncertainty about this approxim-
ation [17, 18, 19]. In particular, the posterior mean takes the
form of a quadrature rule:

µπ,D =

N∑
n=1

w∗nf
†(xn),

where the weights are

w∗ = K−1kπ,X . (11)

4.2. Kernel mean approximation

One of the problems in Bayesian quadrature is the need to com-
pute the kernel mean function. There are a number of pairs
of π and k that result in closed-form expression for the kernel
mean [4, Section 4.2]. Unfortunately, in the commonly oc-
curring case of Gaussian densities there is no such expression
for the Matérn kernel for arbitrary values of the smoothness
parameter ν. The scale mixture approximation introduced in
Sec. 2 provides a convenient and accurate approximation.

Let ϕ stand for the standard Gaussian density function:

ϕ(x) = (2π)−d/2 exp

(
− ‖x‖

2

2

)
. (12)



Consider the Matérn kernel k(τ) := σ2kM(τ ; ρ, ν) that, as
derived in Sec. 2.3, admits the approximation

k(τ) ≈
J∑
j=1

σ̂2
jkSE(τ ; ˆ̀

j)

as a sum of squared exponential kernels. As is well-known,
these kernels can be integrated in closed form:

σ̂2
jkSE,ϕ(x; ˆ̀

j) = σ̂2
j

( ˆ̀2
j

1 + ˆ̀2
j

)d/2
exp

(
− ‖x‖2

2(1 + ˆ̀2
j )

)
,

σ̂2
jϕ
(
kSE,ϕ(·; ˆ̀

j)
)

= σ̂2
j

( ˆ̀2
j

2(1 + ˆ̀2
j )

)d/2
.

We can thus form the approximations

σ2kϕ(x; ρ, ν) ≈
J∑
j=1

σ̂2
j

( ˆ̀2
j

1 + ˆ̀2
j

)d/2
exp

(
− ‖x‖2

2(1 + ˆ̀2
j )

)
,

σ2ϕ(kϕ(·; ρ, ν)) ≈
J∑
j=1

σ̂2
j

( ˆ̀2
j

2(1 + ˆ̀2
j )

)d/2
,

where σ̂j and ˆ̀
j are defined in Eq. (7). What makes the above

kernel mean approximation attractive is its positivity, following
from positivity of the generalised Laguerre quadrature weights,
for any x ∈ R.

To obtain an approximate Bayesian quadrature rule for the
Gaussian density ϕ, we merely replace the true Matérn kernel
mean kM,ϕ(x; ρ, ν, σ) and its integral ϕ(kM,ϕ(·; ρ, ν, σ)) with
the approximation above when computing the integral pos-
terior mean and variance in Eq. (10). Next we assess accuracy
of the resulting quadrature weight approximation.

4.3. Approximation accuracy

We experiment with accuracy of the Bayesian quadrature
weight approximation developed in Sec. 4.2 in the case d = 1.
We compute the Bayesian quadrature weights w∗ ∈ RN in
Eq. (11) for N = 12 and N = 24, the standard Gaussian
density function (12), and Matérn kernels with smoothness
parameters ν = 3 and ν = 7 and ρ = 1. In the Gauss–
Laguerre quadrature we use J = 2, . . . , 30. For comparison,
we also compute naive J-point Gauss–Hermite approxima-
tions to the intractable Matérn kernel mean. The reference
value for the weights is computed to high precision using the
MATLAB function integral. Approximation accuracy is
measured in terms of the relative error√√√√ N∑

i=1

(
w∗i − wJi
w∗i

)2

, (13)

where wJi are the approximate Bayesian quadrature weights
obtained using J-point SEMA or Gauss–Hermite quadrature.
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Fig. 4. Relative approximation errors (13) to N -point
Bayesian quadrature weights with two different Matérn ker-
nels using J-point SEMA and naive Gauss–Hermite (GH)
integration of the kernel mean.
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Fig. 5. Relative integration error for the 15-dimensional zero
coupon bond integrand in Sec. 4.4. Plotted are errors by
Bayesian quadrature with (i) a Matérn kernel whose kernel
means are computed with J-point SEMA approximation and
(ii) the squared exponential kernel.

The results are depicted in Fig. 4 where it is apparent that
accuracy of the SEMA approximation is superior to direct
numerical integration of the kernel mean using Gauss–Hermite
quadrature.

4.4. Financial example

This section experiments with the weight approximation for
a zero coupon bond example [20, Section 6.1]. The Gaussian
integral that needs to be computed arises from a D-step uni-
form Euler–Maruyama discretisation of the Vasicek stochastic
differential equation model and represents the price of a zero
coupon bond with given maturity time. The integral is of di-
mension D − 1 and has an analytical solution, making this a
convenient test problem. See the aforementioned reference for



more details.
We set D = 16 (i.e., d = 15) and draw 1,000 samples

from the 15-dimensional standard normal distribution. Fig. 5
contains relative integration errors of Bayesian quadrature ap-
proximations that use (i) the Matérn kernel having parameters
ν = 6 and ρ = d and with the kernel means approximated
with J-point SEMA and (ii) the squared exponential kernel
with ` = ρ. It is seen that the SEMA-based approximation can
be as accurate as one that has closed-form kernel means if J
is sufficiently large.

5. CONCLUSIONS AND DISCUSSION

The connection between the Matérn covariance function and
squared exponential scale mixtures was established and its
approximation in terms of finite scale mixtures by means of
generalised Gauss–Laguerre quadrature was presented. It was
shown how this approximation can be used to achieve linear
time complexity in regression by using state space approxima-
tions of the squared exponential kernel and in approximating
the weights in Bayesian quadrature.

A topic for future investigation is to see if approximating
the squared exponential kernel by matching the differentiabil-
ity of the underlying Matérn kernel, which might be achieved
by the Padé method [7], can reduce the loss of accuracy.
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