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ABSTRACT

We analyze the Lp-convergence of a previously proposed
Girsanov theorem based particle filter for discretely observed
stochastic differential equation (SDE) models. We prove the
convergence of the algorithm with the number of particles
tending to infinity by requiring a moment condition and a
step-wise initial condition boundedness for the stochastic
exponential process giving the likelihood ratio of the SDEs.
The practical implications of the condition are illustrated with
an Ornstein–Uhlenbeck model and with a non-linear Benes̆
model.

Index Terms— Girsanov theorem, particle filter, conver-
gence, stochastic differential equation

1. INTRODUCTION

In this article, we analyze theLp-convergence of the Girsanov
theorem based particle filter introduced in [1–3]. The particle
filter is concerned with the classical problem [4] of discretely
observed stochastic differential equations of the form

dX(t) = f(X(t), t) dt+ L(t) dB(t),

yk ∼ ρk(yk | xk),
(1)

where ρk(yk | xk) is the conditional probability density (here
w.r.t. the Lebesgue measure) of the measurement yk ∈ Rd

given the state X(tk) = xk ∈ Rn. We assume that the vector
of standard Brownian motions B(t) ∈ Rn and that L(t) is
invertible, but this can be relaxed [3].

Although there exists a wide range of Lp-convergence
results for particle filters (see, e.g., [5–13] and references
therein), the main difficulty in applying these results to the
present filter is that unlike in many other cases, the impor-
tance weights cannot be assumed to be point-wise bounded.
Therefore we base our analysis on the recently proposed more
general moment conditions on the weights [14, 15].

Furthermore, although here we only consider the conver-
gence of the filtering measures at the measurement times, the
particle filter method [1–3] actually produces samples of the
full paths of the posterior process. Even though this limits
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the possible choices of importance processes to those which
are absolutely continuous with respect to the dynamic model
process, it also enables the possibility estimate the values of
functionals of the paths.

2. THE PARTICLE FILTER

The particle filter introduced in [1–3] is based on the clas-
sical Girsanov theorem [16] which gives an expression for
the likelihood ratio between an SDE and its driving Brown-
ian motion. From the theorem, it is also possible to derive
an expression for the stochastic exponential process Z(t) giv-
ing the likelihood ratio between two SDEs driven by the same
Brownian motion (see [3]), which can be used for importance
sampling of the SDEs in particle filtering. The resulting par-
ticle filter algorithm is the following.

Algorithm 1 (Girsanov theorem based particle filter). Given
a set of Monte Carlo samples {x(i)k−1 : i = 1, . . . , N} and
the new measurement yk, a single step of the filter is:

1. Simulate N independent realizations of the importance
process from t = tk−1 to t = tk:

dS(i)(t) = g(S(i), t) dt+ L(t) dB(i)(t),

S(i)(tk−1) = x
(i)
k−1.

(2)

2. Simulate the corresponding log-likelihood ratios

dΛ(i)(t) = hT (S(i)(t), t) [L−1(t)]T dB(i)(t)

− 1

2
hT (S(i)(t), t)

(
L(t)LT (t)

)−1
h(S(i)(t), t) dt,

(3)

where we have defined

h(S, t) = f(S, t)− g(S, t), (4)

from t = tk−1 to t = tk with Λ(i)(tk−1) = 0 and set

x̃
(i)
k = S(i)(tk),

z
(i)
k = exp

{
Λ(i)(tk)

}
.

(5)

Note that the realizations of Brownian motions must be
the same as in simulation of the importance processes.



3. For each i compute

w
(i)
k = z

(i)
k ρk(yk | x̃(i)k ), (6)

and normalize them:

w̃
(i)
k =

w
(i)
k∑n

j=1 w
(j)
k

. (7)

4. Resample {x̃(i)k , w̃
(i)
k } to obtain {x(i)k : i = 1, . . . , N}.

3. MEASURE-THEORETICAL INTERPRETATION

Let us denote the set of bounded Borel-measurable functions
‖φ‖∞ < ∞ by B(Rn). If Q is the transition kernel of a
Markov process we denote Q(φ)(x) =

∫
φ(y)Q(x, dy). We

denote the transition kernel from X(tk−1) = xk−1 to X(tk)
defined by the SDE in (1) as Qk which is usually intractable
to write down explicitly. We write ηk for the conditional (fil-
tering) measure of X(tk), given the observations y1, . . . , yk.
The Bayesian filter in a ”test function form” can then be writ-
ten as [8]

αk(φ) = ηk−1(Qk(φ ρk)), ηk(φ) =
αk(φ)

αk(1)
, (8)

where αk is an unnormalized measure and ρk(yk | xk) is
considered as a function of xk. To account for the importance
process, it is convenient to rewrite the equations into the fol-
lowing equivalent form (cf. [15])

αk(φ) = ηk−1(Πk(φwk)), ηk(φ) =
αk(φ)

αk(1)
, (9)

where Πk is the transition kernel of the Markov process de-
fined by the importance process SDE for the transition from
S(tk−1) = xk−1 to S(tk). In the above display we have the
weight function

wk(xk−1, xk) = ρk(yk | xk)
dQk

dΠk
(xk−1, xk), (10)

where dQk/dΠk is a Radon–Nikodym derivative. The advan-
tage of this formulation is that the particle filter in Algorithm
1 can be seen as a direct Monte Carlo approximation of Equa-
tions (9) as follows:

1. The simulation of the importance process in (2) can
be seen as drawing N samples from the measure
ηNk−1(Πk), where ηNk−1 is theN -particle approximation
of the filtering distribution from the time step k − 1.

2. Combining with (3) and (5) leads to the approximation

α̃N
k (φ) =

N∑
i=1

φ(x̃
(i)
k )wk(x

(i)
k−1, x̃

(i)
k ). (11)

3. In (6) and (7) we form the approximation

η̃Nk (φ) =
α̃N
k (φ)

α̃N
k (1)

. (12)

4. Resampling step forms a new measure ηNk from η̃Nk .

4. LP CONVERGENCE THEORY

The main convergence theorem is the following.

Theorem 2. Assume that

1. The measurement model density is bounded ρk(yk |
xk) ≤ Dk <∞.

2. The transition kernels of the SDEs are Feller.

3. The importance weights and the measurement model
density satisfy the inequality

sup
xk−1

Πk(|wk|p)(xk−1) ≤ Ek (13)

for some constants Ek <∞ for all k = 1, . . . ,M , that
is, it bounds uniformly for all starting points xk−1.

4. The resampling algorithm satisfies (e.g. [8]):

E
[∣∣η̃Nk (φ)− ηNk (φ)

∣∣p] ≤ ĉk ‖φ‖p∞
N

p
2

(14)

for some constant ĉk, independent of N .

Then for some set of constants ck, for all k = 1, . . . ,M , in-
dependent of N , for all φ ∈ B(Rn) we have

E
[∣∣ηNk (φ)− ηk(φ)

∣∣p] ≤ ck ‖φ‖p∞
N

p
2

. (15)

We start the proof of the above with the following lemma.

Lemma 3. Let p ≥ 2, and {ξi : i = 1, . . . , N} be condition-
ally independent random variables given a sigma-algebra G
such that E[|ξi|p | G] <∞. Then we have

E

[∣∣∣∣∣
N∑
i=1

ξi −
N∑
i=1

E [ξi|G]

∣∣∣∣∣
p

| G

]
≤ Cp

(
N∑
i=1

E [|ξi|p |G]
2
p

) p
2

(16)
where Cp is independent of N .

Proof. Follows from Theorem 2.12 in [17].

Lemma 4. Assume that we have

E
[∣∣ηNk−1(φ)− ηk−1(φ)

∣∣p] ≤ ck−1 ‖φ‖p∞
N

p
2

(17)

for some constant ck−1, independent of N . Then

E
[∣∣η̃Nk (φ)− ηk(φ)

∣∣p] ≤ c̃k ‖φ‖p∞
N

p
2

(18)

for some constant c̃k, independent of N .



Proof. By using Minkowski’s inequality we get

E
[∣∣η̃Nk (φ)− ηk(φ)

∣∣p] 1
p

= E

[∣∣∣∣ α̃N
k (φ)

α̃N
k (1)

− αk(φ)

αk(1)

∣∣∣∣p]
1
p

≤ E

[∣∣∣∣ α̃N
k (φ)

α̃N
k (1)

− α̃N
k (φ)

αk(1)

∣∣∣∣p]
1
p

+ E

[∣∣∣∣ α̃N
k (φ)

αk(1)
− αk(φ)

αk(1)

∣∣∣∣p]
1
p

.

(19)

For the first term above we get

E

[∣∣∣∣ α̃N
k (φ)

α̃N
k (1)

− α̃N
k (φ)

αk(1)

∣∣∣∣p] ≤ ||φ||p∞
|αk(1)|p

E
[∣∣αk(1)− α̃N

k (1)
∣∣p] .

(20)

For the second term we get

E

[∣∣∣∣ α̃N
k (φ)

αk(1)
− αk(φ)

αk(1)

∣∣∣∣p] =
1

|αk(1)|p
E
[∣∣α̃N

k (φ)− αk(φ)
∣∣p] .

(21)

We also have

E
[∣∣α̃N

k (φ)− αk(φ)
∣∣p] 1

p

≤ E
[∣∣α̃N

k (φ)− E
[
α̃N
k (φ) | Gk−1

]∣∣p | Gk−1] 1
p

+ E
[∣∣E [α̃N

k (φ) | Gk−1
]
− αk(φ)

∣∣p] 1
p

,

(22)

where Gk−1 denotes the sigma-algebra generated by the par-
ticles {x(i)0:k−1 : i = 1, . . . , N}. For the first term here we
get by using Lemma 3 and assumption 3:

E
[∣∣α̃N

k (φ)− E[α̃N
k (φ) | Gk−1]

∣∣p | Gk−1]
≤ Cp

Np

(
N∑
i=1

E
[∣∣∣φ(x̃

(i)
k ) z

(i)
k ρk(yk | x̃(i)k )

∣∣∣p | Gk−1] 2
p

)p/2

≤ Ek Cp ‖φ‖p∞
Np/2

.

(23)

The second term gives by using the induction assumption

E
[∣∣E [α̃N

k (φ) | Gk−1
]
− αk(φ)

∣∣p]
= E

[∣∣ηNk−1(Qk(φ ρk))− ηk−1(Qk(φ ρk))
∣∣p]

≤ ck ‖Qk(φ ρk)‖p∞
Np/2

≤ ckDk‖φ‖p∞
Np/2

,

(24)

where we have used E[α̃N
k (φ) | Gk−1] = ηNk−1(Qk(φ ρk)).

The result follows by substituting (23) and (24) into (22), then
the result to (20) and (21) (to former with φ = 1), and by
finally using (19).

Lemma 5. Assume that we have

E
[∣∣η̃Nk (φ)− ηk(φ)

∣∣p] ≤ c̃k ‖φ‖p∞
N

p
2

(25)

for some constant c̃k, independent of N . Then

E
[∣∣ηNk (φ)− ηk(φ)

∣∣p] ≤ ck ‖φ‖p∞
N

p
2

(26)

for some constant ck, independent of N .

Proof. The result follows from E
[∣∣ηNk (φ)− ηk(φ)

∣∣p] 1
p ≤

E
[∣∣ηNk (φ)− η̃Nk (φ)

∣∣p] 1
p + E

[∣∣η̃Nk (φ)− ηk(φ)
∣∣p] 1

p together
with the assumption (14).

Proof of Theorem 2. The result follows by combining Lem-
mas 4 and 5 together with a simple induction argument simi-
larly to [15].

5. ENSURING THE ASSUMPTION 3

Let us now discuss what the condition that Πk(|wk|p)(xk−1) ≤
Ek uniformly for all starting points xk−1 actually means and
how it can be checked in practice. If the Lebesgue densities
of Πk and Qk exist and are πk and qk, respectively, then the
condition is equivalent to the following being true regardless
of xk−1:∫ [

ρk(yk | xk) qk(xk | xk−1)

πk(xk | xk−1)

]p
πk(xk | xk−1) dxk ≤ Ek.

(27)
This will certainly be true if we can ensure that the unnormal-
ized weights in the brackets above are uniformly bounded in
both variables xk and xk−1. However, we cannot generally
ensure that.

One way to proceed is to explicitly check that the con-
dition above is true for the transition densities of the dy-
namic model and importance process SDEs. However, for
non-linear SDEs the computation of the densities is usu-
ally intractable (they are solutions of the Fokker–Planck–
Kolmogorov partial differential equation). Still, sometimes
analytical or numerical analysis is possible.

We have Πk(|wk|p) ≤ Dk Πk([dQk/dΠk]p) and thus we
can also attempt to ensure that Πk([dQk/dΠk]p) ≤ Ẽk

regardless of the starting point xk−1. It is worth not-
ing that this gives a sufficient condition for the conver-
gence, but Πk(|wk|p) ≤ Ek might be true even when
Πk([dQk/dΠk]p) ≤ Ẽk is not due to appearance of the
potentially regularizing function ρk. Explicitly written, the
latter condition is (recall (4))

Exk−1

[
exp

(
p

∫ tk

tk−1

hT (S(t), t) [L−1(t)]T dB(t)

− p

2

∫ tk

tk−1

hT (S(t), t)
(
L(t)LT (t)

)−1
h(S(t), t) dt

]
≤ Ẽk

(28)



which is related to so called Novikov’s conditions for martin-
gales (with p = 1) and the moments of the likelihood ratio
considered in [18]. These conditions essentially say that pro-
vided that

Exk−1

[
exp

(
cp

∫ tk

tk−1

hT (S(t), t)
(
L(t)LT (t)

)−1
× h(S(t), t) dt

)]
<∞

(29)

for a suitably chosen constant cp, then the moment is bounded.
However, these conditions do not say anything about the
boundedness in the initial conditions (i.e., xk−1).

We can also put back the measurement model into the
condition (28), which leads to the condition

Exk−1

[
exp

(
p

∫ tk

tk−1

hT (S(t), t)[L−1(t)]T dB(t)

− p

2

∫ tk

tk−1

hT (S(t), t)
(
L(t)LT (t)

)−1
h(S(t), t) dt

)
× ρpk(yk | S(tk))

]
≤ Ẽk.

(30)

6. EXAMPLE: ORNSTEIN–UHLENBECK MODEL

In this section we illustrate the condition (27) discussed in
the previous section by explicitly analyzing its implications
on the following Ornstein–Uhlenbeck model:

dX(t) = −aX(t) dt+ q1/2 dB(t),

ρ(yk | xk) =
1√
2πR

exp

(
− (yk −X(tk))2

2R

)
,

(31)

with an importance distribution of the form

dS(t) = −b S(t) dt+ q1/2 dB(t). (32)

In the above displays a, b, q, and R are positive constants.
We now obtain that the condition Πk(|wk|p) ≤ Ek < ∞ is
satisfied if by selecting the ranges of the parameters suitably.
Figure 1 shows the ranges of a and b when these conditions
are met withR = 1 andR = 1/10 when the other parameters
are q = 1, ∆t = 1, and p = 4.

7. EXAMPLE: NON-LINEAR BENES̆ MODEL

We now consider the non-linear model

dX(t) = tanh(X(t)) dt+ dB(t)

ρ(yk | X(tk)) =
1√
2πR

exp

(
− (yk − θ(X(tk)))2

2R

)
,

(33)

where θ(·) is a non-linear function, with an importance distri-
bution of the form

dS(t) = bk dt+ dB(t). (34)

Fig. 1: Ranges of Ornstein–Uhlenbeck model parameters
where the condition (27) is met (the gray area) with R = 1
(left) and R = 1/10 (right). In both the figures the lower
right ”forbidden” part is the result of the initial condition de-
pendence and the upper left part depends on both p and the
variance R of the measurement noise.

The above kind of importance distribution typically arises
when we use an extended Kalman filter (EKF), unscented
Kalman filter (UKF), or a similar method to form the impor-
tance distribution [3].

By using the closed-form transition density for the SDE
in (33) [1, 19], it is easy to show that the ratio between the
SDE transition densities is bounded both in xk and xk−1 and
thus the particle filter converges regardless of the value of bk.
It is also easy to show that the Novikov conditions are also
satisfied due to boundedness of the drifts in both of the SDEs.

8. CONCLUSION AND DISCUSSION

In this article we have proved that the Girsanov theorem based
particle filter proposed in [1–3] converges in Lp sense pro-
vided that a moment condition is satisfied by the likelihood
ratio process and if it is bounded with respect to the step-wise
initial condition. It is worth noting that the results also imply
the almost sure convergence of the empirical filtering measure
due to a Borel–Cantelli argument (see, e.g., [15]).

Although we have required that the moments are bounded
for any xk−1, in fact they only need to be bounded given
Gk−1, which might open up chance to relax the initial con-
dition boundedness requirement. In this article we have also
completely ignored the discretization error caused by numer-
ical integration of the SDEs, which certainly affects conver-
gence. However, more detailed analysis of the effect of this
error is left as a future work.
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