Supplemental Material for Review of
“On The L* Convergence of Particle Filters
with General Importance Distributions”

Isambi S. Mbalawata and Simo Sarkka

October 19, 2013

Abstract

This supplemental material contains the details for the proof of the convergence theorem. This
document is provided to reviewers to understand the steps of the proof, which could be time consuming
based on the manuscript alone.

1 Definitions and notation

Suppose v is a measure on R", and ¢ is a function R” +— R then we define

(16) = [ o) dv(a).

Let A be an operator and let’s denote the corresponding kernel as A(y, x), that is,

A6 = [ Aty.z)o0)dy
We define a special norm for a function ¢ as

[8llea = max {1, (o B4, 5 =010,
We will also use the more conventional supremum norm

[Ih]| = sup [h(z)|

as well as the corresponding operator norm

[[AlF= sup{ |4 I - ||l = 13-

Some properties of the operator norm are

AR < [JA[[]]A]]
1A B[ < [|A][||B]
(v, AR)| < [[A]] |(v, B)].

In the proof of the theorem, some basic inequalities that are needed are [1]:



Minkowski inequality: Let X and Y be random variables and p > 1 then

(b D)™ < D™+ D™ ®

Holder’s inequality: Let X and Y be random variables and p,q > 1 with 1/p+1/¢ = 1 then

EIXY]| < E[IXY]] < (B[ X))/ (E[IX|)" (7)

e Jensen’s inequality: Suppose ¢(.) is a convex function and X and ¢ (X) have finite expectation then
Y(E[X]) < E[(X)] (8)
A straightforward applications of Jensen’s inequality is

(E[IX])" < E[X]"]

Markov inequality: For any a > 0, P(|X| < a) < E[X]/a.

2 Conditions

We state the conditions required for the perticle filter and the theorem to hold.
(1). HO: For any given y1.s we have (m4s_1,9) > 7s > 0, where s = 1,... .

(2). H1: The dynamic model density f(x; | x¢—1), measurement likelihood ¢(y; | z;), and the importance
weight
(e, s 1) = 9(e | @) (@4 | 2e-1)
q(@e [ Te—1,y¢)
are bounded. That is, there exist constants Cy, Cy, and C, such that ||f|| < Cf, ||lg|] < Cy, and
l|p|]| < C,, where the first norm is a operator norm and the second two are function norms w.r.t. x;.

¢($S)|4g(ys | x5) < C(y1:s)-

Theorem 2.1 (The convergence theorem). Consider the general modified particle filter algorithm and sup-
pose that the conditions HO, H1, and H2 above hold. Then

(3). H2: The function of interest ¢(-) satisfies sup,,_

i. For sufficiently large N, the algorithm will not run into an infinite loop in steps 2-3.

ii. Let L}(g) be the class of functions satisfying H2, condition (3). For any ¢ € L}(g), there exists a
constant Cy;, independent of N such that
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E |:‘(7T1£\|[t7¢) - (ﬂt#ﬁ)ﬂ < Cy 9)

3 Auxiliary Lemmas
The following Lemmas are used in proving the convergence of the particle filter. We don’t prove the lemmas
here, for proofs see [2].

Lemma 3.1. Let {&, i=1,...,N} be conditionally independent random variables given o-algebra G such
that E[¢;|G] = 0 and E[|&]*|G] < 0. Then
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Lemma 3.2. If E[|£|P] < oo, then

E[j¢-Elel]| < 2Blel) for p>1
Lemma 3.3. If 1 < r; < ry and E[|£|™] < oo, then
(B[] < (E[jg)m=)H

Lemma 3.4. Let {&;, i=1,...,N} be conditionally independent random variables given o-algebra G such
that E[¢;|G] = 0 and E[|&]*|G] < oco. Then

1 N
\N;@

Lemma 3.5. Let the probability density function for the random wvariable n be p(x) and let the probability
density function for the random variable & be:

E

N2

4|g] < 2 max1gigNE[|§i|4|g]

p(x)1a
J () Iady
where 14 is the indicator function for a set A, such that:
PneQ—-Al<e<l.
Let 1) be a measurable function satisfying E[()?(n)] < co. Then, we have
2y/E[?(n)]
Elp(©)] - Epm)ll < e
In the case E[¢(n)] < oo

Ellvml]

E[9(©)]) < —12

4 Bayesian Filtering Equations

In [2] the Bayesian filter is formulated such that for any function ¢(z) it computes the measures m;;_; and
)¢ solving the equations

(Wt\t71=¢) = (7Tt71|t717f¢)
- _ (ﬂ't\t—l,éf’g) (10)
( tlts ¢) - (T‘—t\tflag) .

where we have used the notation defined in (1) and (2). Let’s now see where this comes from. Recall that
in terms of probability densities we have the Bayesian filter

p(ﬂft | yl:tfl) = /f(ﬂft | $t71)p($t71 | y1:t71)d$t71

(11)
B ge | ) p(we | yr4—1)
P L) = ot T ) (o L) o
If we multiply by ¢(x:) and integrate over x;, we get
[ otapien vy ds = [ow) [ sl ) ploes ) does deg
:/ |:/f($t | e—1) @(xt) dze | p(we—1 | Y1) dae—1 (12)

T T v, — f¢($t)g(yt | z¢) p(zy | Y1:0—1) day
/¢( )P [ ge)do = Jaye | xe) p(e | yre—1) day




If we interpret f as a kernel of a linear operator, we can rewrite
/¢($t)]9($t | y1:6-1) day = /f¢p($t—1 | y1:6-1) dae—y (13)

If we now write expectation of ¢ over v as (v,¢), as in Hu et al., and denote 7y;_; 2 p(zy | y14-1) and
Ty = p(4 | Y1:e), these can be nicely written as

(Wt\t71=¢) = (7Tt71|t717f¢)
- _ (ﬂ't\t—l,éf’g) (14)
( tlts ¢) - (T‘—t\tflag) .

We need to remember meanings of all the notations, because for example, replacing ¢ g with g ¢ would be
ambiquous (it would imply applying operator g to ¢).

The boostrap filter can be seen as direct Monte Carlo implementation of these equations, because we
sample from the dynamic model — which corresponds to the first equation — and then weight using the
second equation. However, if we have some other importance distribution than the dynamic model, we need
to modify the equations a bit to have such a similar direct Monte Carlo interpretation.

Let’s now substitute the prediction step of the Bayesian filter to the update step and work out ¢ into the
equations:

ol o) = 91T [ Fl@ | @im0) Pl | yuey) oy
U T T g @) [ f (@ | 2e1) p(mea | Y1) dae o day

t| Tt Tt |Tt— ].5
J e Jedn) gy | 21, y) p(we | yrer) dues (15)
ff % q(@e | we—1,y0) P(Te-1 | Y1:4—1) dvg—1 day

Let’s now define

(0, To1) = ge | @) foe | 24-1)

q(ze | Te-1, 1)

which thus gives

fp(fttaxtfl)Q(It | xtflvyt)p(fﬂtfl | ylztfl) dxy_q (16)

X . =
p( ! | yl't) ffp(ﬂft,ﬂ?tfl)Q(l“t | Itflayt)p(xtfl | y1:t71)d1?t71 dx;

If we now multiply by ¢(x;) and integrate we get

/¢($Ct)p($t | Y1) dae = J [ o(@e) p(ae, we—1) q(ae | me—1,ye) p(@e—1 | Y1o—1) dae—1 day (17)

J S p(ee, 1) gl | 21, ye) p(@e—1 | Yroe—1) dae—y day

We can now write

//¢($t)ﬂ($ta$t—1)Q($t | w1, y) P(Te—1 | Y1:e—1) dog—1 day
= /¢(33t) {/P(Itvﬂitl)Q(ﬂ% | D1, ye) P(Te—1 | Y1e—1) dovg—1 | day (18)
=/¢($t)ﬁ($t)d$t

where we have defined

plxy) = /p(ﬂﬂt,ﬂﬁtfl)Q(ﬂ?t | 2e—1,y¢) p(Te—1 | Yr:e—1) dxe—1 (19)



In notation in terms of measures we have

ﬁt|t = (Wt—l\t—17PQ)v (20)

where p is not interpreted as a linear operator kernel. This is now another (unnormalized) measure and we
thus can write the expectation of ¢ over it as (7, #). This leads to the equation

((7715—1|t—17PQ)7¢)
((me=1t-1,pq), 1)

(e, ¢) = (21)

which thus now replaces the previous Bayesian filter formulation (14).
Note that we can also conveniently write

((Wt—l\t—lqu)v(b) = ((7715—1|t—17Q(g fla), o)
= ((Wt—1|t—179f)a¢) (22)
= (7Tt71|t717f¢g)
and
((771571|t717pQ)7 1) = ((T‘—t71|t717 q (9 f/‘Z))a 1)
= ((me—1t=1,9f), 1) (23)
= (7Tt—1|t—1,f9)

where f is interpreted in linear operator sense.

5 Proof of Theorem

Using the Lemmas and the the conditions stated in the preceding sub-section, we are now ready to give the
proof of Theorem. The proofs for initialization and resampling steps are the same as in [2]. Therefore, here,
we only prove the convergence of the (combined) prediction and update steps. Thus, we want to prove the
convergence of

(ﬂ-N é) — (Toie &) = ((Wﬁl\tfquN)?(b) ((7t71|t717pQ)7¢) (24)
) - tl|ts - - )
t‘t ‘ ((Tri\il‘t,pqu)vl) ((ﬂ—t71|t717pQ)71)
where — if the probability densities exists — we have
(r 11, 0d™),0) = //¢(xt)p($tu$t—l)q]v($t |21, y0) PN (o1 | Y1) dag—q day,
(o100 0) = [ [ 00) paeszi) aton | 1,0 i | yam1) dos da
If we define fri\"t = (ﬂ'i\illt_l,qu) and 7y, = (m_1)4—1, p ), then Equation (24) can be written as
(T @) (Fupes )
N tle) tlts
U 7¢ — T 7¢ = 7= S ) 25
( t|t ) ( tlt ) (ﬂ-i\lft,l) (7Tt|t,1) ( )
As in [2] we will attempt to find appropriate bounds for the following terms:
4
E U(wgp, 9) = (e, 6| } and  E[(ml), |6[*)]. (26)
Let’s do an induction assumption that there exist constants C;_;,_; and M;_;;_, such that
4 llglli-
E |:’(7T1{v1t1a o) — (7Tt—1\t—17¢)‘ } < Ct—l\t—1$, (27)



and
o [CART 01| = VA (28)

Let’s start by considering the bounds for the following expectations

?|

4
We first start to study the boundedness of E U(fri\lft,qﬁ) — (frﬂt,qﬁ)} } and then we will do the same for

(0%, 6) - (ﬁtt,@ﬂ and E (=), lol")] (29)

[( Ties |p|* )] Let F;—1 be the o-algebra generated by xi_ ;. Then we can write (frtN‘t,qS) — (ftye, 0) =
Hl =+ HQ + Hg, where

N
Hl 7Tt|t7¢ Z :Etyxtfl) | ‘thl]a (30)
1 , . . 1<
My = = > Bl p(#} 1) | Fearl = 5 D (m 510 S 69). (31)
i=1 i=1
1 N
My = 5 > (M 51 [ 09) = (Fupe, 0). (32)
=1
Let 78 ~ (Wﬁ?ﬁil, q), then
El(7}) p(ii, 7i_y) | Feor] = (m5_y [ 09), (33)
1 N
(T 1 F09) =5 D (w51 fo9). (34)
=1

Analogously to [2] we start by analyzing the probability of the thresholding which in the current setting
corresponds to analysis of the event

= {((mLy—1.00),1) > 7}
{(7715 1|t— 1 f9) =}

By (33) we have

1 N

E |5 2 p@h i) | Fioa| = (001 f9) (36)

i=1



Analogously to (56) in [2] we thus get

P

N

1 i

~ E p(T5,w5_q) < %‘-7'—1:—1]
i=1

= :(Wtj\il\tﬂa fg) < ”Yt}

2

= :(Trt—l\t—la f9) = (maje-1,f9) <ve — (7Tt—1\t—17f9)}

<P :‘(Wﬁl\pp fg) - (Wtfl\tflu fg)’ > ’% - (7Tt71|t717 fg)H

|
e

‘(T‘—ﬁlhﬁ—lv fa)— (7Tt71|t717fg)‘4 > ‘% = (me—1je-1, fg)r]

4
E ’(wﬁ1|t71,fg) - (7Tt71|t717fg)‘ }

’ 1 Markov’s inequality

Tt — (Wt—l\t—lvfg>

E }(Fﬁl\tfp 1) = (me—1je-1, 1)}4

‘ 4

< [1£11*llgll*

Tt — (7Tt—1\t—1, fa9)

4
. 4E }(Wﬁutqal)— (wt,l‘t,l,l)}
117 gll™— 7 -
Tt — (7Tt|t—179)‘
Crpe—1llf1*lgl*

— 4
N2 ‘

By Equation (27)
Ve — (Wt\t—lvg)

Gy
= NV2 =e. (37)

provided that || f|| and ||g|| are bounded and HO is true.



From Equation (30), we have

[T [*Fy-1]
— 1 & o 4
=E ||(#),.¢) - NZE[G;(@;)p(@;,x;_l) | ]—'t_l} | Foy
=1
- ) N ‘ ‘ ‘ 1 N ‘ . | 4
-E N;oﬁ(ﬁ)p(ﬁ,xi,l) - N;E[o;(gzg)p(@;,x;l) |;ct_1} \F
1 N . S 1 N ) o 4
—E N;¢(Cﬁ)p(fﬁa$i1)—E[N;¢(:E§)p(jg,x11)|]—‘t_1} | Fis
N 4
||+ 3 (6@ @ ai ) — B[o@) p@ai ) | Fia])| 15
Ni:1 t P trlt—1 ¢ P 6Ty 1 "
- 4
= B || 0 (6 (@ ai_0) —E[o@) @t aiy) | Fia]) | |7
= N4 — t) P\Ty, Ty 1) P\ Ly, Ty _q -1 1
1 & o o 4
< < SOE ||63) p(@ 21 1) — E[6(@) pl@wi0) | Fia| | Fia
=1
1 (& R o 2 2
+ 77 | 2B || p(etos0) ~E[e(w) et ai ) | Fica] | 1Fica] | by lemma 51
24 —N . 4 N . o 2 T\ 2
Sﬁ ;E d(@y) p(Zy, wy_q)| | Fe—1| + ;]E o(xy) p(zy, i _1)| | Fioa by lemma 3.2

S | AV Y (i E [|9(a}) p(a, wi_,) P Fer] )

NT | = 1—e 2 T by lemma, 3.5
2| 1 ¢ 1 al o 2
=1 | T2 2 E @) o, «p1)[*|1Fia] T (ZE[|¢(x;)p(x;,x;_l)|2|ft_l]>
i=1 i=1
20 1§ NV 1 (Y R 2
SN[ )QZE[Iﬂﬁ(ﬂ)p(@iawi_l)l | Fi1] T STE[lo()) p(zh, zi )P Fer]
i=1 i=1
24 a o N o 2
= Wi a2 | 2= Ele@) ek i) I F] + (ZE [|¢<wz>p<:cz,xz_1>|2|ft_1]>
i=1 i=1



Provided that p < C,

, and || f|| and ||g|| are bounded by some constants, we get

[T | Fi—1]
2 [ , . ’
S NI —ep > E[|6(®) p(&;, x)_1)|*| Fi] ZE lo(}) p(}, 1) P Fa]
i=1
24 [ , o N , o 2
<y —op | O 2B el e ai )17 + 6 (ZE[|¢<:c1>|2p<wmz1>|ft_J>
: 2
_274 C3i N,a; f| |4 +C2 Z N,a; f| |2 Bv E ti 33
= N4(1—e)2 pi—l( t—1[t—1° (b 1_1( t—1lt—1 (25 g) y Equa 10n( )
2* i 3 N 4 N 2
= v o | O (e F1619) + O (N (. Flof 0))
2 [ o flolte) (e S1979))
(I—e? | ” N3 MG NE
- 57
__2 - (Wﬁutﬂ,flqﬁl“g) 02((wﬁ1|t71,f|¢|2g))
S ko N? MG N?
r i 2
N 4 N 2
< 2! CB ( Ti-1i-1 191 ) 211 F112 2((7Tt—1|t—1’|¢| ))
< o |CEINlal = + G2l Pl -
i N 4 N 4
24 ﬂ-tfl\tfl7 |¢| 7Tt71|t717 |¢|
STO-ee C§||f||||9||—( N2 ) +C§||f||2||g||2(N—2) by lemma 3.3
< 2°C, (Wﬁ1|t—l7|¢|4)
=T—e2 N2
220, [ My_1j1 |0l ,
< {a _:)2 =il e =12\ By Equation (28)
- lolli—1a

(38)



For II» we get

N 4

EI6(H) p(@h20-1) | F = S50 £ 69)

i=

2|~
e

@
Il
=

4
e| =

4

[
2|
M=

N
E[p(%}) p(Z}, 4—1) | Fe1] Z p(@txi-1) | Fi1]l By Equation (33)

4

1

-
Il

[
=2l
M-

(E [¢(2}) p(@}, we—1) | Fio1] — E [6(2}) p(2), me-1) | Fe-1])

1

-
Il

2

N 2
(1= e N4 <Z { $t7$t—1))2 |]:t1}> by lemma 3.5
-1 i 2
ZE [e@)? p(ay, ze-1)) | Fie 1}) by lemma 3.5

1

-

1_€4N4 p<

2
N
1_64]\]4 p Z t 1\t 1=f|¢| 9)) By Equation (33)
=1

uiwci( (Wt 1e—1: [ 107 9))

2 2
sﬁ AP gl (e o)

24
SW IR (7 sy 1)

242
S A=oinz CHFIIgl*Me—rje—illlli 1 4 By Equation (28)
< ~H2||¢|]|\;1,4 (30)
For 115 we get
4 [, X *
E |:‘H3‘ :| =E Z t 1‘,5 17f¢g) (ﬂ-t\tv(b)
. ) y
=E ’(ﬂ-t—1|t—1af¢g) - (7Tt|ta¢)’ ]
I 4
—E || sy1 S 69) = (Ti1ie1,f 09)] }
4
< IIaIE [ 0:9) = (s )] |
41 ( 11411414
< Ciqj il ||g|]|v|2|¢||t_1’4 by Equation (27)
o Dol
= O, 1 (40)
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Combining Equations (38), (39) and (40) using Minkowski’s inequality, we have

(E [ (feje: @) = (ﬁtmﬁ)ﬂ)m = <]E Unl +1, + mﬂ)
< (BT [*)Y* + (B[] 4)Y/4 4 (B[|T5 |4])1/4

1/4 1/4
i . llolld .l
S<OHI||¢>|]|Vt214> +<OH2 LGIATY Ry P L3R

= (et eyt ey 1ol

1/4

N1/2
1/4|[@l]e=1,4
= o]
Therefore 12
. . 4 - 1,4
]E{(w,f\@,qﬁ)—(wtt,@” e (41)

The next step is to study the boundedness of E [( Tyje—1> |4 } We use the same techniques and simplifica-
tions as above. Let F;_1 be the o-algebra generated by z¢_;. Then we can write (frtN‘t, |01*) = (g, [0]*) =

1:[1 + 1:[2 + 1:[3, where

N
I, = (7Tt|t7 8% Z o@D (35, 2e-1) | Fir] (42)
B N B 1
I, = NZ |¢ xt | p(wtvxt 1) | Fi— 1] N Z( i\“llrt 17f|¢| g) (43)
P i=1
1 &
My = 5 > (7" f s Flel* 9) = (R, |6l*) (44)

@
Il
=
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From Equation (42), we have

E[| [|Fi-1] =

r N
(#0101 - = SB[ pE i) | Foo |ft_1]
L i=1
1 & 1< . o
=B || @I platozia) - 7 SE[0GDI ol a1 | Fio
L =1 i=1
1 & . 1 & .
=B || LI (o) ~ B[ 3 I0GDI ol i) | Feo
1y
<2E Z|¢ $t| péEt,iEt I | Fee 11 By Lemma 3.2
L i=1
L
S E NZW )| p@i, 2t )| | Foo1| By Lemma 3.5
i=1

2 1
SSN;E

) 2
(m S F101"9) = T—(m 11 f16l'9) By Equation (34)

N

0@ p(31, 71 4)

| ]:t—l‘|

1—¢N t—1[t—1
i=1
2 N 4
gl (e 101)

2 .
[ Ilgll My sje1 9]y By Bauation (28)

12
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From Equation (43), we have

e[ |fo

1
=E

N ¢

2=
M=

E[|¢( )l p(i'ivxt—l) | ]:t—l] - ( i\i)(llﬁflvf'(bﬁg)

|

[|¢($t)|4 (xtvxt—l) | Fi1]

2=

Mz AMZ

E[|¢($t)|4 (xtvxt—l) | Fio1] —

I

=
2|~
] =

-
Il
-
-
Il
-

[
<
=2l
.MZ

s
Il
-

( [|¢(ji)|4p(iiaxt71) | ]:t—l] —-E [|¢(fi)|4 p(jiaxtfl) | ftﬂ]) H

AN
=
2=
i

(E [lo@)|* p(Z}, 21-1) | Feor] —E[|6(@)|* p(zh, we—1) | Fio1]) H

E [|6(z1)|* p(@1, we-1) | Feoa] | + (B [lo@)]* p(T}, 20-1) | Feer]

A
&=
==
M-

-
Il
-

N
&=
z|=
[]=
R N

)
<)

|0(z})[* (T}, we-1)

E | |lo(@})|* (a4, 2i-1) +E | [lo@)|* pai, ze-1)

|

| Fia

s
Il
-

[l —

(xt)|4 (fEtafEt—l) +E

| Fio1

N

=
==
i 1

[y

N
1 2 _¢ _i B
<E N; 1—6E [ |¢(‘rt)|4p(xtaxt71) |ft1]>
_2- 1 N,a; 4 .
11— E Z T 1\t—17f|¢| g)| By Equation (33)
z:l
2—¢€ 4 '
. GE [(ﬂ-t—1|t—17f |#] 9)} By Equation (34)
2 €
< 17—l g1l (-1, 1)
2—¢€
< 7 Mgl Mi—1je—1 I¢ll}-1s By Equation (28)

—1-
From Equation (44), we have

E (|| = E %é(wﬁ"fﬁ_l, 7161 ) = (Fup |¢|4>]
—E[|(r 11 F101* 9) = Graeslo1)|] - By Eauation (34)
=E|(n 11 F101* 9) = (reo-1. S 161 9)|
<IN [| sy 191) = (e, 61%)|
< AN NGNE [|rago—rs 61| + [(mages, 161

= 1Mol (B [| (e 101)]) + B [|(revjeas 1019 |)
<A gl (Mo-agea Il ya + 16lEaga) = 11Nl (Moo + 1) 6l

13

By Equation (33)

| .7-}_11 )] by lemma 3.5

(48)



Combining Equations (45), (47) and (48) we have

(B[] Gl 1614 = G 614)]])
—E Hﬁl + 10, +ﬁ3H =E T[] +E [|I]] + E [|Ts]]

-(;

= Mt\t||¢||?—1,4a

(Mo r + 1)) 1l

where Mtlt = ﬁ

(Mt—l\t—l + 1) Therefore

[(Wt\t L1811 = Ge—ts 0] < Myell@llE 14 (49)

Since Equations (41) and (49) show that the expectation of the differences of the numerators is bounded for
any function ¢, the expectation of the differences of the denominators is also bounded. That is for ¢ = 1 we
have

. R 4 .l C
E{(Wthul)—(thlv )‘ } <Gy %_N—t‘; (50)
[(Wt\ta 1% = (Rryges [LN] < Myl |1}y 4 = My (51)

To complete the proof, we use Equations (41), (49), (50) and (51) to deduce that:
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(=]

E

!

t|t

(7Tt|

L]
(ﬁ—t\tu 1)

(#,,)
%(ﬁﬂta 1)

|G T @) (R 0)

oo tma]])

GN.D) (e )

[ (#058) rjen 1) = (g D) (715 1)

N

N

(ﬁ-ﬁ[ﬁ 1)(7%t\t7 1)

1/4

(|Gl ) (e ) = (G 10) + 1) (5 6) = (o 9)) H)

G D) (e 1)

1/4

[ @) (e D) = (D) @) ((F0) = (e ) H)

(ﬁﬁlpl)(ﬁ—t\tul) * (Wt]\(t,l)(ﬁt“,l)

- A . . 4. 1/4
(Wﬁ@,(b) ((m‘t, 1) — (th\‘ft, 1)) 4
(At|t (7, 1)
S\ 1/4
4
tlt t|t (Wt\t ¢)) ' o '
1) By Minkowski’s inequality
t\t 7Tﬂt
4\ 1/4
4
ﬂt ﬂ}\t ( Tyt 1))
Ve (T, 1

(hes ﬂ—t\t ) ’4] ) e
C
1) (E U(Wi\llt 1) - (ﬁtt’l)ﬂ)w

(E U(ﬁﬁft, ) — (7)1, ¢)‘4D1/4

A 1/4 1/4
Cu o IOl
N2 + e 2

1
(ﬁ-t|t7 1)
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By Holder’s and Jensen’s inequalities we have |(m, ¢)[* < |(7, |¢])[* < (m,|¢|*). Therefore

. N 1/4 1/4
v W | @) | [ Cu 1| () Il
(leto-meol]) <525 () @ S
|G acy (i)l/g Gt | (Nlttva\
”Yt(ﬂt|t,) N2 (ﬂ-t\tv) N2

1/4
1\ 16/t 1 4
= Clt\t (m) + O2t\t ( N2

N1/2 (Cl g TCO2,, ||¢||t—1,4>

1 G,
= N7 ([l e ) 1Ol

1
< N1/2 (Ol‘ + Ca, ) l|¢||t—1,4 Because Ci,, 20 pl]i—1.4 > 1

= N1/2 C3t\t||¢||t 1,4

Therefore

[Ig1l¢-1.4

EU(WtNt,Qb)—(Wtu,éf’)r] <Cyi—5— N2

(52)
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For E[(th‘t, |6|*)]; we have

E (el 161" = (rojes lo1*)
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