
Supplemental Material for Review of�On The L4 Convergen
e of Parti
le Filterswith General Importan
e Distributions�Isambi S. Mbalawata and Simo SärkkäO
tober 19, 2013Abstra
tThis supplemental material 
ontains the details for the proof of the 
onvergen
e theorem. Thisdo
ument is provided to reviewers to understand the steps of the proof, whi
h 
ould be time 
onsumingbased on the manus
ript alone.1 De�nitions and notationSuppose ν is a measure on R
n, and φ is a fun
tion R

n 7→ R then we de�ne
(ν, φ) =

∫

φ(x) dν(x). (1)Let A be an operator and let's denote the 
orresponding kernel as A(y, x), that is,
Aφ =

∫

A(y, x)φ(y) dy. (2)We de�ne a spe
ial norm for a fun
tion φ as
||φ||t,4 = max

{

1, (πs|s, |φ|4)1/4, s = 0, 1, . . . , t
}

, (3)We will also use the more 
onventional supremum norm
||h|| = sup

x
|h(x)| (4)as well as the 
orresponding operator norm

||A|| = sup
h
{ ||Ah|| : ||h|| = 1}. (5)Some properties of the operator norm are

||Ah|| ≤ ||A|| ||h||
||AB|| ≤ ||A|| ||B||

|(ν,Ah)| ≤ ||A|| |(ν, h)|.In the proof of the theorem, some basi
 inequalities that are needed are [1℄:1



• Minkowski inequality: Let X and Y be random variables and p ≥ 1 then
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∣
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∣

∣
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• Hölder's inequality: Let X and Y be random variables and p, q ≥ 1 with 1/p+ 1/q = 1 then

|E[XY ]| ≤ E[|XY |] ≤ (E[|X |p])1/p(E[|X |q])1/q (7)
• Jensen's inequality: Suppose ψ(.) is a 
onvex fun
tion and X and ψ(X) have �nite expe
tation then

ψ(E[X ]) ≤ E[ψ(X)] (8)A straightforward appli
ations of Jensen's inequality is
(E[|X |])p ≤ E[|X |p]

• Markov inequality: For any a > 0, P (|X | ≤ a) ≤ E[X ]/a.2 ConditionsWe state the 
onditions required for the perti
le �lter and the theorem to hold.(1). H0: For any given y1:s we have (πs|s−1, g) > γs > 0, where s = 1, . . . , t.(2). H1: The dynami
 model density f(xt | xt−1), measurement likelihood g(yt | xt), and the importan
eweight
ρ(xt, xt−1) =

g(yt | xt) f(xt | xt−1)

q(xt | xt−1, yt)are bounded. That is, there exist 
onstants Cf , Cg, and Cρ su
h that ||f || ≤ Cf , ||g|| ≤ Cg, and
||ρ|| ≤ Cρ, where the �rst norm is a operator norm and the se
ond two are fun
tion norms w.r.t. xt.(3). H2: The fun
tion of interest φ(·) satis�es supxs

|φ(xs)|4g(ys | xs) < C(y1:s).Theorem 2.1 (The 
onvergen
e theorem). Consider the general modi�ed parti
le �lter algorithm and sup-pose that the 
onditions H0, H1, and H2 above hold. Theni. For su�
iently large N , the algorithm will not run into an in�nite loop in steps 2-3.ii. Let L4
t (g) be the 
lass of fun
tions satisfying H2, 
ondition (3). For any φ ∈ L4

t (g), there exists a
onstant Ct|t, independent of N su
h that
E

[

∣

∣

∣(πN
t|t, φ)− (πt|t, φ)

∣

∣

∣

4
]

≤ Ct|t

||φ||4t,4
N2

, (9)3 Auxiliary LemmasThe following Lemmas are used in proving the 
onvergen
e of the parti
le �lter. We don't prove the lemmashere, for proofs see [2℄.Lemma 3.1. Let {ξi, i = 1, . . . , N} be 
onditionally independent random variables given σ-algebra G su
hthat E[ξi|G] = 0 and E[|ξi|4|G] <∞. Then
E
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∣
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∣
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∑
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∣
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∣
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∣

∣

∣

∣

G



 ≤
N
∑

i=1

E[|ξi|4 | G] +
(

N
∑

i=1

E[|ξi|2 | G]
)2
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Lemma 3.2. If E[|ξ|p] < ∞, then
E

[∣

∣

∣ξ − E[ξ]
∣

∣

∣

p]

≤ 2pE[|ξ|p], for p ≥ 1Lemma 3.3. If 1 ≤ r1 ≤ r2 and E[|ξ|r2 ] < ∞, then
(E[|ξ|r1 ])1/r1 ≤ (E[|ξ|r2 ])1/r2Lemma 3.4. Let {ξi, i = 1, . . . , N} be 
onditionally independent random variables given σ-algebra G su
hthat E[ξi|G] = 0 and E[|ξi|4|G] < ∞. Then

E

[

∣

∣

∣

1

N

N
∑

i=1

ξi

∣

∣

∣

4

|G
]

≤ 2 max1≤i≤N E[|ξi|4|G]
N2Lemma 3.5. Let the probability density fun
tion for the random variable η be p(x) and let the probabilitydensity fun
tion for the random variable ξ be:

p(x)IA
∫

p(y)IAdywhere IA is the indi
ator fun
tion for a set A, su
h that:
P [η ∈ Ω−A] ≤ ǫ < 1.Let ψ be a measurable fun
tion satisfying E[ψ2(η)] <∞. Then, we have

|E[ψ(ξ)] − E[ψ(η)]| ≤ 2
√

E[ψ2(η)]

1− ǫ

√
ǫ.In the 
ase E[ψ(η)] <∞

E[|ψ(ξ)|] ≤ E[|ψ(η)|]
1− ǫ4 Bayesian Filtering EquationsIn [2℄ the Bayesian �lter is formulated su
h that for any fun
tion φ(x) it 
omputes the measures πt|t−1 and

πt|t solving the equations
(πt|t−1, φ) = (πt−1|t−1, f φ)

(πt|t, φ) =
(πt|t−1, φ g)

(πt|t−1, g)
.

(10)where we have used the notation de�ned in (1) and (2). Let's now see where this 
omes from. Re
all thatin terms of probability densities we have the Bayesian �lter
p(xt | y1:t−1) =

∫

f(xt | xt−1) p(xt−1 | y1:t−1) dxt−1

p(xt | y1:t) =
g(yt | xt) p(xt | y1:t−1)

∫

g(yt | xt) p(xt | y1:t−1) dxt

(11)If we multiply by φ(xt) and integrate over xt, we get
∫

φ(xt) p(xt | y1:t−1) dxt =

∫

φ(xt)

∫

f(xt | xt−1) p(xt−1 | y1:t−1) dxt−1 dxt

=

∫ [∫

f(xt | xt−1)φ(xt) dxt

]

p(xt−1 | y1:t−1) dxt−1

∫

φ(xt) p(xt | y1:t) dxt =
∫

φ(xt) g(yt | xt) p(xt | y1:t−1) dxt
∫

g(yt | xt) p(xt | y1:t−1) dxt

(12)
3



If we interpret f as a kernel of a linear operator, we 
an rewrite
∫

φ(xt) p(xt | y1:t−1) dxt =

∫

f φ p(xt−1 | y1:t−1) dxt−1 (13)If we now write expe
tation of φ over ν as (ν, φ), as in Hu et al., and denote πt|t−1 , p(xt | y1:t−1) and
πt|t , p(xt | y1:t), these 
an be ni
ely written as

(πt|t−1, φ) = (πt−1|t−1, f φ)

(πt|t, φ) =
(πt|t−1, φ g)

(πt|t−1, g)
.

(14)We need to remember meanings of all the notations, be
ause for example, repla
ing φ g with g φ would beambiquous (it would imply applying operator g to φ).The boostrap �lter 
an be seen as dire
t Monte Carlo implementation of these equations, be
ause wesample from the dynami
 model � whi
h 
orresponds to the �rst equation � and then weight using these
ond equation. However, if we have some other importan
e distribution than the dynami
 model, we needto modify the equations a bit to have su
h a similar dire
t Monte Carlo interpretation.Let's now substitute the predi
tion step of the Bayesian �lter to the update step and work out q into theequations:
p(xt | y1:t) =

g(yt | xt)
∫

f(xt | xt−1) p(xt−1 | y1:t−1) dxt−1
∫

g(yt | xt)
∫

f(xt | xt−1) p(xt−1 | y1:t−1) dxt−1 dxt

=

∫ g(yt|xt) f(xt|xt−1)
q(xt|xt−1,yt)

q(xt | xt−1, yt) p(xt−1 | y1:t−1) dxt−1

∫ ∫ g(yt|xt) f(xt|xt−1)
q(xt|xt−1,yt)

q(xt | xt−1, yt) p(xt−1 | y1:t−1) dxt−1 dxt

(15)Let's now de�ne
ρ(xt, xt−1) =

g(yt | xt) f(xt | xt−1)

q(xt | xt−1, yt)whi
h thus gives
p(xt | y1:t) =

∫

ρ(xt, xt−1) q(xt | xt−1, yt) p(xt−1 | y1:t−1) dxt−1
∫ ∫

ρ(xt, xt−1) q(xt | xt−1, yt) p(xt−1 | y1:t−1) dxt−1 dxt
(16)If we now multiply by φ(xt) and integrate we get

∫

φ(xt) p(xt | y1:t) dxt =
∫ ∫

φ(xt) ρ(xt, xt−1) q(xt | xt−1, yt) p(xt−1 | y1:t−1) dxt−1 dxt
∫ ∫

ρ(xt, xt−1) q(xt | xt−1, yt) p(xt−1 | y1:t−1) dxt−1 dxt
(17)We 
an now write

∫ ∫

φ(xt) ρ(xt, xt−1) q(xt | xt−1, yt) p(xt−1 | y1:t−1) dxt−1 dxt

=

∫

φ(xt)

[∫

ρ(xt, xt−1) q(xt | xt−1, yt) p(xt−1 | y1:t−1) dxt−1

]

dxt

=

∫

φ(xt) p̂(xt) dxt

(18)where we have de�ned
p̂(xt) =

∫

ρ(xt, xt−1) q(xt | xt−1, yt) p(xt−1 | y1:t−1) dxt−1 (19)4



In notation in terms of measures we have
π̂t|t = (πt−1|t−1, ρ q), (20)where ρ is not interpreted as a linear operator kernel. This is now another (unnormalized) measure and wethus 
an write the expe
tation of φ over it as (π̂t|t, φ). This leads to the equation

(πt|t, φ) =
((πt−1|t−1, ρ q), φ)

((πt−1|t−1, ρ q), 1)
(21)whi
h thus now repla
es the previous Bayesian �lter formulation (14).Note that we 
an also 
onveniently write

((πt−1|t−1, ρ q), φ) = ((πt−1|t−1, q (g f/q)), φ)

= ((πt−1|t−1, g f), φ)

= (πt−1|t−1, f φ g)

(22)and
((πt−1|t−1, ρ q), 1) = ((πt−1|t−1, q (g f/q)), 1)

= ((πt−1|t−1, g f), 1)

= (πt−1|t−1, f g)

(23)where f is interpreted in linear operator sense.5 Proof of TheoremUsing the Lemmas and the the 
onditions stated in the pre
eding sub-se
tion, we are now ready to give theproof of Theorem. The proofs for initialization and resampling steps are the same as in [2℄. Therefore, here,we only prove the 
onvergen
e of the (
ombined) predi
tion and update steps. Thus, we want to prove the
onvergen
e of
(πN

t|t, φ)− (πt|t, φ) =
((πN

t−1|t−1, ρ q
N ), φ)

((πN
t−1|t−1, ρ q

N ), 1)
− ((πt−1|t−1, ρ q), φ)

((πt−1|t−1, ρ q), 1)
, (24)where � if the probability densities exists � we have

((πN
t−1|t−1, ρ q

N ), φ) =

∫ ∫

φ(xt) ρ(xt, xt−1) q
N (xt | xt−1, yt) p

N (xt−1 | y1:t−1) dxt−1 dxt,

((πt−1|t−1, ρ q), φ) =

∫ ∫

φ(xt) ρ(xt, xt−1) q(xt | xt−1, yt) p(xt−1 | y1:t−1) dxt−1 dxt.If we de�ne π̂N
t|t = (πN

t−1|t−1, ρ q
N) and π̂t|t = (πt−1|t−1, ρ q), then Equation (24) 
an be written as
(πN

t|t, φ)− (πt|t, φ) =
(π̂N

t|t, φ)

(π̂N
t|t, 1)

− (π̂t|t, φ)

(π̂t|t, 1)
, (25)As in [2℄ we will attempt to �nd appropriate bounds for the following terms:

E

[

∣

∣

∣(πN
t|t, φ)− (πt|t, φ)

∣

∣

∣

4
] and E[(πN

t|t, |φ|4)]. (26)Let's do an indu
tion assumption that there exist 
onstants Ct−1|t−1 and Mt−1|t−1 su
h that
E

[

∣

∣

∣(πN
t−1|t−1, φ)− (πt−1|t−1, φ)

∣

∣

∣

4
]

≤ Ct−1|t−1

||φ||4t−1,4

N2
, (27)5



and
E

[∣

∣

∣(πN
t−1|t−1, |φ|4)

∣

∣

∣

]

≤Mt−1|t−1||φ||4t−1,4. (28)Let's start by 
onsidering the bounds for the following expe
tations
E

[

∣

∣

∣(π̂N
t|t, φ)− (π̂t|t, φ)

∣

∣

∣

4
] and E

[

(π̂N
t|t, |φ|4)

]

. (29)We �rst start to study the boundedness of E

[

∣

∣

∣(π̂N
t|t, φ)− (π̂t|t, φ)

∣

∣

∣

4
] and then we will do the same for

E

[

(π̂N
t|t, |φ|4)

]. Let Ft−1 be the σ-algebra generated by xit−1. Then we 
an write (π̂N
t|t, φ) − (π̂t|t, φ) =

Π1 +Π2 +Π3, where
Π1 = (π̂N

t|t, φ)−
1

N

N
∑

i=1

E[φ(x̃it) ρ(x̃
i
t, xt−1) | Ft−1], (30)

Π2 =
1

N

N
∑

i=1

E[φ(x̃it) ρ(x̃
i
t, xt−1) | Ft−1]−

1

N

N
∑

i=1

(πN,αi

t−1|t−1, f φ g), (31)
Π3 =

1

N

N
∑

i=1

(πN,αi

t−1|t−1, f φ g)− (π̂t|t, φ). (32)Let x̄it ∼ (πN,αi

t−1|t−1, q), then
E[φ(x̄it) ρ(x̄

i
t, x

i
t−1) | Ft−1] = (πN,αi

t−1|t−1, f φ g), (33)
(πN

t−1|t−1, f φ g) =
1

N

N
∑

i=1

(πN,αi

t−1|t−1, f φ g). (34)Analogously to [2℄ we start by analyzing the probability of the thresholding whi
h in the 
urrent setting
orresponds to analysis of the event
At = {((πN

t−1|t−1, ρ q), 1) ≥ γt}
= {(πN

t−1|t−1, f g) ≥ γt}
(35)By (33) we have

E

[

1

N

N
∑

i=1

ρ(x̄it, x
i
t−1) | Ft−1

]

= (πN,αi

t−1|t−1, f g) (36)
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Analogously to (56) in [2℄ we thus get
P

[

1

N

N
∑

i=1

ρ(x̄is, x
i
s−1) < γt

∣

∣

∣Ft−1

]

= P
[

(πN
t−1|t−1, f g) < γt

]

= P
[

(πN
t−1|t−1, f g)− (πt−1|t−1, f g) < γt − (πt−1|t−1, f g)

]

≤ P
[∣

∣

∣(πN
t−1|t−1, f g)− (πt−1|t−1, f g)

∣

∣

∣ >
∣

∣

∣γt − (πt−1|t−1, f g)
∣

∣

∣

]

= P

[

∣

∣

∣(πN
t−1|t−1, f g)− (πt−1|t−1, f g)

∣

∣

∣

4

>
∣

∣

∣γt − (πt−1|t−1, f g)
∣

∣

∣

4
]

≤
E

[

∣

∣

∣(πN
t−1|t−1, f g)− (πt−1|t−1, f g)

∣

∣

∣

4
]

∣

∣

∣γt − (πt−1|t−1, f g)
∣

∣

∣

4 Markov's inequality
≤ ||f ||4||g||4

E

[

∣

∣

∣(πN
t−1|t−1, 1)− (πt−1|t−1, 1)

∣

∣

∣

4
]

∣

∣

∣γt − (πt−1|t−1, f g)
∣

∣

∣

4

= ||f ||4||g||4
E

[

∣

∣

∣(πN
t−1|t−1, 1)− (πt−1|t−1, 1)

∣

∣

∣

4
]

∣

∣

∣γt − (πt|t−1, g)
∣

∣

∣

4

≤ Ct−1|t−1||f ||4||g||4

N2
∣

∣

∣γt − (πt|t−1, g)
∣

∣

∣

4 By Equation (27)
=
C̃γt

N2
= ǫ. (37)provided that ||f || and ||g|| are bounded and H0 is true.
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From Equation (30), we have
E[|Π1|4|Ft−1]

= E





∣

∣

∣

∣

∣

(π̂N
t|t, φ)−

1

N

N
∑

i=1

E

[

φ(x̃it) ρ(x̃
i
t, x

i
t−1) | Ft−1

]

∣

∣

∣

∣

∣

4

| Ft−1





= E





∣

∣

∣

∣

∣

1

N

N
∑

i=1

φ(x̃it) ρ(x̃
i
t, x

i
t−1)−

1

N

N
∑

i=1

E

[

φ(x̃it) ρ(x̃
i
t, x

i
t−1) | Ft−1

]

∣

∣

∣

∣

∣

4

| Ft−1





= E





∣

∣

∣

∣

∣

1

N

N
∑

i=1

φ(x̃it) ρ(x̃
i
t, x

i
t−1)− E

[ 1

N

N
∑

i=1

φ(x̃it) ρ(x̃
i
t, x

i
t−1) | Ft−1

]

∣

∣

∣

∣

∣

4

| Ft−1





= E





∣

∣

∣

∣

∣

1

N

N
∑

i=1

(

φ(x̃it) ρ(x̃
i
t, x

i
t−1)− E

[

φ(x̃it) ρ(x̃
i
t, x

i
t−1) | Ft−1

])

∣

∣

∣

∣

∣

4

| Ft−1





=
1

N4
E





∣

∣

∣

∣

∣

N
∑

i=1

(

φ(x̃it) ρ(x̃
i
t, x

i
t−1)− E

[

φ(x̃it) ρ(x̃
i
t, x

i
t−1) | Ft−1

])

∣

∣

∣

∣

∣

4

| Ft−1





≤ 1

N4

N
∑

i=1

E





∣

∣

∣

∣

∣

φ(x̃it) ρ(x̃
i
t, x

i
t−1)− E

[

φ(x̃it) ρ(x̃
i
t, x

i
t−1) | Ft−1

]

∣

∣

∣

∣

∣

4

| Ft−1





+
1

N4





N
∑

i=1

E





∣

∣

∣

∣

∣

φ(x̃it) ρ(x̃
i
t, x

i
t−1)− E

[

φ(x̃it) ρ(x̃
i
t, x

i
t−1) | Ft−1

]

∣

∣

∣

∣

∣

2

| Ft−1









2 by lemma 3.1
≤ 24

N4







N
∑

i=1

E





∣

∣

∣

∣

∣

φ(x̃it) ρ(x̃
i
t, x

i
t−1)

∣

∣

∣

∣

∣

4

| Ft−1



+





N
∑

i=1

E





∣

∣

∣

∣

∣

φ(x̃it) ρ(x̃
i
t, x

i
t−1)

∣

∣

∣

∣

∣

2

| Ft−1









2





by lemma 3.2

≤ 24

N4





N
∑

i=1

E
[

|φ(x̄it) ρ(x̄it, xit−1)|4|Ft−1

]

1− ǫ
+

(

N
∑

i=1

E
[

|φ(x̄it) ρ(x̄it, xit−1)|2|Ft−1

]

1− ǫ

)2


 by lemma 3.5
=

24

N4





1

1− ǫ

N
∑

i=1

E
[

|φ(x̄it) ρ(x̄it, xit−1)|4|Ft−1

]

+
1

(1− ǫ)2

(

N
∑

i=1

E
[

|φ(x̄it) ρ(x̄it, xit−1)|2|Ft−1

]

)2




≤ 24

N4





1

(1 − ǫ)2

N
∑

i=1

E
[

|φ(x̄it) ρ(x̄it, xit−1)|4|Ft−1

]

+
1

(1− ǫ)2

(

N
∑

i=1

E
[

|φ(x̄it) ρ(x̄it, xit−1)|2|Ft−1

]

)2




=
24

N4(1− ǫ)2





N
∑

i=1

E
[

|φ(x̄it) ρ(x̄it, xit−1)|4|Ft−1

]

+

(

N
∑

i=1

E
[

|φ(x̄it) ρ(x̄it, xit−1)|2|Ft−1

]

)2




8



Provided that ρ ≤ Cρ, and ||f || and ||g|| are bounded by some 
onstants, we get
E[|Π1|4|Ft−1]

≤ 24

N4(1 − ǫ)2





N
∑

i=1

E
[

|φ(x̄it) ρ(x̄it, xit−1)|4|Ft−1

]

+

(

N
∑

i=1

E
[

|φ(x̄it) ρ(x̄it, xit−1)|2|Ft−1

]

)2




≤ 24

N4(1 − ǫ)2



C3
ρ

N
∑

i=1

E
[

|φ(x̄it)|4 ρ(x̄it, xit−1)|Ft−1

]

+ C2
ρ

(

N
∑

i=1

E
[

|φ(x̄it)|2 ρ(x̄it, xit−1)|Ft−1

]

)2




=
24

N4(1 − ǫ)2



C3
ρ

N
∑

i=1

(

πN,αi

t−1|t−1, f |φ|4 g
)

+ C2
ρ

(

N
∑

i=1

(

πN,αi

t−1|t−1, f |φ|2 g
)

)2


 By Equation (33)
=

24

N4(1 − ǫ)2

[

C3
ρN

(

πN
t−1|t−1, f |φ|4 g

)

+ C2
ρ

(

N
(

πN
t−1|t−1, f |φ|2 g

))2
]

=
24

(1 − ǫ)2






C3

ρ

(

πN
t−1|t−1, f |φ|4 g

)

N3
+ C2

ρ

((

πN
t−1|t−1, f |φ|2 g

))2

N2







≤ 24

(1 − ǫ)2






C3

ρ

(

πN
t−1|t−1, f |φ|4 g

)

N2
+ C2

ρ

((

πN
t−1|t−1, f |φ|2 g

))2

N2







≤ 24

(1 − ǫ)2






C3

ρ ||f ||||g||

(

πN
t−1|t−1, |φ|4

)

N2
+ C2

ρ ||f ||2||g||2
((

πN
t−1|t−1, |φ|2

))2

N2







≤ 24

(1 − ǫ)2



C3
ρ ||f ||||g||

(

πN
t−1|t−1, |φ|4

)

N2
+ C2

ρ ||f ||2||g||2
(

πN
t−1|t−1, |φ|4

)

N2



 by lemma 3.3
≤ 25C̃ρ

(1 − ǫ)2





(

πN
t−1|t−1, |φ|4

)

N2





≤ 25C̃ρ

(1 − ǫ)2

[

Mt−1|t−1||φ||4t−1,4

N2

] By Equation (28)
= C̃Π1

||φ||4t−1,4

N2
(38)
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For Π2 we get
∣

∣

∣Π2

∣

∣

∣

4

=

∣

∣

∣

∣

∣

1

N

N
∑

i=1

E[φ(x̃it) ρ(x̃
i
t, xt−1) | Ft]−

1

N

N
∑

i=1

(πN,αi

t−1|t, f φ g)

∣

∣

∣

∣

∣

4

=

∣

∣

∣

∣

∣

1

N

N
∑

i=1

E[φ(x̃it) ρ(x̃
i
t, xt−1) | Ft−1]−

1

N

N
∑

i=1

E[φ(x̄it) ρ(x̄
i
t, xt−1) | Ft−1]

∣

∣

∣

∣

∣

4 By Equation (33)
=

∣

∣

∣

∣

∣

1

N

N
∑

i=1

(

E
[

φ(x̃it) ρ(x̃
i
t, xt−1) | Ft−1

]

− E
[

φ(x̄it) ρ(x̄
i
t, xt−1) | Ft−1

])

∣

∣

∣

∣

∣

4

≤ 24ǫ2

(1− ǫ)4N4

(

N
∑

i=1

E

[

(

φ(x̄it) ρ(x̄
i
t, xt−1)

)2 |Ft−1

]

)2 by lemma 3.5
≤ 24ǫ2

(1− ǫ)4N4
C2

ρ

(

N
∑

i=1

E
[∣

∣φ(x̄it)|2 ρ(x̄it, xt−1)
)

|Ft−1

]

)2 by lemma 3.5
=

24ǫ2

(1− ǫ)4N4
C2

ρ

(

N
∑

i=1

(

πN,αi

t−1|t−1, f |φ|
2 g
)

)2 By Equation (33)
=

24ǫ2

(1− ǫ)4N4
C2

ρ

(

N
(

πN
t−1|t−1, f |φ|2 g

))2

≤ 24ǫ2

(1− ǫ)4N2
C2

ρ ||f ||2||g||2
(

πN
t−1|t−1, |φ|2

)2

≤ 24ǫ2

(1− ǫ)4N2
C2

ρ ||f ||2||g||2
(

πN
t−1|t−1, |φ|4

)

≤ 24ǫ2

(1− ǫ)4N2
C2

ρ ||f ||2||g||2Mt−1|t−1||φ||4t−1,4 By Equation (28)
≤ C̃Π2

||φ||4t−1,4

N2
(39)For Π3 we get

E

[

∣

∣

∣Π3

∣

∣

∣

4
]

= E





∣

∣

∣

∣

∣

1

N

N
∑

i=1

(πN,αi

t−1|t−1, f φ g)− (π̂t|t, φ)

∣

∣

∣

∣

∣

4




= E

[

∣

∣

∣(πN
t−1|t−1, f φ g)− (π̂t|t, φ)

∣

∣

∣

4
]

= E

[

∣

∣

∣
(πN

t−1|t−1, f φ g)− (πt−1|t−1, f φ g)
∣

∣

∣

4
]

≤ ||f ||4||g||4E
[

∣

∣

∣(πN
t−1|t−1, φ) − (πt−1|t−1, φ)

∣

∣

∣

4
]

≤ C̃t−1|t−1

||f ||4||g||4||φ||4t−1,4

N2
by Equation (27)

= C̃Π3

||φ||4t−1,4

N2
(40)
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Combining Equations (38), (39) and (40) using Minkowski's inequality, we have
(

E

[

∣

∣

∣(π̂N
t|t, φ)− (π̂t|t, φ)

∣

∣

∣

4
])1/4

=

(

E

[

∣

∣

∣Π1 +Π2 +Π3

∣

∣

∣

4
])1/4

≤ (E[|Π1|4])1/4 + (E[|Π2|4])1/4 + (E[|Π3|4])1/4

≤
(

C̃Π1

||φ||4t−1,4

N2

)1/4

+

(

C̃Π2

||φ||4t−1|4

N2

)1/4

+

(

C̃Π3

||φ||4t−1,4

N2

)1/4

=
(

C̃
1/4
Π1

+ C̃
1/4
Π2

+ C̃
1/4
Π3

) ||φ||t−1,4

N1/2

= Ĉ
1/4
t|t

||φ||t−1,4

N1/2Therefore
E

[

∣

∣

∣(π̂N
t|t, φ)− (π̂t|t, φ)

∣

∣

∣

4
]

≤ Ĉt|t

||φ||4t−1,4

N2
. (41)The next step is to study the boundedness of E [(π̂N

t|t−1, |φ|4)
]. We use the same te
hniques and simpli�
a-tions as above. Let Ft−1 be the σ-algebra generated by xit−1. Then we 
an write (π̂N

t|t, |φ|4) − (π̂t|t, |φ|4) =
Π̄1 + Π̄2 + Π̄3, wherē

Π1 = (π̂N
t|t, |φ|4)−

1

N

N
∑

i=1

E[|φ(x̃it)|4 ρ(x̃it, xt−1) | Ft−1] (42)
Π̄2 =

1

N

N
∑

i=1

E[|φ(x̃it)|4 ρ(x̃it, xt−1) | Ft−1]−
1

N

N
∑

i=1

(πN,αi

t−1|t−1, f |φ|
4 g) (43)

Π̄3 =
1

N

N
∑

i=1

(πN,αi

t−1|t−1, f |φ|
4 g)− (π̂t|t, |φ|4) (44)
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From Equation (42), we have
E[|Π̄1||Ft−1] = E

[∣

∣

∣

∣

∣

(π̂N
t|t, |φ|4)−

1

N

N
∑

i=1

E

[

|φ(x̃it)|4 ρ(x̃it, xit−1) | Ft−1

]

∣

∣

∣

∣

∣

| Ft−1

]

= E

[∣

∣

∣

∣

∣

1

N

N
∑

i=1

|φ(x̃it)|4 ρ(x̃it, xit−1)−
1

N

N
∑

i=1

E

[

|φ(x̃it)|4 ρ(x̃it, xit−1) | Ft−1

]

∣

∣

∣

∣

∣

| Ft−1

]

= E

[∣

∣

∣

∣

∣

1

N

N
∑

i=1

|φ(x̃it)|4 ρ(x̃it, xit−1)− E

[ 1

N

N
∑

i=1

|φ(x̃it)|4 ρ(x̃it, xit−1) | Ft−1

]

∣

∣

∣

∣

∣

| Ft−1

]

≤ 2E

[∣

∣

∣

∣

∣

1

N

N
∑

i=1

|φ(x̃it)|4 ρ(x̃it, xit−1)

∣

∣

∣

∣

∣

| Ft−1

] By Lemma 3.2
≤ 2

1− ǫ
E

[∣

∣

∣

∣

∣

1

N

N
∑

i=1

|φ(x̄it)|4 ρ(x̄it, xit−1)

∣

∣

∣

∣

∣

| Ft−1

] By Lemma 3.5
≤ 2

1− ǫ

1

N

N
∑

i=1

E

[∣

∣

∣

∣

∣

|φ(x̄it)|4 ρ(x̄it, xit−1)

∣

∣

∣

∣

∣

| Ft−1

]

=
2

1− ǫ

1

N

N
∑

i=1

(πN,αi

t−1|t−1 f |φ|
4 g) =

2

1− ǫ
(πN

t−1|t−1 f |φ|4 g) By Equation (34)
≤ 2

1− ǫ
‖f‖ ‖g‖ (πN

t−1|t−1 |φ|4)

≤ 2

1− ǫ
‖f‖ ‖g‖Mt−1|t−1 ‖φ‖4t−1|4 By Equation (28) (45)
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From Equation (43), we have
E

[∣

∣

∣Π̄2

∣

∣

∣

] (46)
= E

[∣

∣

∣

∣

∣

1

N

N
∑

i=1

E[|φ(x̃it)|4 ρ(x̃it, xt−1) | Ft−1]−
1

N

N
∑

i=1

(πN,αi

t−1|t−1, f |φ|
4 g)

∣

∣

∣

∣

∣

]

= E

[∣

∣

∣

∣

∣

1

N

N
∑

i=1

E[|φ(x̃it)|4 ρ(x̃it, xt−1) | Ft−1]−
1

N

N
∑

i=1

E[|φ(x̄it)|4 ρ(x̄it, xt−1) | Ft−1]

∣

∣

∣

∣

∣

] By Equation (33)
= E

[∣

∣

∣

∣

∣

1

N

N
∑

i=1

(

E
[

|φ(x̃it)|4 ρ(x̃it, xt−1) | Ft−1

]

− E
[

|φ(x̄it)|4 ρ(x̄it, xt−1) | Ft−1

])

∣

∣

∣

∣

∣

]

≤ E

[

1

N

N
∑

i=1

∣

∣

∣

∣

∣

(

E
[

|φ(x̃it)|4 ρ(x̃it, xt−1) | Ft−1

]

− E
[

|φ(x̄it)|4 ρ(x̄it, xt−1) | Ft−1

])

∣

∣

∣

∣

∣

]

≤ E

[

1

N

N
∑

i=1

(∣

∣

∣

∣

∣

E
[

|φ(x̃it)|4 ρ(x̃it, xt−1) | Ft−1

]

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

E
[

|φ(x̄it)|4 ρ(x̄it, xt−1) | Ft−1

]

∣

∣

∣

∣

∣

)]

≤ E

[

1

N

N
∑

i=1

(

E

[∣

∣

∣

∣

∣

|φ(x̃it)|4 ρ(x̃it, xt−1)

∣

∣

∣

∣

∣

| Ft−1

]

+ E

[∣

∣

∣

∣

∣

|φ(x̄it)|4 ρ(x̄it, xt−1)

∣

∣

∣

∣

∣

| Ft−1

])]

≤ E

[

1

N

N
∑

i=1

(

1

1− ǫ
E

[∣

∣

∣

∣

∣

|φ(x̄it)|4 ρ(x̄it, xt−1)

∣

∣

∣

∣

∣

| Ft−1

]

+ E

[∣

∣

∣

∣

∣

|φ(x̄it)|4 ρ(x̄it, xt−1)

∣

∣

∣

∣

∣

| Ft−1

])] by lemma 3.5
≤ E

[

1

N

N
∑

i=1

(

2− ǫ

1− ǫ
E

[∣

∣

∣

∣

∣

|φ(x̄it)|4 ρ(x̄it, xt−1)

∣

∣

∣

∣

∣

| Ft−1

])]

=
2− ǫ

1− ǫ
E

[

1

N

N
∑

i=1

(πN,αi

t−1|t−1, f |φ|
4 g)

] By Equation (33)
=

2− ǫ

1− ǫ
E

[

(πN
t−1|t−1, f |φ|4 g)

] By Equation (34)
≤ 2− ǫ

1− ǫ
‖f‖ ‖g‖(πN

t−1|t−1, |φ|4)

≤ 2− ǫ

1− ǫ
‖f‖ ‖g‖Mt−1|t−1 ‖φ‖4t−1|4 By Equation (28) (47)From Equation (44), we have
E

[∣

∣

∣Π̄3

∣

∣

∣

]

= E

[∣

∣

∣

∣

∣

1

N

N
∑

i=1

(πN,αi

t−1|t−1, f |φ|
4 g)− (π̂t|t, |φ|4)

]

= E

[∣

∣

∣(πN
t−1|t−1, f |φ|4 g)− (π̂t|t, |φ|4)

∣

∣

∣

] By Equation (34)
= E

[∣

∣

∣
(πN

t−1|t−1, f |φ|4 g)− (πt−1|t−1, f |φ|4 g)
∣

∣

∣

]

≤ ‖f‖ ‖g‖E
[∣

∣

∣(πN
t−1|t−1, |φ|4)− (πt−1|t−1, |φ|4)

∣

∣

∣

]

≤ ‖f‖ ‖g‖E
[∣

∣

∣(πN
t−1|t−1, |φ|4)

∣

∣

∣ +
∣

∣

∣(πt−1|t−1, |φ|4)
∣

∣

∣

]

= ‖f‖ ‖g‖
(

E

[∣

∣

∣(πN
t−1|t−1, |φ|4)

∣

∣

∣

)

+ E

[∣

∣

∣(πt−1|t−1, |φ|4)
∣

∣

∣

])

≤ ‖f‖ ‖g‖
(

Mt−1|t−1 ‖φ‖4t−1|4 + ‖φ‖4t−1|4

)

= ‖f‖ ‖g‖
(

Mt−1|t−1 + 1
)

‖φ‖4t−1|4 (48)13



Combining Equations (45), (47) and (48) we have
(

E

[∣

∣

∣(π̂N
t|t, |φ|4)− (π̂t|t, |φ|4)

∣

∣

∣

])

= E

[∣

∣

∣Π̄1 + Π̄2 + Π̄3

∣

∣

∣

]

= E
[

|Π̄1|
]

+ E
[

|Π̄2|
]

+ E
[

|Π̄3|
]

≤
(

2

1− ǫ
‖f‖ ‖g‖Mt−1|t−1 +

2− ǫ

1− ǫ
‖f‖ ‖g‖Mt−1|t−1 + ‖f‖ ‖g‖

(

Mt−1|t−1 + 1
)

)

‖φ‖4t−1|4

=Mt|t||φ||4t−1,4,where Mt|t =
2

1−ǫ‖f‖ ‖g‖Mt−1|t−1 +
2−ǫ
1−ǫ‖f‖ ‖g‖Mt−1|t−1 + ‖f‖ ‖g‖

(

Mt−1|t−1 + 1
). Therefore

E[(π̂N
t|t−1, |φ|4)− (π̂t|t−1, |φ|4)] ≤Mt|t||φ||4t−1,4 (49)Sin
e Equations (41) and (49) show that the expe
tation of the di�eren
es of the numerators is bounded forany fun
tion φ, the expe
tation of the di�eren
es of the denominators is also bounded. That is for φ = 1 wehave

E

[

∣

∣

∣(π̂N
t|t−1, 1)− (π̂t|t−1, 1)

∣

∣

∣

4
]

≤ Ĉt|t

||1||4t−1,4

N2
=
Ĉt|t

N2
(50)

E[(π̂N
t|t, |1|4)− (π̂t|t, |1|4)] ≤Mt|t||1||4t−1,4 =Mt|t (51)To 
omplete the proof, we use Equations (41), (49), (50) and (51) to dedu
e that:
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(

E

[

∣

∣

∣(πN
t|t, φ)− (πt|t, φ)

∣

∣

∣

4
])1/4

=



E





∣

∣

∣

∣

∣

(π̂N
t|t, φ)

(π̂N
t|t, 1)

− (π̂t|t, φ)

(π̂t|t, 1)

∣

∣

∣

∣

∣

4








1/4

=



E





∣

∣

∣

∣

∣

(π̂N
t|t, φ)(π̂t|t, 1)− (π̂t|t, φ)(π̂

N
t|t, 1)

(π̂N
t|t, 1)(π̂t|t, 1)

∣

∣

∣

∣

∣

4








1/4

=



E





∣

∣

∣

∣

∣

(π̂N
t|t, φ)

(

(π̂t|t, 1)− (π̂N
t|t, 1)

)

+ (π̂N
t|t, 1)

(

(π̂N
t|t, φ)− (π̂t|t, φ)

)

(π̂N
t|t, 1)(π̂t|t, 1)

∣

∣

∣

∣

∣

4








1/4

=



E





∣

∣

∣

∣

∣

(π̂N
t|t, φ)

(

(π̂t|t, 1)− (π̂N
t|t, 1)

)

(π̂N
t|t, 1)(π̂t|t, 1)

+
(π̂N

t|t, 1)
(

(π̂N
t|t, φ)− (π̂t|t, φ)

)

(π̂N
t|t, 1)(π̂t|t, 1)

∣

∣

∣

∣

∣

4








1/4

≤



E





∣

∣

∣

∣

∣

(π̂N
t|t, φ)

(

(π̂t|t, 1)− (π̂N
t|t, 1)

)

(π̂N
t|t, 1)(π̂t|t, 1)

∣

∣

∣

∣

∣

4








1/4

+



E





∣

∣

∣

∣

∣

(π̂N
t|t, 1)

(

(π̂N
t|t, φ)− (π̂t|t, φ)

)

(π̂N
t|t, 1)(π̂t|t, 1)

∣

∣

∣

∣

∣

4








1/4 By Minkowski's inequality
≤



E





∣

∣

∣

∣

∣

(π̂N
t|t, φ)

(

(π̂t|t, 1)− (π̂N
t|t, 1)

)

γt(π̂t|t, 1)

∣

∣

∣

∣

∣

4








1/4

+



E





∣

∣

∣

∣

∣

(

(π̂N
t|t, φ)− (π̂t|t, φ)

)

(π̂t|t, 1)

∣

∣

∣

∣

∣

4








1/4

=

∣

∣

∣

∣

∣

(π̂N
t|t, φ)

γt(π̂t|t, 1)

∣

∣

∣

∣

∣

(

E

[

∣

∣

∣(π̂N
t|t, 1)− (π̂t|t, 1)

∣

∣

∣

4
])1/4

+

∣

∣

∣

∣

∣

1

(π̂t|t, 1)

∣

∣

∣

∣

∣

(

E

[

∣

∣

∣
(π̂N

t|t, φ)− (π̂t|t, φ)
∣

∣

∣

4
])1/4

≤
∣

∣

∣

∣

∣

(π̂N
t|t, φ)

γt(π̂t|t, 1)

∣

∣

∣

∣

∣

(

Ĉt|t

N2

)1/4

+

∣

∣

∣

∣

∣

1

(π̂t|t, 1)

∣

∣

∣

∣

∣

(

Ĉt|t

||φ||4t−1,4

N2

)1/4
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By Holder's and Jensen's inequalities we have |(π, φ)|4 ≤ |(π, |φ|)|4 ≤ (π, |φ|4). Therefore
(

E

[

∣

∣

∣
(πN

t|t, φ) − (πt|t, φ)
∣

∣

∣

4
])1/4

≤
∣

∣

∣

∣

∣

(π̂N
t|t, φ)

γt(π̂t|t, 1)

∣

∣

∣

∣

∣

(

Ĉt|t

N2

)1/4

+

∣

∣

∣

∣

∣

1

(π̂t|t, 1)

∣

∣

∣

∣

∣

(

Ĉt|t

||φ||4t−1,4

N2

)1/4

=

∣

∣

∣

∣

∣

(π̂N
t|t, φ)Ĉ

1/4
t|t

γt(π̂t|t, 1)

∣

∣

∣

∣

∣

(

1

N2

)1/4

+

∣

∣

∣

∣

∣

Ĉ
1/4
t|t

(π̂t|t, 1)

∣

∣

∣

∣

∣

(

||φ||4t−1,4

N2

)1/4

= C1
t|t

(

1

N2

)1/4

+ C2
t|t

(

||φ||4t−1,4

N2

)1/4

=
1

N1/2

(

C1
t|t

+ C2
t|t
||φ||t−1,4

)

=
1

N1/2

(

C1
t|t

||φ||t−1,4
+ C2

t|t

)

||φ||t−1,4

≤ 1

N1/2

(

C1
t|t

+ C2
t|t

)

||φ||t−1,4 Be
ause C1
t|t

≥ 0 ||φ||t−1,4 ≥ 1

=
1

N1/2
C3t|t ||φ||t−1,4Therefore

E

[

∣

∣

∣(πN
t|t, φ)− (πt|t, φ)

∣

∣

∣

4
]

≤ Ct|t

||φ||4t−1,4

N2 (52)
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For E[(πN
t|t, |φ|4)]; we have

E

[

(πN
t|t, |φ|4)− (πt|t, |φ|4)

]

= E

[

(π̂N
t|t, |φ|4)
(π̂N

t|t, 1)
− (π̂t|t, |φ|4)

(π̂t|t, 1)

]

= E

[

(π̂N
t|t, |φ|4)(π̂t|t, 1)− (π̂t|t, |φ|4)(π̂N

t|t, 1)

(π̂N
t|t, 1)(π̂t|t, 1)

]

= E





(π̂N
t|t, |φ|4)

(

(π̂t|t, 1)− (π̂N
t|t, 1)

)

+ (π̂N
t|t, 1)

(

(π̂N
t|t, |φ|4)− (π̂t|t, |φ|4)

)

(π̂N
t|t, 1)(π̂t|t, 1)





= E





(π̂N
t|t, |φ|4)

(

(π̂t|t, 1)− (π̂N
t|t, 1)

)

(π̂N
t|t, 1)(π̂t|t, 1)

+
(π̂N

t|t, 1)
(

(π̂N
t|t, |φ|4)− (π̂t|t, |φ|4)

)

(π̂N
t|t, 1)(π̂t|t, 1)





≤ E





(π̂N
t|t, |φ|4)

(

(π̂t|t, 1)− (π̂N
t|t, 1)

)

γt(π̂t|t, 1)



+ E





(

(π̂N
t|t, |φ|4)− (π̂t|t, |φ|4)

)

(π̂t|t, 1)





=
(π̂N

t|t, |φ|4)
γt(π̂t|t, 1)

E

[

(π̂N
t|t, 1)− (π̂t|t, 1)

]

+
1

(π̂t|t, 1)
E

[

(π̂N
t|t, |φ|4)− (π̂t|t, |φ|4)

]

≤
(π̂N

t|t, |φ|4)
γt(π̂t|t, 1)

Mt|t +
1

(π̂t|t, 1)
Mt|t ‖φ‖4t−1,4

= M̃1t|t + M̃2t|t ‖φ‖4t−1,4

=

(

M̃1t|t

‖φ‖4t−1,4

+ M̃2t|t

)

‖φ‖4t−1,4

≤
(

M̃1t|t + M̃2t|t

)

‖φ‖4t−1,4 Be
ause ‖φ‖4t−1,4 ≥ 1

= M̄t|t‖φ‖4t−1,4Referen
es[1℄ Kai Lai Chung, A 
ourse in probability theory, London: A
ademi
 Press, 3rd edition, 2001.[2℄ Xiao-li Hu, Thomas B. S
hön, and Lennart Ljung, �A basi
 
onvergen
e result for parti
le �ltering,�IEEE Transa
tions on Signal Pro
essing, vol. 56, no. 4, pp. 1337�1348, 2008.
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