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ABSTRACT
In this paper we extend the L4 proof of Hu et al. (2008) from
bootstrap type of particle filters to particle filters with gen-
eral importance distributions. The result essentially shows
that with general importance distributions the particle filter
converges provided that the importance weights are bounded.
By numerical simulations we also show that this condition is
often also a practical requirement for a good performance of
a particle filter.

Index Terms— Particle filter; convergence; importance
distribution; unbounded function

1. INTRODUCTION

Particle filters [1, 2, 3] are powerful methods for approximate
Bayesian filtering in state space models of the form

xt ∼ f(xt | xt−1), yt ∼ g(yt | xt), (1)

where xt ∈ Rn is the state of the system, yt ∈ Rm is the
measurement, f(xt | xt−1) is the transition probability den-
sity (w.r.t. Lebesgue measure) modeling the dynamics of the
system, and g(yt | xt) is the conditional probability density
of measurements modeling the distribution of measurements.

Particle filters form a weighted set of Monte Carlo sam-
ples {(xit, wit) : i = 1, . . . , N} such that the posterior ex-
pectation of a test function φ(·) can be approximated as

E[φ(xt) | y1:t] ≈
N∑
i=1

wit φ(xit). (2)

A particle filter converges if, in a suitable sense, the above
approximation becomes exact when N →∞.

Various types of convergence result for particle filters with
general importance distributions, but with bounded test func-
tions can be found in the survey article [4]. Long-term sta-
bility results and central limit theorem type of convergence
theorems for particle filters (also for unbounded functions),
can be found in [5, 6, 7, 8] and references therein. L4 type
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of convergence results for the unbounded case have recently
been studied in [9, 10], but only in the case of bootstrap type
of importance distributions.

In this paper, we extend the proof of Hu et al. (2008) [9] to
the case of general importance distributions. The results show
that the boundedness of importance weights (along with the
model densities) is a sufficient condition for the convergence
also in the case of unbounded test functions, which is also a
sufficient condition in the bounded case [4]. We also discuss
the practical implications of the condition to certain impor-
tance distributions proposed in literature.

2. PARTICLE FILTERING

Recall that the Bayesian filter for the state space model in (1)
can be written in the abstract form [9]:

(πt|t−1, φ) = (πt−1|t−1, f φ), (3)

(πt|t, φ) =
(πt|t−1, φ g)

(πt|t−1, g)
, (4)

where we have defined

(π, φ) =

∫
φ(x)π(dx), f φ =

∫
f(xt | xt−1)φ(xt) dxt.

With this notation, we obtain the bootstrap filter simply by
replacing the measures π with their finite-sample approxima-
tions and by introducing an additional resampling step. This
was the starting point of the analysis in [9].

However, here we wish to analyze the convergence of
the more general particle filter which does not correspond
to a direct finite-sample approximation of the prediction and
update steps above. Instead of sampling from the dynamic
model distribution we sample from an importance distribu-
tion q(xt | xt−1, yt) and then compute weights for the sam-
ples. For this purpose it is convenient to rewrite the Bayesian
filter as a single step

(πt|t, φ) =
((πt−1|t−1, ρ q), φ)

((πt−1|t−1, ρ q), 1)
, (5)

where we have defined the importance weights

ρ(xt, xt−1) =
g(yt | xt) f(xt | xt−1)

q(xt | xt−1, yt)
. (6)



As in [9, 10], to be able to cope with unbounded functions, we
need to use a slightly modified version of the standard parti-
cle filter in order to guarantee the convergence. The mod-
ified particle filter is constructed such that we always have
((πNt−1|t−1, ρ q), 1) ≥ γt > 0, where γt > 0 is a chosen
threshold [9]. The modified algorithm is the following.

Algorithm 2.1 (General Modified Particle Filter). The algo-
rithm is similar to [9], but includes importance distributions.

1. Initialize the particles, {xi0}Ni=1 ∼ π0(dx0)

2. Draw samples according to x̄it ∼
∑N
j=1 α

i
j q(xt |

xjt−1, yt), where αji are non-negative weights such that∑N
j=1 α

i
j = 1,

∑N
i=1 α

i
j = 1, and

1

N

N∑
i=1

N∑
j=1

αij q(xt | x
j
t−1, yt) =

1

N

N∑
j=1

q(xt | xjt−1, yt).

3. If ((πNt−1|t−1, ρ̄ q̄), 1) ≥ γt, proceed to step 4 otherwise
return to step 2. Note that ρ̄ and q̄ are the values eval-
uated at x̄it.

4. Rename x̃it = x̄it, and compute and normalize the
weights wit = ρ(x̃it, x

i
t−1), w̃it = wit/

∑N
j=1 w

j
t .

5. Resample, xit ∼ π̃Nt|t(dxt) =
∑N
i=1 w̃

i
t δx̃i

t
(dxt)

6. Set t = t+ 1 and repeat from step 2).

3. CONVERGENCE WITH GENERAL
IMPORTANCE DISTRIBUTION

To prove the convergence of the particle filter, we need to
impose the following conditions (cf. [9]).

• H0: For any given y1:s, we have ((πs−1|s−1, ρ q), 1) >
0, where s = 1, . . . , t.

• H1: The dynamic model f , measurement model g,
and the importance weights ρ(xt, xt−1) are bounded.
That is, there exist constants Cf , Cg , and Cρ such that
‖f‖ ≤ Cf , ‖g‖ ≤ Cg , and ‖ρ‖ ≤ Cρ, where the first
norm is an operator norm induced by the supremum
norm, and the second two are supremum norms of the
functions.

• H2: The function φ(·) satisfies supxs
|φ(xs)|4g(ys |

xs) < C(y1:s).

The main convergence theorem is the following.

Theorem 3.1. Consider the general modified particle filter
algorithm and suppose that the conditions H0, H1, and H2
above hold. Then we have the following.

1. For a sufficiently large N , the algorithm will not run
into an infinite loop on steps 2-3.

2. Let L4
t (g) be the class of functions satisfying H2. For

any φ ∈ L4
t (g), there exists a constant Ct|t, indepen-

dent of N such that

E
[∣∣∣(πNt|t, φ)− (πt|t, φ)

∣∣∣4] ≤ Ct|t ||φ||4t,4
N2

, (7)

where ||φ||4t,4 is defined as [9]

||φ||t,4 = max
{

1, (πs|s, |φ|4)1/4, s = 0, 1, . . . , t
}
. (8)

Proof. The proofs for initialization and resampling steps are
the same as in [9]. Thus, here, we only prove the convergence
of the (combined) prediction and update steps. That is, we
prove the convergence of the following:

(πNt|t, φ)− (πt|t, φ) =
(π̂Nt|t, φ)

(π̂Nt|t, 1)
−

(π̂t|t, φ)

(π̂t|t, 1)
, (9)

where π̂Nt|t = (πNt−1|t−1, ρ q
N ) and π̂t|t = (πt−1|t−1, ρ q). It

is now enough to study the bounded for the following terms:

E
[∣∣∣(πNt|t, φ)− (πt|t, φ)

∣∣∣4] and E[(πNt|t, |φ|
4)]. (10)

At t = 0, we have the initialization step for which the proof
can be found in [9]. Next, we assume that there exist constants
Ct−1|t−1 and Mt−1|t−1 such that the following is true:

E
[∣∣∣(πNt−1|t−1, φ)− (πt−1|t−1, φ)

∣∣∣4] ≤ Ct−1|t−1

||φ||4t−1,4

N2
,

(11)
and

E
[∣∣∣(πNt−1|t−1, |φ|

4)
∣∣∣] ≤Mt−1|t−1||φ||4t−1,4. (12)

To study the boundedness of (10), we start by studying
the numerator terms in (9). We first derive the bound for
E[|(π̂Nt|t, φ)− (π̂t|t, φ)|4] and then for E[(π̂Nt|t, |φ|

4)].
Let Ft−1 be the σ-algebra generated by xit−1. Then we

can write (π̂Nt|t, φ)− (π̂t|t, φ) = Π1 + Π2 + Π3, where

Π1 = (π̂Nt|t, φ)− 1

N

N∑
i=1

E[φ(x̃it) ρ(x̃it, xt−1) | Ft−1], (13)

Π2 =
1

N

N∑
i=1

E[φ(x̃it) ρ(x̃it, xt−1) | Ft−1]

− 1

N

N∑
i=1

(πN,αi

t−1|t−1, f φ g), (14)

Π3 =
1

N

N∑
i=1

(πN,αi

t−1|t−1, f φ g)− (π̂t|t, φ). (15)



We treat the terms of Π1, Π2 and Π3 separately and, in each
case, we assume that ‖ρ‖ ≤ Cρ, and that ‖f‖ and ‖g‖ are
bounded by some constants. Let x̄it ∼ (πN,αi

t−1|t−1, q), then

E[φ(x̄it) ρ(x̄it, x
i
t−1) | Ft−1] = (πN,αi

t−1|t−1, f φ g),

(πNt−1|t−1, f φ g) =
1

N

N∑
i=1

(πN,αi

t−1|t−1, f φ g).

(16)

The probability of the threshold γt corresponds to event At
defined as At = {(πNt−1|t−1, f g) ≥ γt}, where, by (16), we
have

E

[
1

N

N∑
i=1

ρ(x̄it, x
i
t−1) | Ft−1

]
= (πN,αi

t−1|t−1, f g). (17)

Suppose ‖f‖ and ‖g‖ are bounded, and H0 holds. Then, using
Markov’s inequality and (11), it implies that

P

[
1

N

N∑
i=1

ρ(x̄is, x
i
s−1) < γt

∣∣∣Ft−1

]
≤

Ct−1|t−1‖f‖4 ‖g‖4

N2
∣∣∣γt − (πt|t−1, g)

∣∣∣4
=
C̃γt
N2

= ε. (18)

To bound (13), we use Lemmas 7.1, 7.2, 7.3, and 7.5 from
[9], (16), and (12), which leads to

E[|Π1|4 | Ft−1]

≤ 24

N4

[
N∑
i=1

E
[
|φ(x̄it) ρ(x̄it, x

i
t−1)|4|Ft−1

]
1− ε

]

+
24

N4

( N∑
i=1

E
[
|φ(x̄it) ρ(x̄it, x

i
t−1)|2|Ft−1

]
1− ε

)2


≤ 24

(1− ε)2

C3
ρ

(
πNt−1|t−1, f |φ|

4 g
)

N2


+

24

(1− ε)2

C2
ρ

(
πNt−1|t−1, f |φ|

2 g
)

N2


≤ 25C̃ρ

(1− ε)2

[
Mt−1|t−1‖φ‖4t−1,4

N2

]
= C̃Π1

‖φ‖4t−1,4

N2
. (19)

For the bound of (14), we use Lemmas 7.3 and 7.5, from [9],
Eqs. (12), (16), and (18), as well as Jensen’s inequality, which

leads to

E
[∣∣∣Π2

∣∣∣4 | Ft−1

]
≤

24ε2C2
ρ

(1− ε)4N2
E
[
E
[
(N (πNt−1|t−1, f |φ|

2 g))2
]]

≤ 24ε2

(1− ε)4N2
C2
ρ‖f‖2 ‖g‖2

(
πNt−1|t−1, |φ|

4
)

≤ C̃Π2

‖φ‖4t−1,4

N2
. (20)

For the bound of (15), we use (11), which gives:

E
[∣∣∣Π3

∣∣∣4 | Ft−1

]
≤ ||f ||4||g||4E

[∣∣∣(πNt−1|t−1, φ)− (πt−1|t−1, φ)
∣∣∣4]

≤ C̃t−1|t−1

‖f‖4‖g‖4‖φ‖4t−1,4

N2
= C̃Π3

‖φ‖4t−1,4

N2
. (21)

By combining Eqs. (19), (20), and (21) via Minkowski’s in-
equality, we get

E
[∣∣∣(π̂Nt|t, φ)− (π̂t|t, φ)

∣∣∣4] 1
4

≤
(
C̃

1/4
Π1

+ C̃
1/4
Π2

+ C̃
1/4
Π3

) ‖φ‖t−1,4

N1/2
= Ĉ

1/4
t|t
‖φ‖t−1,4

N1/2
,

which implies

E
[∣∣∣(π̂Nt|t, φ)− (π̂t|t, φ)

∣∣∣4] ≤ Ĉt|t ‖φ‖4t−1,4

N2
. (22)

The bound for E[(π̂Nt|t, |φ|
4)] can be derived using the same

technique as above, which leads to

E
[∣∣∣(π̂Nt|t, |φ|4)

∣∣∣] ≤Mt|t||φ||4t−1,4. (23)

Note that if we set φ = 1 in (22) and (23), we get similar
bounds for the difference of the denominators.

We finally study the boundedness of (10). For E[|(πNt|t, φ)−
(πt|t, φ)|4], we use (22) and (23) with φ = 1 along with
Minkowski’s inequality, to get

E
[∣∣∣(πNt|t, φ)− (πt|t, φ)

∣∣∣4] 1
4

≤

∣∣∣∣∣ (π̂
N
t|t, φ)Ĉ

1/4
t|t

γt(π̂t|t, 1)

∣∣∣∣∣
(

1

N2

) 1
4

+

∣∣∣∣∣ Ĉ
1/4
t|t

(π̂t|t, 1)

∣∣∣∣∣
(
‖φ‖4t−1,4

N2

) 1
4

≤ 1

N1/2
C

1
4

t|t‖φ‖t−1,4,

which thus gives

E
[∣∣∣(πNt|t, φ)− (πt|t, φ)

∣∣∣4] ≤ Ct|t ‖φ‖4t−1,4

N2
.



For E[(πNt|t, |φ|
4)], we similarly get

E
[
(πNt|t, |φ|

4)− (πt|t, |φ|4)
]
≤ M̄t|t‖φ‖4t−1,4, (24)

which thus completes the proof.

4. PRACTICAL IMPLICATIONS

Our result states that provided that ||f ||, ||g||, and ||ρ|| are
bounded, we can ensure the convergence. The boundedness
of f and g is indeed quite natural, but let’s take a closer look
at the boundedness of the term ρ, which we defined in (6), on
some commonly used importance distributions.

• The optimal importance distribution [2] q(xt | xt−1, yt) =
p(xt | xt−1, yt) leads to ρ(xt, xt−1) =

∫
g(yt |

xt) f(xt | xt−1) dxt which is guaranteed to be bounded
provided that f and g are bounded.

• In the bootstrap filter [1, 9] we select q(xt | xt−1, yt) =
f(xt | xt−1), which gives ρ(xt | xt−1) = g(yt | xt)
and thus is ensured to be bounded.

• Using non-linear Kalman filters to approximate the op-
timal importance distribution [2, 11, 12] gives q(xt |
xt−1, yt) = N (xt | mt, Pt) were, mt and Pt are mean
and covariance computed by the Kalman filter. We
can now assure convergence only if the ratio of the
optimal importance distribution and its approximation
p(xt | xt−1, yt)/N (xt | mt, Pt) is bounded. This re-
quires that the tails of p(xt | xt−1, yt) are not heavier
than the tails of the Gaussian distribution and that the
covariance Pt is bounded from below.

• We can also use a multivariate Student’s t-distribution
with the parameters mt and Pt above instead of the
Gaussian distribution [13]. If we choose the degrees
of freedom in the Student’s t-distribution to be low
enough, then ρ can be assured to be bounded.

Example 4.1 (Linear Gaussian state space model). Consider
the one-dimensional Gaussian random walk model

xt = xt−1 + qt−1, qt−1 ∼ N (0, Q), (25)
yt = xt + rt, rt ∼ N (0, R). (26)

The optimal importance distribution is now Gaussian N (xt |
mt, Pt) with mt = xt−1 + Q/(Q+R) [yt − xt−1], P =
Q− Q2

/
(Q+R) . If we replace the importance distribution

with N (xt | mt, c Pt) where c < 1, then the weights become
unbounded and thus the particle filter is not guaranteed to
converge.

Figure 1 illustrates the effect of the value c to the estimates
of the fourth order central moment of the filtering distribution
at t = 24 with varying number of particles with the param-
eter values Q = 1, R = 1/2, and x0 = 0. It can be seen
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Fig. 1. Illustration of the effect of scaling the importance dis-
tributions with c in linear Gaussian example. Left: Gaussian
distribution. Right: Student’s t-distribution with ν = 3 de-
grees of freedom. The scaling of variance significantly af-
fects the performance of the particle filter with a Gaussian
importance distribution whereas the effect to a Student’s t-
distribution based particle filter is smaller.

that scaling of the variance in Gaussian importance distri-
bution affects the convergence of the fourth moment estimate
whereas with the Student’s t-distribution the effect is smaller.

Example 4.2 (Non-linear state space model). A typically used
example of a non-linear model is the following system (see,
e.g., [2]):

xt =
1

2
xt−1 + 25

xt−1

1 + (xt−1)2
+ 8 cos(1.2t) + qt−1, (27)

yt =
x2
t

20
+ rt, (28)

where qt−1 ∼ N (0, 10) and rt ∼ N (0, 1). It is now easy to
show that the ratio of the optimal importance distribution and
any Gaussian distribution will be uniformly bounded. Thus
using a non-linear Kalman filter based Gaussian importance
distribution leads to a converging particle filter provided that
we do not allow the Gaussian distribution to become singular.

5. CONCLUSION

In this paper, we extended the proof of Hu et al. (2008) [9] to
the case of general importance distributions. Our proof shows
theL4 convergence of the particle filter estimates for a general
class of unbounded functions provided that the importance
weights are bounded. This also implies the probability-one
convergence of the estimates [9]. We have analyzed the con-
ditions set by the proof on importance distributions proposed
in literature and tested them numerically.
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