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Abstract. This article presents a solution to the time series prediction
competition of the ESTSP 2007 conference. The solution is based on op-
timal filtering, which is a methodology for computing recursive solutions
to statistical inverse problems, where a time varying stochastic state space
model is measured through a sequence of noisy measurements. In the solu-
tion, the overall behavior of the time series is first modeled by constructing
a linear state space model, which captures most of the visible features of
the time series. Residual analysis techniques are then used for correcting
the yet unmodeled features of the time series. These corrections result
in a non-linear state space model, which is solved using a combination of
linear Kalman filter, non-linear unscented Kalman filter and Rauch-Tung-
Striebel smoother. The unknown parameters of the state space model are
optimized to give the best possible prediction over 50 steps.

1 Introduction

In this article, a solution to the ESTSP 2007 time series prediction competition
is presented. The solution is based on modeling the time series with a non-
linear state space model, which is then estimated with unscented Kalman filter
and Rauch-Tung-Striebel smoother. The solution is similar to the time series
prediction method used in [1], but the underlying linear stochastic model is
different and an additional non-linear correction term is included in the model.

1.1 Optimal Filtering and Smoothing

The celebrated Kalman filter [2, 3, 4] considers optimal filtering, that is, recursive
statistical inference of linear state space models of the form

Xp = Ap_1Xp—1 +qr_1
yi = Hy xp + 1g,

(1)
where x;, € R" is the state, yx € R™ is the measurement, qiz_1 ~ N(0, Qx—_1)
is the process noise, and ry ~ N(0,Ry) is the measurement noise. The matrix
A1 is the transition matrix of the dynamic model and Hy, is the measurement
model matrix. In addition to producing the optimal estimates, the Kalman filter
can be used for computing optimal n-step prediction of the state space model
given a sequence measurements from the model.



The Eztended Kalman filter (EKF) [3, 5, 6] and Unscented Kalman filter
(UKF) [7, 8, 5] are extensions of the Kalman filter to estimation and prediction
of non-linear state space models of the form

xp = f(xp—1,k—1) +qrp1 @)
Yi = h(xp, k) +rp,
where x;, € R™ is the state, y; € R™ is the measurement, q;_1 ~ N(0, Qx—_1) is
the Gaussian process noise, ry ~ N(0,Ry) is the Gaussian measurement noise,
f(-) is the dynamic model function and h(-) is the measurement model function.
Optimal smoothing methods [9, 10, 11] can be used for computing better es-
timates of the signal than optimal filters in the cases that the whole history of
measurements from the time series can be used for computing the estimates. As
optimal filtering methods produce optimal estimates, which are optimal when
only causal estimators are considered, optimal smoothing methods produce op-
timal estimates based on the whole history of observations. Obviously, these
estimates can be, in principle, computed from the posterior distribution of the
states given the measurements, but the idea of optimal smoothing methods is to
provide computationally efficient methods for computing these estimates.

1.2 Stochastic Differential Equations

Stochastic differential equation [12, 13] is a white noise driven differential equa-
tion of, for example, the form

dx

i f(x,t) + L(t) w(t), (3)

where x(t) € R™ is the (continuous-time) state, f : R” x R — R"™ is the drift
function, L(t) € R™** is the dispersion matrix, and w(t) € R?® is a white noise
process with spectral density matrix Q.(t).

The theory of stochastic differential equations is well known, and it is com-
monly formulated in terms of Ité calculus, which is the theory of differential
calculus of stochastic processes (see, e.g., [12, 13]). In rigorous mathematical
sense the stochastic differential equation (3) should be actually interpreted as a
stochastic integral equation of the form

x(t) — x(s) :/ f(x,t) dt+/ L(t)dB(1), (4)
which can be written more compactly as
dx(t) = f(x,t)dt + L(¢) dB(t), (5)

where 3(t) is a Brownian motion with diffusion matrix Q.(t). If we define the
white noise w(t) as the formal derivative of Brownian motion w(t) = d3(¢t)/dt,
the equation (5) can be formally written in form (3). This kind of white noise



formulation only makes sense in the case when the dispersion matrix is indepen-
dent of the state, that is, L(x,t) = L(t), because it is the case when the It6 and
Stratonovich interpretations of the SDE are equivalent.

In this article, the dynamic model will be a linear time invariant (LTI)
stochastic differential equation of the form

X _ px(t) + Lwl(t), (6)
dt

where x(t) is the state, F and L are constant matrices, and w(t) is a white noise

process with a constant spectral density matrix Q.. The theory of LTI equations

is much less complicated than the general 1t6 calculus and the relevant results

of it can be found in beginning Chapters many estimation theory oriented books

(e.g., [4, 6]).
2 Time Series Prediction

In this section the models and methods for time series prediction, and the pre-
diction results are described. The model is constructed as follows:

1. First a linear state space model is constructed, which captures the domi-
nant features of the time series.

2. A non-linear correction term is added to the model, which models the
unmodeled non-linearity in the periodic signal.

3. The remaining auto-regressive component in the residual is compensated
by fitting an AR-model to the residual.

The models are estimated using Kalman filter, unscented Kalman filter and
Rauch-Tung-Striebel smoother.

2.1 Linear State Space Model

By looking at the time series data, which is shown in Figure 1, it can be seen to
be sum of two main components, a bias component and a periodic component:

e The bias component can be modeled as a Brownian motion, which is for-
mally the integral of continuous-time white noise wy(t), and it can be
formulated as a solution of the stochastic differential equation model:

d{L‘b

E = wb(t). (7)

e The periodic component can be modeled as a resonator with a certain
angular velocity w. The variations from perfect sinusoidal can be modeled
by including a random white noise forcing term w,(t) to the resonator
equation. This results in the stochastic differential equation model:

d?z,
a2 —w? @+ wp(2). (8)
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Fig. 1: ESTSP 2007 time series prediction competition data.

The actual time series is the sum of the bias and periodic components. In order to
model the deviations of the data from the model a small Gaussian measurement
noise 7, is assumed to be present in the measurements:

yr = oy (k) + 2 (k) + 1, 9)

where k = 1,2,.... The model can be equivalently written in form

dxzp/dt 0 0 0 Tp 1 0 w
dz,/dt | =10 o0 1 . |+0 0 (w”> (10)

d?z,./dt? 0 —w? 0/ \dz,/dt 01/ "2
dx/dt F x L v
Tp
Yk = (1 1 O) Ty +7L (11)
" \dz,/dt
H —_————

If we define the state as x = (23 @, dz,/dt)”, the model can be seen to be a
linear Gaussian continuous-discrete filtering model:

dx

dt
yr = Hx(k) + .

=Fx(t) +Lw(t) (12)



By the well known formulas for linear systems (see, e.g., [4]) the transition matrix
and covariance matrix of the equivalent discrete time model are given as

A = exp(F)
1 0 0
=10 cosw sin(w)

0 —w sin(w) cosi?w)

1 T 1
Q:/ exp ((1-7)F)LQL exp (1-7)F) dr (13)
0
v 0 0
_ 0 LWt cos(w) sin(w) g, sin?(w)
Z_wS 2w? ) ’
0 gr sin”(w) qr w+g, cos(w) sin(w)
2w2 2w

where g, and ¢, are the spectral densities of w;, and w,., respectively. If we denote
the discrete-time state as x;, = x(k), the model can be written as

Xp = AXp_1+gr_1 (14)
yr = Hxp + 1y, (15)

which is a linear state space model, and suitable for the Kalman filter.
The parameters w, g, and ¢, can be estimated such that they give the best
possible prediction as follows:

1. Find the places in the second half of the time series, which are similar to
the place where the time series ends.

2. Select a discrete set of possible parameter values and predict 50 steps a
head from the selected time series places.

3. Compute the errors in the predictions and select the parameter values that
give the least total error when the predictions at all the selected time series
places are summed.

The result of prediction with the estimated parameter values is shown in the
Figure 2. The result is the smoothing result, computed by running Kalman
filter and Rauch-Tung-Striebel smoother through the data. The estimated bias
xp(t) is also separately shown in the figure. The measurement noise variance is
set to an arbitrary value o2 = 1, because its value does not affect the prediction.

2.2 Non-Linear Correction Term

Although, the prediction of linear state space model in Figure 2 already captures
the essential features of the time series, it is far from perfect. One feature, which
can be seen in the time series is that the periodic component does not seem to
be perfect sinusoidal, but possibly a non-linear transformation of a sinusoidal.
This can be checked by plotting the measurements minus the estimated biases
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Fig. 2: Linear model smoothing and prediction result.

Fig. 3: Measurements minus the biases y; — &, as function of estimates of the
resonator state #.,.(k) and the fitted polynomial.

yx — &p as function of estimates of the resonator state &, (k). The result is shown
in the Figure 3 together with 5th order polynomial fitted to the function.
The fitted 5th order polynomial can be now included as part of the measure-



ment model as follows:
5 i
yr =2(r) + Y ¢ (%«(@) + 7, (16)
i=0

where ¢; are the coefficients of the polynomial. The measurement model is now
non-linear, but fortunately of the form (2), which is suitable for the unscented
Kalman filter (UKF).

In order to get an estimate of the time series based on all the measurements
instead of the filtering estimate, which is based on the preceding data, Rauch-
Tung-Striebel (RTS) smoother was ran over the UKF filtering result. Note that
because the dynamic model is linear, linear RTS smoother is enough and there
is no need to use a non-linear smoother.

2.3 Auto-regressive Model for Residual

The non-linear correction term in (16) models the signal-dependence of the resid-
ual quite well, but there still exists significant auto-correlation in the residual as
can be seem in the Figure 4. There seems to be a small periodic component in
the residual, which needs to be compensated.

0 10 20 30 40 50 60 70 80
Fig. 4: Auto-correlation of the residual.

The periodicity of the residual time series {e : k = 1,..., N} can be modeled
with a second order auto-regressive (AR) model [14]

2
er = Zai Cr—i +Tzr. (17)

i=1



The order of the model was selected to be two, because a second order AR-
model is able to capture the single periodic component in the residual and there
is no evidence of higher order phenomena. In article [1], an AR-model of the
same order was also successfully applied to modeling similar residual periodicity.
The variance of the Gaussian noise ri* was set to a suitable value o2, = 1. The
coefficients of the AR-model were estimated with the linear least squares method.

After the AR-model has been estimated from the residual time series data,
the final estimation solution is obtained by running the Kalman filter and the
Rauch-Tung-Striebel smoother to the model

2
dy, = Z a; dg—; + v}
i1

er = dg +7”Z,

(18)

where the Gaussian process noise v} has variance ¢P = 1078 and the measure-
ment noise rﬁ has the variance 012, = 109. The residual estimate dj, is summed

to the prediction computed by the UKF.

2.4 Final Prediction Result
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Fig. 5: The final prediction result.

The final prediction result is shown in the Figure 5. The prediction was
obtained as follows:

1. A high number of parameter values were selected and the values were
searched, which gave the best prediction according to the principle de-
scribed in Section 2.1.



2. With each parameter values, the non-linear state space model described in
Section 2.2 with the linear dynamic model (14) and non-linear measure-
ment model (16) was estimated with unscented Kalman filter (UKF) and
the prediction was done by iterating the prediction step of the filter 50
times. The non-linear correction in the prediction was applied only to the
predicted mean, which corresponds to EKF type of approximation. This
was selected, because according to the experiments it gave a lower predic-
tion error than the UKF type of approximation. In the estimation step
the UKF worked better than EKF.

3. The Rauch-Tung-Striebel (RTS) smoother was run over the time series
to get an estimate, which is conditioned to all the measurements. The
auto-regressive model was fitted to the smoother residual and the auto-
regressive correction was then added to the prediction results as described
in Section 2.3. This estimation was done using linear Kalman filter and
RTS smoother.

2.5 Discussion

The approach used in this article is exploratory in the sense that a simple linear
model is first constructed and it is then improved step by step. The approach is
not incremental, because at the final step the whole non-linear model is estimated
and used as whole instead of using the results of the models on the previous steps
as such.

The Rauch-Tung-Striebel smoother is only used in estimation stage, and
actually, it is only needed for computation of the residuals of the solutions. The
actual prediction is performed by using the prediction step of the unscented
Kalman filter and the non-linear correction is applied to the prediction result.
However, the smoother result is needed for estimating the non-linear residual
correction term and the AR-model of the residual.

The selection of parameters is based on predictive criterion, which tries to
mimic the competition error criterion as well as possible. The idea of the ap-
proach is to find the parameter values, which minimize the expected value of
the prediction error in the competition, when the expected value is computed
over the posterior distribution of the other parameters in the model. This can
be interpreted as optimal Bayesian decision [15] for selection of point estimates
for the parameters. In this case it is not optimal to use, for example, maximum
a posterior (MAP) estimate, minimum mean squared error (MMSE) estimate,
that is, the posterior mean or any other such point estimates, because they min-
imize wrong error criteria. Instead, it is best to explicitly minimize the 50 step
prediction error criterion of the competition.

3 Conclusion

In this article a solution to the time series prediction competition of the ESTSP
2007 conference has been presented. The solution is based on constructing a non-



linear state space model for the time series, which is then estimated using the
unscented Kalman filter (UKF) and Rauch-Tung-Striebel (RTS) smoother. The
residual auto-correlations were compensated with an AR-model. The parameters
were selected by systematically testing various combinations of parameters and
by selecting the ones, which gave the least error in 50 step prediction.
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