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ABSTRACT
The aim of this article is to present Levenberg–Marquardt
and line-search extensions of the classical iterated extended
Kalman smoother (IEKS) which has previously been shown
to be equivalent to the Gauss–Newton method. The algo-
rithms are derived by rewriting the algorithm’s steps in forms
that can be efficiently implemented using modified EKS iter-
ations. The resulting algorithms are experimentally shown to
have superior convergence properties over the classical IEKS.

Index Terms— nonlinear estimation, Extended Kalman
smoother, Levenberg–Marquardt algorithm, line search.

1. INTRODUCTION

This article is concerned with computation of maximum a
posteriori (MAP) smoothing solutions to non-linear state-
space models of the following form (see, e.g, [1–3]):

xk+1 = fk(xk) + qk, zk = hk(xk) + rk, (1)

where xk ∈ Rn are the states, and zk ∈ Rmk are the mea-
surements, for k = 1, . . . , N . The noises are assumed to
be zero mean Gaussian with known covariance matrices,
qk ∼ N(0, Qk), rk ∼ N(0, Rk), and the initial prior is
x1 ∼ N(x̂1, P1) with given x̂1 and P1. This kind of state-
space models and their smoothing solutions have numerous
applications, for example, in navigation, tracking, and audio
and biomedical signal processing [1–3].

The aim of MAP smoothing is to compute the maximum
of the posterior density, which is equivalent to minimization
of the following cost function (see, e.g., [4]):

L(x1:N ) = (x1 − x̂1)>P−11 (x1 − x̂1)

+

N∑
k=1

(zk − hk(xk))>R−1k (zk − hk(xk))

+

N−1∑
k=1

(xk+1 − fk(xk))>Q−1k (xk+1 − fk(xk)).

(2)

When the functions hk(xk) and fk(xk) are affine, the min-
imization can be done exactly by the Rauch–Tung–Striebel
smoother [5].

In the nonlinear case, it is possible to use various opti-
mization methods available in the literature [6] to minimize
(2). However, when N is large, the minimization problem
is very high-dimensional and using off-the-shelf optimiza-
tion routines is challenging due to computational and mem-
ory demands. It is therefore beneficial to consider optimiza-
tion methods that explicitly use the structure of the problem to
minimize the computational requirements and memory use.

One classic method to solve nonlinear smoothing prob-
lems of the form (1) is the iterated extended Kalman smoother
(IEKS). It was shown by Bell [7] already in 1994 that IEKS
is equivalent to applying the Gauss–Newton method to min-
imizing the cost function (2). The IEKS makes use of the
sparseness generated by the Markov structure of the problem
to produce an algorithm with low computational and memory
demands.

Compared to other Gaussian smoothing algorithms, such
as the unscented Rauch–Tung–Striebel smoother [8] and the
cubature Kalman smoother [9], the IEKS often yields better
performance. Intuitively speaking, this is because the IEKS
makes use of measurements from all times to iteratively im-
prove the linearizations. A family of algorithms that explicitly
seeks the best possible linearizations, are the iterated poste-
rior linearizations [10,11]. However, even though the iterated
posterior linearization smoother [12, 13] tends to yield great
performance the IEKS is a slightly faster algorithm that often
has similar performance.

A disadvantage with the Gauss–Newton algorithm, and
thus the IEKS algorithm, is that it is unstable and some-
times diverges. The iterated extended Kalman filters (IEKFs)
suffer from the same problems, and a number of modifica-
tions have been proposed where the Gauss–Newton algo-
rithm is replaced by a more robust alternative, for example,
step-size adaptation, Levenberg–Marquardt, or other exten-
sions [14–18]. A Levenberg–Marquardt extension of the en-
semble Kalman filter/smoother was also developed in [19,20].

The contribution of this article is to present two robustify-
ing modifications of the IEKS algorithm: (1) an IEKS ver-
sion of the Levenberg–Marquardt algorithm, and (2) IEKS
based on the Gauss–Newton method with a line search. In the
same sense as classic IEKS is equivalent to Gauss–Newton
[7], these methods are equivalent to their batch counterparts.



2. LEVENBERG–MARQUARDT IEKS

Similarly to [7], let us now rewrite the cost function (2) in a
convenient batch form by defining a block diagonal matrix

A = diag(P−11 , R−11 , Q−11 , . . . , Q−1N−1, R
−1
N ) (3)

and vector

v(x1:N ) =



x1 − x̂1
z1 − h1(x1)
x2 − f1(x1)
z2 − h2(x2)

...
xN − fN−1(xN−1)
zN − hN (xN )


. (4)

These definitions enable us to rewrite the cost function (2) in
the following quadratic form:

L(x1:N ) = v>(x1:N )Av(x1:N ). (5)

This is a canonical nonlinear least squares optimization
problem and hence methods such as Gauss–Newton and
Levenberg–Marquardt are applicable. The Jacobian V of v
can also be easily computed and the result is a sparse block
matrix (left out for space reasons).

Both the Gauss–Newton and Levenberg–Marquardt algo-
rithms [6,21,22] for the cost function (5) are based on the use
of linearization

v(x1:N ) ≈ v(x
(i)
1:N ) + V (x̂

(i)
1:N )(x1:N − x̂(i)1:N ). (6)

Plugging this into the cost function gives the following ap-
proximate cost function:

L
(i)
GN(x1:N ) = [v(x̂

(i)
1:N ) + V (x̂

(i)
1:N )(x1:N − x̂(i)1:N )]>A

× [v(x̂
(i)
1:N ) + V (x̂

(i)
1:N )(x1:N − x̂(i)1:N )].

(7)

The Gauss–Newton algorithm [6] now proceeds to minimize
this approximate cost function (which can be done in closed
form) and uses its solution as the next iterate x̂(i+1)

1:N .
To connect the above Gauss-Newton algorithm to IEKS,

we note that minimizing (7) is equivalent to minimizing (2)
for the affine model

xk+1 = fk(x̂
(i)
k ) + Fk(x̂

(i)
k )(xk − x̂(i)k ) + qk,

zk = hk(x̂
(i)
k ) +Hk(x̂

(i)
k )(xk − x̂(i)k ) + rk,

(8)

where Fk and Hk denote the Jacobians of fk and hk, respec-
tively. The IEKS uses the Rauch–Tung–Striebel smoother to
minimize (2) for the model in (8), in closed form. Since the
Gauss-Newton algorithm finds an exact solution to the equiv-
alent loss function in (7), the algorithms must be equivalent.

Let us now see how the Levenberg–Marquardt algorithm
[6, 21, 22] can be expressed in this kind of form. In the al-
gorithm we minimize the following regularized version of the
approximate cost function

L
(i)
LM(x1:N ) = [v(x̂

(i)
1:N ) + V (x̂

(i)
1:N )(x1:N − x̂(i)1:N )]>A

× [v(x̂
(i)
1:N ) + V (x̂

(i)
1:N )(x1:N − x̂(i)1:N )]

+ λ(x1:N − x(i)1:N )>[S(i)]−1(x1:N − x̂(i)1:N )

(9)

and use the result as the next iterate x̂(i+1)
1:N . Above S(i) is

a sequence of given positive definite regularization matrices
and λ > 0 is a reqularization parameter that is adapted as part
of the Levenberg–Marquardt algorithm.

Let us now assume that the regularization matrix has a
block-diagonal form S(i) = diag(S

(i)
1 , S

(i)
2 , . . . , S

(i)
N ), where

each of the matrices on the right have the size of the state
squared S(i)

k ∈ Rn×n; a common choice would be to select
S
(i)
k to be the identity matrix. Then the last term of the ap-

proximate cost function (9) can be written as

λ(x1:N − x(i)1:N )>[S(i)]−1(x1:N − x̂(i)1:N )

=

N∑
k=1

(x̂
(i)
k − xk)>[λ−1S

(i)
k ]−1(x̂

(i)
k − xk),

(10)

which has the same form as the measurement term in (2).
In this interpretation x̂(i)k acts as a measurement of xk with
noise covariance λ−1S

(i)
k , thus incentivizing x̂

(i+1)
k to be

close to x̂(i)k . As the first terms of (9) still correspond to the
affine model, the Levenberg–Marquardt step can be seen to
be equivalent to running an affine smoother on the following
model:

xk+1 = fk(x̂
(i)
k ) + Fk(x̂

(i)
k )(xk − x̂(i)k ) + qk,

zk = hk(x̂
(i)
k ) +Hk(x̂

(i)
k )(xk − x̂(i)k ) + rk,

x̂
(i)
k = xk + ek,

(11)

where x̂(i)k are treated as measurements in the last equation
and ek ∼ N(0, λ−1S

(i)
k ). The resulting regularized affine

smoother is shown in Algorithm 1. It is also worth noting
that the affine smoother used in the conventional IEKS can be
recovered by setting λ = 0 in the algorithm.

The Levenberg–Marquardt algorithm can be constructed
by iterating the Algorithm 1. However, the full algorithm re-
quires the selection of the parameter λ. This can be imple-
mented, for example, using a simple procedure [22,23], where
we increase and decrease the parameter depending if the cur-
rent value leads to increase of decrease in the cost function.
The resulting method is shown as Algorithm 2.

3. LINE-SEARCH IEKS

Another way to improve the Gauss–Newton algorithm is to
introduce a line-search procedure [6] to the algorithm. How-



Algorithm 1 Regularized IEKS Step
Input: The current trajectory x̂c1:N , regularization parameter λ, reg-

ularization matrices S1:N , and implicitly the measurements,
model functions, Jacobians, and parameters: z1:N , f1:N , h1:N ,
F1:N , H1:N , Q1:N , R1:N , x̂1, and P1.

Output: The new smoothed trajectory x̂s1:N .
1: procedure REG-IEKS-STEP(x̂c1:N , λ, S1:N )
2: for k = 1, . . . , N do
3: if k = 1 then
4: // Initial step:
5: Set x̂p1 ← x̂1 and P̂ p1 ← P1

6: else
7: // Prediction step:
8: x̂pk ← fk−1(x̂ck−1) + Fk−1(x̂ck−1)[x̂fk−1 − x̂

c
k−1]

9: P̂ pk ← Fk−1(x̂ck−1)P̂ fk−1F
>
k−1(x̂ck−1) +Qk−1

10: end if
11: // Update step:
12: µk ← hk(x̂ck) +Hk(x̂ck)[x̂pk − x̂

c
k]

13: Σk ← Hk(x̂ck)P̂ pkH
>
k (x̂ck) +Rk

14: Kk ← P̂ pkH
>
k (x̂ck)Σ−1

k

15: x̂fk ← x̂pk +Kk[zk − µk]

16: P̂ fk ← P̂ pk −KkΣk[Kk]>

17: if λ > 0 then
18: // Regularization update step:
19: Σk ← P̂ fk + λ−1Sk
20: Kk ← P̂ fk Σ−1

k

21: x̂fk ← x̂fk +Kk[x̂ck − x̂fk ]

22: P̂ fk ← P̂ fk −KkΣk[Kk]>

23: end if
24: end for
25: Set x̂sN ← x̂fN and P̂ sN ← P̂ fN
26: for k = N − 1, . . . , 1 do
27: // Smoothing step:
28: Gk ← P̂ fk F

>
k (x̂ck)[P̂ pk+1]−1

29: x̂sk ← x̂fk +Gk[x̂sk+1 − x̂pk+1]

30: P̂ sk ← P̂ fk +Gk[P̂ sk+1 − P̂ pk+1]G>k
31: end for
32: return x̂s1:N
33: end procedure

ever, when we use the IEKS implementation of the Gauss–
Newton (Alg. 1 with λ = 0), there is no increment computed
in the same sense as in the classical formulation of the Gauss–
Newton. Fortunately, given the previous iterate x̂(i)1:N and the
new iterate x̂(i+1)

1:N , we can compute the corresponding incre-
ment via ∆x̂

(i+1)
1:N = x̂

(i+1)
1:N −x̂(i)1:N . Then a line search version

of the IEKS can be implemented by introducing a parameter
α > 0 and putting

x̂
(i+1)
1:N (α) = x̂

(i)
1:N + α∆x̂

(i+1)
1:N . (12)

An exact line-search procedure can then be implemented us-
ing a grid search as shown in Algorithm 3.

Alternatively, we can use inexact line search and only re-
quire a sufficient decrease of the cost function by using the

Algorithm 2 Levenberg–Marquardt IEKS
Input: The initial trajectory x̂01:N , increase/decrease parameter ν >

1 (e.g. ν = 10), initial regularization parameter λ0, regular-
ization matrices S1:N , and implicitly the measurements, model
functions, Jacobians, and parameters: z1:N , f1:N , h1:N , F1:N ,
H1:N , Q1:N , R1:N , x̂1, and P1.

Output: The MAP trajectory x̂∗1:N .
1: procedure LM-IEKS(x̂01:N , λ

0, S1:N )
2: Set i← 0 and λ← λ0

3: repeat
4: x̂

(i+1)
1:N ← REG-IEKS-STEP(x̂

(i)
1:N , λ, S1:N )

5: if L(x̂
(i+1)
1:N ) < L(x̂

(i)
1:N ) then

6: // Decrease damping and accept the iterate
7: λ← λ/ν
8: Set i← i+ 1
9: else

10: // Increase damping and reject the iterate
11: λ← νλ
12: end if
13: until Converged
14: return x̂(i)1:N

15: end procedure

Armijo or Wolfe conditions [6]. These conditions can also be
easily written in terms of the state-space model. The result-
ing method for Armijo conditions is shown as Algorithm 4.
The Wolfe conditions could be implemented in an analogous
manner.

4. EXPERIMENTAL RESULTS
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Fig. 1. Simulated coordinated turn bearings only tracking sce-
nario. The blue and red triangles are the sensors and the 1σ
quantiles are illustrated with dashed lines.

We illustrate the proposed methods in a coordinated turn
model with a bearings (direction) only tracking problem [2].
The simulated tracking scenario is illustrated in Figure 1. The
target is performing a steep coordinated turn and it is tracked
with two directional sensors with measurement variances
σ2 = 1/22 rad2. The measurement noise is relatively high
as can be seen from the illustrated 1σ quantiles. The sensors
are also relatively far from the target and hence the tracking
problem is very non-linear.



Algorithm 3 Exact Line Search IEKS
Input: The initial trajectory x̂01:N and implicitly the measurements,

model functions, Jacobians, and parameters: z1:N , f1:N , h1:N ,
F1:N , H1:N , Q1:N , R1:N , x̂1, and P1.

Output: The MAP trajectory x̂∗1:N .
1: procedure GN-IEKS-ELS(x̂01:N )
2: Set i← 0
3: repeat
4: x̂

(i+1)
1:N ← REG-IEKS-STEP(x̂

(i)
1:N , 0, ∅)

5: ∆x̂1:N ← x̂
(i+1)
1:N − x̂(i)1:N

6: // Use grid search to find minimizing α:
7: α← arg minα L(x̂

(i)
1:N + α∆x̂1:N )

8: x̂
(i+1)
1:N ← x̂

(i)
1:N + α∆x̂1:N

9: Set i← i+ 1
10: until Converged
11: return x̂(i)1:N

12: end procedure
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Fig. 2. EKS and IEKS trajectory estimates.

Due to high nonlinearity and high measurement noise, a
single step of standard extended Kalman filter and smoother
(Algs. 5.4 and 9.1 in [3]) produces a quite bad result shown in
Figure 2(a) with root mean square error (RMSE) of 2.6 units.
However, the iteration helps a lot as can be seen from the
LM-IEKS result in Figure 2(b) where the RMSE is 0.6 units.
Please note that all the other IEKS variations also produce the
same estimate as LM-IEKS once they have converged, but
that the original Gauss-Newton (IEKS) algorithm sometimes
diverges when Levenberg–Marquardt does not [15].

The benefit of the proposed IEKS methods as compared to
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Fig. 3. Cost function convergence of the different methods.

Algorithm 4 Inexact Line Search IEKS
Input: The initial trajectory x̂01:N , backtracking parameters c1, τ ,

and implicitly the measurements, model functions, Jacobians,
and parameters: z1:N , f1:N , h1:N , F1:N , H1:N , Q1:N , R1:N ,
x̂1, and P1.

Output: The MAP trajectory x̂∗1:N .
1: procedure GN-IEKS-ILS(x̂01:N , τ )
2: Set i← 0
3: repeat
4: x̂

(i+1)
1:N ← REG-IEKS-STEP(x̂

(i)
1:N , 0, ∅)

5: ∆x̂1:N ← x̂
(i+1)
1:N − x̂(i)1:N

6: // Use Armijo backtracking to find admissible α:
7: α← 1
8: // Compute the directional derivative:

d← 2∆x̂>1 P
−1
1 (x̂

(i)
1 − x̂1)

+ 2

N∑
k=2

(∆x̂k − Fk−1(x̂
(i)
k−1)∆x̂k−1)>

×Q−1
k−1(x̂

(i)
k − fk−1(x̂

(i)
k−1))

− 2

N∑
k=1

(Hk(x̂
(i)
k )∆x̂k)>R−1

k (zk − hk(x̂
(i)
k ))

9: while L(x̂
(i)
1:N + α∆x̂1:N ) ≥ L(x̂

(i)
1:N ) + αc1d do

10: α← τα
11: end while
12: x̂

(i+1)
1:N ← x̂

(i)
1:N + α∆x̂1:N

13: Set i← i+ 1
14: until Converged
15: return x̂(i)1:N

16: end procedure

the standard IEKS can be seen in Figure 3(a) which shows the
evolution of the cost functions of both the standard IEKS and
the proposed improvements. The classic IEKS takes a long
route through higher cost function values before converging
to the minimum. Figure 3(b) shows the cost function evolu-
tions of the proposed methods only where it can be seen that
all the methods converge monotonically and almost equally
fast to the optimum.

5. CONCLUSION

In the article we have presented Levenberg–Marquardt and
line-search extensions of iterated extended Kalman smoother
(IEKS). The algorithms are equivalent to their batch versions
when applied to a MAP state estimation problem, but they en-
joy favourable computational and memory consumption prop-
erties. The algorithms were experimentally shown to con-
verge better than the classical IEKS.
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I. Kasanickỳ, “Hybrid Levenberg–Marquardt and weak-
constraint ensemble Kalman smoother method,” Nonlin-
ear Processes in Geophysics, vol. 23, no. 2, pp. 59–73,
2016.

[21] K. Levenberg, “A method for the solution of certain non-
linear problems in least squares,” Quarterly of Applied
Mathematics, vol. 2, no. 2, pp. 164–168, 1944.

[22] D. Marquardt, “An algorithm for least-squares estima-
tion of nonlinear parameters,” Journal of the Society for
Industrial and Applied Mathematics, vol. 11, no. 2, pp.
431–441, 1963.

[23] J. Pujol, “The solution of nonlinear inverse problems
and the Levenberg-Marquardt method,” Geophysics,
vol. 72, no. 4, pp. W1–W16, 2007.


