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Spatio-Temporal Learning via Infinite-Dimensional
Bayesian Filtering and Smoothing
Simo Särkkä, Senior Member, IEEE, Arno Solin, and Jouni Hartikainen

Abstract—Gaussian process based machine learning is a pow-
erful Bayesian paradigm for non-parametric non-linear regres-
sion and classification. In this paper, we discuss connections of
Gaussian process regression with Kalman filtering, and present
methods for converting spatio-temporal Gaussian process regres-
sion problems into infinite-dimensional state space models. This
formulation allows for use of computationally efficient infinite-
dimensional Kalman filtering and smoothing methods, or more
general Bayesian filtering and smoothing methods, which reduces
the problematic cubic complexity of Gaussian process regression
in the number of time steps into linear time complexity. The
implication of this is that the use of machine learning models in
signal processing becomes computationally feasible, and it opens
the possibility to combine machine learning techniques with sig-
nal processing methods.

Index Terms—Gaussian process, machine learning, infinite-
dimensional Bayesian filtering and smoothing, spatio-temporal
process, state space model

I. INTRODUCTION

SPATIO-temporal Gaussian processes, or Gaussian fields,
arise in many disciplines such as spatial statistics and krig-

ing, machine learning, physical inverse problems, and signal
processing [1], [2], [3], [4], [5]. In these applications, we are
interested in doing statistical inference on the dynamic state of
the whole field based on a finite set of indirect measurements
as well as estimating the properties (i.e., the parameters) of
the underlying process (or field). For example, in electrical
impedance tomography (EIT) problems [4] we try to recon-
struct the resistance field of a body based on voltages induced
by injected currents. In spatial statistics typical problems are
prediction of wind, precipitation or ocean currents based on
finite sets of measurements [1].

In Gaussian process based Bayesian machine learning [2]
Gaussian processes are used as non-parametric priors for re-
gressor functions, and the space and time variables take the
roles of input variables of the regressor function. Learning in
these non-parametric models amounts to computation of the
posterior distribution of the Gaussian process conditioned on
a set of measurements and estimation of the parameters of the
covariance function of the process.

Gaussian process regression can also be seen as a kernel
method, where the covariance function of the Gaussian process
serves as the kernel of the corresponding reproducing kernel
Hilbert space (RKHS) [2]. In this paper we do not directly
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utilize the RKHS formalism, but instead, work in its mathe-
matical dual [6], in the stochastic process formalism. The ad-
vantage of this is that it enables us to utilize the vast number
of methods developed for inference on stochastic processes.

In classical signal processing and stochastic control, Gaus-
sian processes are commonly used for modeling temporal phe-
nomena in form of stochastic differential equations (SDE) [7]
and the inference procedure is usually solved using Kalman
filter type of methods [5]. These models are typically based
on physical, electrical or mechanical principles, which can be
represented in form of differential equations. Stochasticity in
these systems is in form of a white noise process acting as an
unknown forcing term. It is also possible to use more general
Gaussian process models to better model the forcing terms
in such systems. This is the underlying idea in latent force
models (LFM), which have many applications, for example,
in biology, human tracking and satellite navigation [8], [9].

A central practical problem in the Gaussian process regres-
sion context as well as in more general statistical inverse prob-
lems is the cubic O(N3) computational complexity in the
number of measurements N . In the spatio-temporal setting,
when we obtain, say, M measurements per time step and the
total number of time steps is T , this translates into a cubic
complexity in space and time O(M3 T 3). This is problematic
in signal processing, because there we usually are interested
in processing long (unbounded) time series and thus it is nec-
essary to have linear complexity in time. This is also the rea-
son for the popularity of SDE models and state space models
in signal processing—their inference problem can be solved
with Kalman (or Bayesian) filters and smoothers which have
a linear O(T ) time complexity.

Due to the computational efficiency of Kalman filters
and smoothers, it is beneficial to reformulate certain spatio-
temporal Gaussian process regression problems as Kalman fil-
tering and smoothing problems. The aim of this paper is to
show when and how this is possible. We also present a number
of analytical examples, and apply the methodology to predic-
tion of precipitation and to processing of fMRI brain imaging
data.

The described methods will be mainly based on the articles
Hartikainen & Särkkä [10] and Särkkä & Hartikainen [11].
However, the idea of reducing the computational complexity
of Gaussian process regression (or equivalent kriging) via re-
duction into SDE form has also been suggested by Lindgren
et al. [12], and filtering and smoothing type of methods have
been applied to spatio-temporal context before [13], [4], [14].
Applying recursive Bayesian methods to on-line learning in
Gaussian process regression has also been proposed, for ex-
ample, in [15] and they are also closely related to kernel re-
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cursive least squares (KRLS) algorithms [16], [17]. Infinite-
dimensional filtering and smoothing methods as such date back
to the 60’s–70’s [18]. An alternative general way of coping
with the computational complexity problem is by using sparse
approximations [19], [2], but here we will concentrate on the
state space approach.

The structure of this paper is as follows. In Section II we
describe how Gaussian processes are used in regression and
Kalman filtering, and what the idea behind combining the ap-
proaches is. In Section III we present methods for converting
Gaussian process regression models into state space models
which are suitable for Kalman filtering and smoothing meth-
ods. In Section IV we discuss how the inference procedure can
be done in practice, how it can be extended to non-linear and
non-Gaussian models and parameter estimation, and finally in
Section V, we present two example applications.

II. GAUSSIAN PROCESSES IN REGRESSION AND KALMAN
FILTERING

A. Definition of a Gaussian Process

A Gaussian process is a random function f(ξ) with d-
dimensional input ξ such that any finite collection of random
variables f(ξ1), . . . , f(ξn) has a multidimensional Gaussian
distribution. Note that when d > 1, what we here call Gaus-
sian processes are often called Gaussian fields, but here we
will always use the term process, regardless of the dimension-
ality d.

A Gaussian process can be defined in terms of a mean m(ξ)
and covariance function k(ξ, ξ′):

m(ξ) = E[f(ξ)]

k(ξ, ξ′) = E[(f(ξ)−m(ξ)) (f(ξ′)−m(ξ′))].
(1)

The joint distribution of an arbitrary finite collection of random
variables f(ξ1), . . . , f(ξn) is then multidimensional Gaussian:f(ξ1)

...
f(ξn)

 ∼ N


m(ξ1)

...
m(ξn)

 ,

k(ξ1, ξ1) . . . k(ξ1, ξn)
...

. . .
k(ξn, ξ1) k(ξn, ξn)


 .

(2)
In the same way as a function can be considered as an infinite-
long vector consisting of all its values at each input, one way to
think about a Gaussian process is to consider it as an infinite-
dimensional limit of a Gaussian random vector. The input vari-
able then serves as the element index in this infinite-long ran-
dom vector.

A Gaussian process is stationary if its mean is constant and
the two-argument covariance function is of the form

k(ξ, ξ′) = C(ξ′ − ξ), (3)

where C(ξ) is another function, the stationary covariance
function of the process.

In spatial Gaussian processes, we have ξ = x, where x
corresponds to the input of the random function in Gaussian
process regression or, for example, a spatial location in geo-
statistics or physical inverse problems. In temporal Gaussian
processes typically arising in signal processing, ξ = t, where
t is the time variable. In spatio-temporal problems ξ = (x, t),

where x and t are the space (or input) and time variables,
respectively.

B. Gaussian Process Regression

Gaussian process regression is a way to do non-parametric
regression with Gaussian processes. Assume that we want to
predict (interpolate) the values of an unknown scalar valued
function with d-dimensional input:

y = f(x) (4)

at a certain test point x∗, based on a training set consisting of
a finite number of observed input-output pairs {(xi, yi) : i =
1, . . . , N}. Instead of postulating a parametric form of the
function f(x,θ) as in parametric regression and estimating
the parameters θ, in Gaussian process regression, we assume
that the function f(x) is a sample from Gaussian process with
a given mean m(x) and covariance function k(x,x′). This is
denoted as follows:

f(x) ∼ GP(m(x), k(x,x′)). (5)

In Gaussian process regression, we typically use stationary
covariance functions and assume that the mean is identically
zero m(x) = 0. A very common choice of covariance function
is the squared exponential covariance function

k(x,x′) = s2 exp

(
− 1

2l2
||x− x′||2

)
, (6)

which has the property that the resulting sample functions are
very smooth (infinitely differentiable). The parameters l and s
then define how smooth the function actually is and what is
the magnitude of values that we should expect.

The underlying idea in Gaussian process regression is
that the correlation structure introduces dependencies between
function values at different inputs. Thus the function values at
the observed points give information also of the unobserved
points. For example, the squared exponential covariance func-
tion above says that when the inputs are close to each other,
also the function values should be close to each other. This
is equivalent to saying that the function values with similar
inputs should have a stronger correlation than function values
with dissimilar inputs, which is exactly what the above covari-
ance function states.

In statistical estimation problems it is often assumed that the
measurements are not perfect, but instead, they are corrupted
by certain additive Gaussian noise. That is, the measurements
are modeled as

yi = f(xi) + εi, εi ∼ N(0, σ2), (7)

where εi are IID random variables, a priori independent of the
Gaussian process f(x). Now, we are interested in computing
an estimate of the value of the “clean” function f(x∗) at test
point x∗.

The key thing is now to observe that the joint
distribution of the test point and the training points
(f(x∗), f(x1), . . . , f(xN )) is Gaussian with known statis-
tics (this follows from the definition of a Gaussian pro-
cess). Because the measurement model (7) is linear-Gaussian,
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the joint distribution of the test point and the measurements
(f(x∗), y1, . . . , yN ) is Gaussian with known statistics as well.
As everything is Gaussian, we can compute the conditional
distribution of f(x∗) given the observations y1, . . . , yN by
using the well-known computational rules for Gaussian distri-
butions. The result can be expressed as

p(f(x∗) | y1, . . . , yN ) = N(f(x∗) |µ(x∗), V (x∗)), (8)

where the posterior mean µ(x∗) is a function of the train-
ing inputs and the measurements, and the posterior variance
V (x∗) is a function of the training inputs (see, [2] for details).
However, it turns out that the computational complexity of the
equations is O(N3), because of an N × N -matrix inversion
appearing in both the mean and covariance equations.

A useful way to rewrite the Gaussian process regression
problem is in the form

f(x) ∼ GP(m(x), k(x,x′))

y = Hf(x) + ε, ε ∼ N(0,Σ),
(9)

where Σ = σ2 I, and the linear operator H picks the training
set inputs among the function values:

Hf(x) = (f(x1), . . . , f(xN )). (10)

This problem can be seen as a infinite-dimensional version of
the following Bayesian linear regression problem:

f ∼ N(m,K)

y = Hf + ε,
(11)

where f is a vector with Gaussian prior N(m,K), and matrix
H is constructed to pick those elements of the vector f that
we actually observe. Solving the infinite-dimensional linear
regression problem in Equation (9) analogously to the finite-
dimensional problem in Equation (11), leads to the Gaussian
process regression solution (cf. [11]). We could also replace
the operator H with a more general linear operator which
would allow us to solve statistical inverse problems under the
Gaussian process regression formalism [20].

C. Kalman Filtering and Smoothing
Kalman filtering is considered with statistical inference on

state space models of the form

df(t)

dt
= Af(t) + Lw(t)

yk = Hf(tk) + εk,
(12)

where k = 1, . . . , T , and A, L, and H are given matrices,
εk is a vector of Gaussian measurement noises, and w(t) is a
vector of white noise processes. A white noise process refers
to a zero mean Gaussian random process, where each pair of
values w(t) and w(t′) are uncorrelated whenever t 6= t′.

Because f(t) is a solution to a linear differential equation
driven by Gaussian noise, it is a Gaussian process. It is also
possible to compute the corresponding covariance function of
f(t) (see, e.g., [10]), which gives the equivalent covariance
function based formulation. We can also construct almost any
covariance function for a single selected component of the
state provided that we augment the state to contain a number
of derivatives of the selected state component as well [10].
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Fig. 1. (a) In the covariance function based representation the spatio-temporal
field is considered “frozen” and we postulate the covariance between two
space–time points. (b) In the state space model based description we construct
a differential equation for the temporal behavior of a sequence of “snapshots”
of the spatial field.

Because the solution of a stochastic differential equation is
a Markovian process, it allows for linear time computation of
the posterior distribution of any unobserved test point f(t∗).
The computational algorithms for this are the Kalman filter and
Rauch–Tung–Striebel (RTS) smoother algorithm. The Kalman
filter and RTS smoother can be used for computing the mean
and covariance of the following distribution for arbitrary t in
linear time complexity:

p(f(t) |y1, . . . ,yT ) = N(f(t) |ms(t),Ps(t)). (13)

Thus we can now pick the time point t = t∗ to obtain the
posterior distribution of f(t∗).

D. Combining the Approaches
Spatio-temporal Gaussian process regression is considered

with models of the form
f(x, t) ∼ GP(0, k(x, t;x′, t′))

yk = Hkf(x, tk) + εk,
(14)

which we have already written in form similar to Equation (9).
As mentioned in the previous section, it is possible to force

almost any covariance function of a given state component of
a state space model provided that we augment the state with
a sufficient number of time derivatives as well. We can now
use this idea to formulate a hybrid model, where the temporal
correlation in the above model is represented as a stochastic
differential equation kind of model and the spatial correlation
is injected into the model by selecting the matrices in the
model properly. In fact, we need to let the spatial dimension
to take the role of an additional vector element index, which
leads to the infinite-dimensional state space model

∂f(x, t)

∂t
= A f(x, t) + Lw(x, t)

yk = Hk f(x, tk) + εk,
(15)

where the state f(x, t) at time t consists of the whole func-
tion x 7→ f(x, t) and a suitable number its time derivatives.
This model is now an infinite-dimensional Markovian type of
model which allows for linear-time inference with the infinite-
dimensional Kalman filter and RTS smoother.
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The philosophical difference between the covariance func-
tion based model in Equation (14) and the state space model
in Equation (15) is illustrated in Figure 1. In the state space
model formulation we think that we have a field that propa-
gates forward in time whereas in the covariance based formu-
lation we just compute covariances between space–time points
of a “frozen” field.

III. CONVERTING COVARIANCE FUNCTIONS TO STATE
SPACE MODELS

A. Covariance Functions of Stochastic Differential Equations

One useful way to construct Gaussian processes is as so-
lutions to nth order stochastic linear differential equations of
the form

an
dnf(t)

dtn
+ · · ·+ a1

df(t)

dt
+ a0 f(t) = w(t), (16)

where the driving function w(t) is a zero-mean continuous-
time Gaussian white noise process. The solution process f(t),
a random function, is a Gaussian process, because w(t) is
Gaussian and the solution of a linear differential equation is a
linear operation on the input.

If we take the formal Fourier transform of Equation (16)
and solve for the Fourier transform of the process F (i ω), we
get

F (iω) =

(
1

an (i ω)n + · · ·+ a1 (i ω) + a0

)
︸ ︷︷ ︸

G(i ω)

W (i ω), (17)

where W (i ω) is the (formal) Fourier transform of the white
noise. The above equation can be interpreted such that the
process F (i ω) is obtained by feeding white noise through a
system with the transfer function G(i ω).

From the above description it is now easy to calculate the
corresponding (power) spectral density of the process, which
is just the square of the absolute value of the Fourier trans-
form of the process. If we denote the spectral density of white
noise |W (i ω)|2 = qc, the spectral density of the process is

S(ω) = qc |G(i ω)|2, (18)

where the key factor is to observe that it has the form

S(ω) =
constant

polynomial in ω2
. (19)

Thus we can conclude that for an nth order random differ-
ential equation of the form (16) the spectral density has the
rational function form.

The classical Wiener–Khinchin theorem states that the sta-
tionary covariance function of the process is given by the in-
verse Fourier transform of the spectral density:

C(t) = F−1[S(ω)] =
1

2π

∫
S(ω) exp(i ω t) dω, (20)

and thus the corresponding covariance function is

k(t, t′) = C(t− t′). (21)

Note that the stochastic differential equation (16) can also be
equivalently represented in the following state space form. If
we define f = (f, df/dt, . . . ,dn−1f/dtn−1), then we have

df(t)

dt
=


0 1

. . . . . .
0 1

−a0 −a1 . . . −an−1


︸ ︷︷ ︸

A

f(t) +


0
...
0
1


︸ ︷︷ ︸

L

w(t).

(22)
Recall that the scalar function f(t) is just the first compo-

nent of the vector f(t). Thus if we assume that we measure
noise corrupted values yk of f(tk) at points t1, . . . , tN , we
can write this as

yk =
(
1 0 · · · 0

)︸ ︷︷ ︸
H

f(t) + εk, (23)

which indeed is a model of the form (12).
Thus if we apply the Kalman filter and smoother to the

state space model described by the Equations (22) and (23)
we will get the same result as if we applied Gaussian process
regression equations to the covariance function defined by the
Equation (20). In that sense the representations are equivalent.
However, if the number of time steps is T , then the computa-
tional complexity of the Kalman filter and smoother is O(T ),
whereas the complexity of Gaussian process regression solu-
tion is O(T 3). Thus the state space formulation has a huge
computational advantage, at least when the number of time
steps is large.

In fact, we do not need to restrict ourselves to spectral den-
sities of the all-pole form (19), but the transfer function in
Equation (17) can be allowed to have the more general form

G(i ω) =
bm (i ω)m + · · ·+ b1 (i ω) + b0
an (i ω)n + · · ·+ a1 (i ω) + a0

, (24)

where the numerator order is strictly lower than the denomi-
nator order m < n with an 6= 0 (i.e., the transfer function is
proper). The spectral density then has the more general form

S(ω) =
mth order polynomial in ω2

nth order polynomial in ω2
, (25)

where the order of the numerator is again lower than the de-
nominator’s.

In control theory [21], there exists a number of methods to
convert a transfer function of form (24) into an equivalent state
space model. The procedure which we used above roughly
corresponds to the so called controller canonical form of the
state space model. Another option is, for example, the observer
canonical form. In these representations the state variables are
not necessarily pure time derivatives anymore. Anyway, once
we have the transfer function, we can always convert it into a
state space model.

B. From Temporal Covariance Functions to State Space Mod-
els

An interesting question is now that if we are given a covari-
ance function k(t, t′), how can we find a state space model
where one of the state components has this covariance func-
tion? We will assume that the process is stationary and thus
we can equivalently say that we want to find a state space
model with a component having a stationary covariance func-
tion C(t) such that k(t, t′) = C(t− t′).
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The procedure to convert a covariance function into state
space model is the following [10]:

1) Compute the corresponding spectral density S(ω) by
computing the Fourier transform of C(t).

2) If S(ω) is not a rational function of the form (25), then
approximate it with such a function. This approximation
can be formed using, for example, Taylor series expan-
sions or Padé approximants.

3) Find a stable rational transfer function G(i ω) of the
form (24) and constant qc such that

S(ω) = G(i ω) qcG(−i ω). (26)

The procedure for finding a stable transfer function is
called spectral factorization. One method to do that is
outlined later in this section.

4) Use the methods from control theory [21] to convert the
transfer function model into an equivalent state space
model. The constant qc will then be the spectral density
of the driving white noise process.

An example of the above procedure is presented in Exam-
ple 1 for the Matérn covariance function. However, above we
required the transfer function G(i ω) to be stable. A transfer
function corresponds to a stable system if and only if all of its
poles (zeros of the denominator) are in the upper half of the
complex plane. We also want the transfer function to be min-
imum phase, which happens when the zeros of the numerator
are also in the upper half plane.

The procedure to find such a transfer function is called spec-
tral factorization. One simple way to do that is the following:
• Compute the roots of the numerator and denominator

polynomials of S(ω). The roots will appear in pairs,
where one member of the pair is always the complex
conjugate of the other.

• Construct the numerator and denominator polynomials of
the transfer function G(i ω) from the positive-imaginary-
part roots only.

If the spectral density does not already have a rational func-
tion form, the above procedures only lead to approximations.
One example of a covariance function which does not have a
rational spectral density is the squared exponential covariance
function in Equation (6). However, its spectral density can be
well approximated with low order rational functions. This is
demonstrated in Example 2.

C. State Space Representation of Spatio-Temporal Gaussian
Processes

Let’s now consider the question of representing a spatio-
temporal covariance function k(x, t;x′, t′) in state space form.
Assuming that the covariance function is stationary we can
concentrate on the corresponding stationary covariance func-
tion C(x, t). The space–time Fourier transform then gives the
corresponding spectral density S(ωx, ωt).

If we consider ωx fixed, then ωt 7→ S(ωx, ωt) can be con-
sidered as a spectral density of a temporal process which is
parametrized with ωx. Assume for simplicity that the func-
tion ωt 7→ S(ωx, ωt) has the form of a constant divided by
polynomials (19). This implies that there exists an nth order

Example 1 (1D Matérn covariance function). The isotropic
and stationary (τ = |t−t′|) covariance function of the Matérn
family can be given as

C(τ) = σ2 21−ν

Γ(ν)

(√
2ν

τ

l

)ν
Kν

(√
2ν

τ

l

)
,

where ν, σ, l > 0 are the smoothness, magnitude and length
scale parameters, and Kν(·) the modified Bessel function (see,
e.g., [2]). The spectral density is of the form

S(ω) ∝
(
λ2 + ω2

)−(ν+1/2)
,

where λ =
√

2ν/l. Thus the spectral density can be factored
as S(ω) ∝ (λ+ i ω)

−(p+1)
(λ− i ω)

−(p+1), where ν = p +
1/2. The transfer function of the corresponding stable part is

G(i ω) = (λ+ i ω)
−(p+1)

.

For integer values of p (ν = 1/2, 3/2, . . .), we can expand this
expression using the binomial formula. For example, if p = 1
(ν = 3/2), the corresponding LTI SDE is

df(t)

dt
=

(
0 1
−λ2 −2λ

)
f(t) +

(
0
1

)
w(t),

where f(t) = (f(t),df(t)/dt). The covariance, spectral den-
sity and an example realization are shown in Figure 2.

Example 2 (1D squared exponential covariance function).
The one-dimensional squared exponential covariance function
C(τ) = σ2 exp(−τ2/(2l2)) has the spectral density

S(ω) = σ2
√

2π l exp

(
− l

2 ω2

2

)
.

This spectral density is not a rational function, but we can
easily approximate it with such a function. By using the Taylor
series of the exponential function we get an approximation

S(ω) ≈ constant
1 + l2 ω2 + · · ·+ 1

n! l
2n ω2n

which we can factor into stable and unstable parts, and fur-
ther convert into an n-dimensional state space model

df(t)

dt
= Af(t) + Lw(t).

The covariance, spectral density and a random realization are
shown in Figure 2. The error induced by the Taylor series ex-
pansion approximation is also illustrated in the figure.

spatial Fourier domain stochastic differential equation which
has the same temporal spectral density:

an(iωx)
∂nf̃(iωx, t)

∂tn
+ · · ·+ a1(iωx)

∂f̃(iωx, t)

∂t
+ a0(iωx) f̃(iωx, t) = w̃(iωx, t),

(27)

where the spectral density of the white noise process is some
function q̃c(ωx). Analogously to the temporal case (cf. Sec-
tion III-A) we can now express this in the following equivalent
state space form:
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f
(t
)

t

Squared exponential

Matérn (ν = 3/2)

C
(t

−
t′
)

S
(ω

)

Covariance Function Spectral Density−3l 3l 2π−2π

Matérn
SE (exact)

SE (n = 2)

SE (n = 4)

SE (n = 6)

Fig. 2. Random realizations drawn using the state space models in Exam-
ples 1 (green) and 2 (blue). The processes can characterized through their co-
variance functions or using their spectral densities. The representation for the
Matérn covariance function is exact whereas the squared exponential needs
to be approximated with a finite-order model (illustrated with n = 2, 4, 6
above). The errors in the tails of the spectral density transform into bias at
the origin of the covariance function. With order n = 6, which was also
used for drawing the random realization, both the approximations are already
almost indistinguishable from the exact ones.

∂ f̃(iωx, t)

∂t
= A(i ωx) f̃(iωx, t) + L w̃(iωx, t), (28)

where

A(i ωx) =


0 1

. . . . . .
0 1

−a0(iωx) −a1(iωx) . . . −an−1(iωx)

 ,

(29)
and L is the same as in Equation (22).

The above equation is still in spatial Fourier domain and to
convert it into spatial domain, we need to compute its inverse
Fourier transform. This leads to the equation

∂f(x, t)

∂t
= A f(x, t) + Lw(x, t), (30)

where A is a matrix of linear operators as follows:

A =


0 1

. . . . . .
0 1

−A0 −A1 . . . −An−1

 . (31)

and the spatial covariance of the white noise is given by the
inverse Fourier transform of q̃c(ωx). The operators Aj are
pseudo-differential operators [22] defined in terms of their
Fourier transforms:

A0 = F−1x [a0(iωx)],

A1 = F−1x [a1(iωx)],

...

An−1 = F−1x [an−1(iωx)].

(32)

The measurement model operator H can now be constructed
such that it evaluates the first component of the vector f(x, t)
at the measurement points by combining the ideas in Equa-
tions (10) and (23).

Analogously to the temporal case, we can generalize the
above procedure to models with transfer functions of the form

G(i ωt) =
bm(iωx) (i ωt)

m + · · ·+ b1(iωx) (i ωt) + b0(iωx)

an(iωx) (i ωt)n + · · ·+ a1(iωx) (i ωt) + a0(iωx)
,

(33)
which then leads to spectral densities S(ωx, ωt) which are
rational in variable ω2

t .

D. From Spatio-Temporal Covariance Functions to State
Space Models

The generalization of the conversion procedure presented
in Section III-B is the following. A given stationary
spatio-temporal Gaussian process with covariance function
k(x, t;x′, t′) such that k(x, t;x′, t′) = C(x′ − x, t′ − t) can
be converted into an infinite-dimensional state space model
representation via the following steps:

1) Compute the corresponding spectral density S(ωx, ωt)
as the spatio-temporal Fourier transform of C(x, t).

2) Approximate the function ωt 7→ S(ωx, ωt) with a ratio-
nal function in variable ω2

t .
3) Find a stable ωt-rational transfer function G(iωx, i ωt)

and function q̃c(ωx) such that

S(ωx, ωt) = G(iωx, i ωt) q̃c(ωx)G(−iωx,−i ωt).
(34)

The transfer function needs to have all its roots and zeros
with respect to the ωt variable in upper half plane, for all
values of ωx. This kind of representation can be found
using spectral factorization discussed in Section III-B.

4) Use the methods from control theory [21] to convert the
transfer function model into an equivalent spatial Fourier
domain state space model.

5) Transform each of the coefficients aj(iωx) and bj(iωx)
into the corresponding pseudo-differential operators and
set the spatial stationary covariance function of the white
noise process to the inverse Fourier transform of q̃c(ωx).

The above procedure is demonstrated in Example 3 for the
spatio-temporal Matérn covariance function.

Note that when the covariance function is separable, that is,
C(x, t) = Cx(x)Ct(t), it implies that the spectral density is
separable as well: S(ωx, ωt) = Sx(ωx)St(ωt). It now turns
out that we can do the factorization in Equation (34) as fol-
lows:

S(ωx, ωt) = G(i ωt)Sx(ωx)G(−i ωt). (35)

Because the transfer function G(i ωt) does not contain the
variable ωx at all, the operator matrix A will actually be just
an ordinary matrix and the space correlation gets accounted
by setting the spatial covariance of the white noise process ac-
cording to the spectral density Sx(ωx). The resulting infinite-
dimensional Kalman filter and smoother can then be imple-
mented without additional approximations provided that we
include all the spatial measurement and test points in the state
vector [11]. See Example 4 for a demonstration of this.
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Example 3 (2D Matérn covariance function). The multidi-
mensional equivalent of the Matérn covariance function given
in Example 1 is the following (r = ‖ξ − ξ′‖, for ξ =
(x1, x2, . . . , xd−1, t) ∈ Rd):

C(r) = σ2 21−ν

Γ(ν)

(√
2ν

r

l

)ν
Kν

(√
2ν

r

l

)
.

The corresponding spectral density is of the form

S(ωr) = S(ωx, ωt) ∝
1

(λ2 + ‖ωx‖2 + ω2
t )
ν+d/2

.

where λ =
√

2ν/l. In order to find the transfer function
G(iωx, iωt), we find the roots of the expression in the denom-
inator. They are given by (iωt) = ±

√
λ2 − ||iωx||2, which

means we can now extract the transfer function of the stable
Markov process

G(iωx, iωt) =
(
iωt +

√
λ2 − ‖iωx‖2

)−(ν+d/2)
.

The expansion of the denominator depends on the value of
p = ν + d/2. If p is an integer, the expansion can be easily
done by the binomial theorem. For example, if ν = 1 and d =
2, we get the following

∂f(x, t)

∂t
=

(
0 1

∇2 − λ2 −2
√
λ2 −∇2

)
f(x, t)+

(
0
1

)
w(x, t),

(36)
where ∇2 is the (spatial) Laplace operator (here the second
partial derivative w.r.t. x). The one-dimensional example in
Example 1 can be seen as a special case of this. An example
realization of the process is shown in Figure 3.

x

t

Fig. 3: A random realization simulated by the state space
model in Equation (36).

E. Non-Causal Stochastic Partial Differential Equations

An important thing to realize is that even if the spatio-
temporal covariance function was originally constructed as a
solution to some kind of stochastic partial differential equa-
tion, we might still need to do the above factorization. For
example, consider the following stochastic partial differential
equation (SPDE) due to Whittle [23]:

∂2f(x, t)

∂x2
+
∂2f(x, t)

∂t2
− λ2 f(x, t) = w(x, t), (37)

where w(x, t) is a space–time white Gaussian random field.
Fourier transforming the system and computing the spectral
density gives the stationary covariance function

C(x, t) =

√
x2 + t2

2λ
K1(λ

√
x2 + t2), (38)

Example 4 (2D squared exponential covariance function). The
squared exponential covariance function

k(x, t;x′, t′) = σ2 exp(−α‖x− x′‖2 − α|t− t′|2),

where α = 1/(2l2), is separable, which means that its spectral
density

S(ωx, ωt) =
(π
α

)d/2
exp

(
−‖ωx‖

2

4α

)
exp

(
−ω

2
t

4α

)
is also separable. We use the truncated series approximation
to the temporal part from Example 2, which leaves us with an
approximation S(ωx, ωt) ≈ |G(i ωt)|2Sw(ωx). If we define
f(x, t) = (f(x, t), ∂f(x, t)/∂t, . . . , ∂n−1f(x, t)/∂tn−1), col-
lecting the terms from the transfer function gives the solution

∂f(x, t)

∂t
= Af(x, t) + Lw(x, t),

where w(x, t) is a time-white process with a spatial spectral
density Sw(ωx) and the matrix A is the same as in Exam-
ple 2. Because A does not contain any operators, the corre-
sponding infinite-dimensional Kalman filter and smoother can
be implemented without any additional approximations.

which can be seen as a special case of the covariance function
in Example 3. But if we converted the SPDE in Equation (37)
into a state space model, we would get a different state space
model than in Equation (36) and the model would not even
contain pseudo-differential operators at all. Now the catch is
that if we did that, the resulting model would not be a stable
system. This is because the Equation (37) corresponds to se-
lection of the roots of the spectral density in such way that all
of them are not in the upper half of the complex plane. Thus
the process is not Markovian.

IV. INFINITE-DIMENSIONAL BAYESIAN FILTERING,
SMOOTHING AND PARAMETER ESTIMATION

A. Infinite-Dimensional Kalman Filtering and Smoothing of
Spatio-Temporal Gaussian Processes

Using the procedure outlined in the previous section we can
convert given stationary spatio-temporal covariance functions
into equivalent infinite-dimensional state space models. The
spatio-temporal Gaussian process regression solution can be
then computed with the infinite-dimensional Kalman filter and
smoother [18], [11].

However, in practice, we cannot implement the infinite-
dimensional Kalman filters and smoothers exactly, but the
pseudo-differential operator equations appearing in the equa-
tions need to be solved numerically. Fortunately, we can use
the wide arsenal of numerical methods developed for determin-
istic pseudo-differential and partial differential equation mod-
els for that purpose. Because stationary covariance function
models always lead to equations, which can be expressed in
terms of the Laplace operator, a particularly useful method is
to approximate the solution using the eigenbasis of the Laplace
operator [11], [24].
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Fig. 4. Spatial map of precipitation levels for one month, and the temporal
series for one location. The time of the spatial map is marked to the time
series with red line, and the location of the time series on the spatial map is
marked in red.

B. Non-Linear and Non-Gaussian Extension

It is also possible to extend the present methodology into
non-linear measurement models (e.g., classification problems).
In principle, the only difference is that we just need to re-
place the infinite-dimensional Kalman filter update with the
corresponding infinite-dimensional extension of a non-linear
Kalman filter (cf. [25]). The resulting approximations are sim-
ilar to what has previously been used in context of non-linear
inverse problems [3], [14]. To some extent it would also be
possible to construct non-Gaussian prior models by allowing
non-linearities in the infinite-dimensional state space model.
There indeed exists a mathematical theory for this kind of
models [26], but the numerical treatment is quite challenging.

C. Parameter Estimation

Because after the conversion procedure, the model is a state
space model, we can estimate the parameters in the model
using the methods developed for estimation of parameters in
finite-dimensional state space models. These methods also in-
herit the pleasant linear time complexity whereas Gaussian
process regression based parameter estimation methods (e.g.,
[2]) also have the cubic complexity problem. A good review
of the available methods can be found, for example, in the
book [27]. Parameter estimation in SDE based models was
also recently studied in [28] and methods also suitable for
infinite-dimensional systems were recently discussed in [29].

V. APPLICATION EXAMPLES

A. Spatio-Temporal Modeling of Precipitation

As the first application example we consider spatio-temporal
interpolation of precipitation levels based on monthly data
collected during the years 1895–1997 at over 400 stations
around Colorado, US. The same data was also used by [11]
and it contains total number of over 300 000 observations.
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Fig. 5. Spatial amplitude map for heart beat induced noise in the brain esti-
mated both using a spatially independent (left) and a spatio-temporal model
(right). The slice orientation is shown on the left.

We used a Gaussian process model with the non-separable
spatio-temporal Matérn covariance function in Example 3 with
smoothness ν = 3/2, and a 10-year subset of the data. In
this case, the direct GP solution would require inversion of
a 55 410 × 55 410-matrix, which renders inference with the
model practically unusable. The filters and smoothers were ap-
proximated by using truncated eigenfunction expansion of the
Laplace operator with 384 eigenfunctions, and the parameters
were optimized with respect to marginal likelihood.

Figure 4 shows the resulting precipitation field for one
month. The temporal time series for one location is presented
for a test point that was left out from the estimation. As can
been seen in the figure, the method provides good spatial in-
terpolation of the data while still following the temporal vari-
ations.

B. Oscillatory Structures in Brain Data

Instead of starting from a GP regression problem, we can
also formulate the physical phenomena directly as an infinite-
dimensional state space model and combine it with spatio-
temporal covariance function models. This means that we can
base the modeling on a wide range of first principles mod-
els. In [24], this methodology was used for estimating the
spatio-temporal characteristics of physiological noise in the
brain. Figure 5 shows the result of estimation of the ampli-
tude of heart beat induced oscillations in functional magnetic
resonance imaging (fMRI) brain data from a healthy volun-
teer. The matrix size was 64 × 64, repetition time 0.1 s and
total length 26 s (1 064 960 observations). The hot spots in the
figure correlates with the large blood vessels. In fMRI, the
spatio-temporal model can mitigate the problems related to
slow sampling, as the spatial information can compensate for
missing temporal data.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this paper we have discussed the connection of Gaussian
process regression and Kalman filtering, and showed how cer-
tain classes of temporal or spatio-temporal Gaussian process
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regression problems can be converted into finite or infinite-
dimensional state space models. The advantage of this for-
mulation is that it allows the use of computationally efficient
linear-time-complexity Kalman filtering and smoothing meth-
ods. This type of methods are particularly important in signal
processing, because there the interest lies in processing long
(unbounded) time series and thus it is necessary to have linear
complexity in time.

One limitation in the present methodology is that it can only
be used with stationary covariance functions. This arises from
the use of Fourier transform which only works with station-
ary systems. In practice, this is not so huge a restriction, be-
cause stationary covariance functions are the most commonly
used class of covariance functions in machine learning and
spatial statistics [2], [1]. Non-stationary processes could be
constructed, for example, by changing the stationary opera-
tors or covariance functions in the state space model into non-
stationary ones, by embedding the stationary model inside a
non-stationary partial differential equation, or by changing the
coordinate system of the input space suitably (cf. [12]).

Although the present method solves the problem of temporal
time complexity, the space complexity is still cubic in the num-
ber of measurements. Fortunately, it is also possible to com-
bine the present methods with computationally efficient sparse
approximations [19], [2]. These methods are also closely re-
lated to basis function expansion methods (cf. [11], [24]). Fast
Fourier Transform (FFT) can also be used for speeding up
the computations in applications such as computer vision and
brain imaging.
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