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On Gaussian Optimal Smoothing of
Non-Linear State Space Models

Simo S̈arkkä, Member, IEEEand Jouni Hartikainen

Abstract— In this note we shall present a new Gaussian approx-
imation based framework for approximate optimal smoothing
of non-linear stochastic state space models. The approximation
framework can be used for efficiently solving non-linear fixed-
interval, fixed-point and fixed-lag optimal smoothing problems.
We shall also numerically compare accuracies of approximations,
which are based on Taylor series expansion, unscented transfor-
mation, central differences and Gauss-Hermite quadrature.

Index Terms— non-linear Rauch-Tung-Striebel smoothing,
Gaussian assumed density smoothing, non-linear optimal smooth-
ing, Bayesian smoothing

I. I NTRODUCTION

In this note we shall consider fixed-point, fixed-lag and
fixed-interval optimal smoothing ofnon-linear stochastic state
space modelsof the form

xk = f(xk−1) + qk−1

yk = h(xk) + rk,
(1)

where xk ∈ R
n is the state,yk ∈ R

m is the measurement
at time stepk, qk−1 ∼ N(0, Qk−1) is the Gaussian process
noise,rk ∼ N(0, Rk) is the Gaussian measurement noise,f(·)
is the dynamic model function andh(·) is the measurement
model function. The time stepsk run from0 to T and at time
step 0 there is no measurement, only the prior distribution
x0 ∼ N(m0, P0).

A. Gaussian Optimal Filtering

Gaussian optimal filtering or assumed density filtering
(ADF) with Gaussian assumption (see, e.g., [1]) is a well
known method, where the filtering distributions are assumed
to be approximately Gaussian. In the method, the formal
Bayesian filtering equations are then computed assuming that
the distributions are indeed Gaussian. The ADF framework is
similar to the classical non-linear filtering and smoothingfor-
malism (see, e.g., [2]–[4]) in the sense that both are based on
approximations of the first two moments of the distributions.
However, the ADF framework is a bit more general than the
classical formalism.

Based on the ADF method, in the article [5], Ito and
Xiong presented a generalized numerical integration based
framework for Gaussian filtering of state space models of the
form (1), and framework was further analyzed and extended
by Wu et al. in [6]. The framework is similar to the unscented
transformation based UKF filtering formalism of Julier et al.
[7], [8], but has been generalized to contain, for example,
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Gauss-Hermite quadrature and central differences based filters
aside with the UKF and EKF. It is also possible to use other
numerical integration methods instead of the mentioned, such
as Cubature rules [9] or Monte Carlo integration [10].

In ADF, the Gaussian approximation to the filtering distri-
bution is of the form

p(xk | y1:k) ≈ N(xk |mk|k, Pk|k), (2)

where N(xk |mk|k, Pk|k) denotes the multivariate Gaussian
probability density with meanmk|k and covariancePk|k.

The approximation is formed by first approximating the
prediction stepwith the following integrals for the mean and
covariance:

mk|k−1 =

∫

f(xk−1)N(xk−1 |mk−1|k−1, Pk−1|k−1) dxk−1

Pk|k−1 =

∫

[f(xk−1) − mk|k−1] [f(xk−1) − mk|k−1]
T

× N(xk−1 |mk−1|k−1, Pk−1|k−1) dxk−1 + Qk−1.

(3)

On theupdate stepwe first compute the measurement mean,
prediction covariance and cross-covariance by approximating
the integrals

ẑ =

∫

h(xk)N(xk |mk|k−1, Pk|k−1) dxk

Pzz =

∫

[h(xk) − ẑ] [h(xk) − ẑ]T

× N(xk |mk|k−1, Pk|k−1) dxk

Pxz =

∫

[xk − mk|k−1] [h(xk) − ẑ]T

× N(xk |mk|k−1, Pk|k−1) dxk.

(4)

The mean and covariance in the Gaussian approximation (2)
can be then computed as

Lk = Pxz (Rk + Pzz)
−1

mk|k = mk|k−1 + Lk [yk − ẑ]

Pk|k = Pk|k−1 − Lk PT
xz.

(5)

II. M AIN RESULTS

In this note, we shall generalize the unscented transforma-
tion based smoothing formalism presented by Särkkä in [11],
[12] in the same sense as Ito and Xiong, and Wu et al. [5], [6]
have generalized the formalism of Julier at al. [7]. In addition
to that we shall also show how the resulting methodology can
be used for approximating non-linear fixed-point and fixed-
lag smoothing solutions aside with the fixed-interval (Rauch-
Tung-Striebel) smoothing solution. In Section II-D we shall
generalize the results to models with non-additive processand
measurement noises.

In mathematical terms we shall form the following Gaussian
approximations to the smoothing solutions:

• Fixed-interval smoothing solution:

p(xk | y1:T ) ≈ N(xk |mk|T , Pk|T ),

where the interval lengthT is fixed andk = 1, . . . , T .
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• Fixed point smoothing solution:

p(xj | y1:k) ≈ N(xj |mj|k, Pn|k),

where the point indexj is fixed andk is increasing.
• Fixed lag smoothing solution:

p(xk−n | y1:k) ≈ N(xk−n |mk−n|k, Pk−n|k),

where the lag lengthn is fixed andk is increasing.

A. General Fixed-Interval Smoother Equations

First assume that the means and covariances of the approx-
imate filtering distributions

p(xk | y1:k) ≈ N(xk |mk|k, Pk|k),

for the model (1) have been computed by some Gaussian
approximation based filter falling into the class of approximate
filters presented in [5], [6]. Further assume that the smoothing
distribution of time stepk + 1 is approximately Gaussian

p(xk+1 | y1:T ) ≈ N(xk+1 |mk+1|T , Pk+1|T ).

Due to the Markov properties the state,xk is independent of
yk+1:T given xk+1, and thus we have (cf. [12]):

p(xk |xk+1, y1:T ) = p(xk |xk+1, y1:k).

By using theBayes’ rule the distribution ofxk given xk+1

andy1:T can be expressed as

p(xk |xk+1, y1:T ) = p(xk |xk+1, y1:k)

=
p(xk, xk+1 | y1:k)

p(xk+1 | y1:k)
.

(6)

That is, Gaussian approximation top(xk |xk+1, y1:T ) can be
formed as follows:

1) Form a Gaussian approximation to the joint distribution
p(xk, xk+1 | y1:k).

2) Compute Gaussian approximation to the distribution
p(xk |xk+1, y1:T ) by conditioning the joint distribution
above toxk+1 with the well known computation rules
of Gaussian distributions.

Here we shall use the ADF approach and form the approxi-
mation by matching the first two moments of the distribution
p(xk, xk+1 | y1:k). Note that because the distribution is inde-
pendent of the future measurementsyk+1:T , the approximation
depends only on the filtering distributions and dynamic model.

If we assume that the filtering distribution is Gaussian
p(xk | y1:k) = N(xk |mk|k, Pk|k), then the approximation can
be obtained as follows. First compute the Gaussian integrals

mk+1|k =

∫

f(xk)N(xk |mk|k, Pk|k) dxk

Pk+1|k =

∫

[f(xk) − mk+1|k] [f(xk) − mk+1|k]T

× N(xk |mk|k, Pk|k) dxk + Qk

Ck,k+1 =

∫

[xk − mk|k] [f(xk) − mk+1|k]T

× N(xk |mk|k, Pk|k) dxk.

(7)

Note that the termsmk+1|k and Pk+1|k are simply the pre-
dicted mean and covariance of the corresponding Gaussian
filter and the termsCk,k+1 could be easily computed and
stored during the filtering. The integrals above can be ap-
proximated using analogous numerical integration or analytical
approximation schemes as in the filtering case [5], [6], [9],
[10].

The Gaussian approximation to the joint distribution can be
then formed as:

p(xk, xk+1 | y1:k) ≈ N

((

mk|k

mk+1|k

)

,

(

Pk|k Ck,k+1

CT
k,k+1 Pk+1|k

))

.

(8)

The division of the distributions in the equation (6) is justthe
definition of conditioning onxk+1 and thus by the computa-
tion rules of Gaussian distributions we get

p(xk |xk+1, y1:T ) = p(xk |xk+1, y1:k)

= N(xk |m′, P ′),
(9)

where

m′ = mk|k + Ck,k+1 P−1
k+1|k(xk+1 − mk+1|k)

P ′ = Pk|k − Ck,k+1 P−1
k+1|k CT

k,k+1.
(10)

If we define an additional temporary variable, the smoother
gain, as

Gk = Ck,k+1 P−1
k+1|k (11)

then the equations can be written as:

m′ = mk|k + Gk (xk+1 − mk+1|k)

P ′ = Pk|k − Gk Pk+1|k GT
k .

(12)

The joint distribution ofxk andxk+1 given all the data is now

p(xk+1, xk | y1:T ) = p(xk |xk+1, y1:T ) p(xk+1 | y1:T )

= N

((

xk+1

xk

)

∣

∣

∣m
′′, P ′′

)

(13)

where

m′′ =

(

mk+1|T

mk|k + Gk (mk+1|T − mk+1|k)

)

P ′′ =

(

Pk+1|T Pk+1|T GT
k

Gk Pk+1|T Pk|k + Gk (Pk+1|T − Pk+1|k)GT
k

)

.

(14)

The marginal distribution ofxk is then

p(xk | y1:T ) = N(xk |mk|T , Pk|T ), (15)

where

mk|T = mk|k + Gk (mk+1|T − mk+1|k)

Pk|T = Pk|k + Gk (Pk+1|T − Pk+1|k)GT
k .

(16)

Thus thegeneral fixed-interval smoothercan be implemented
by starting from the filtering solutionmT |T , PT |T and by
performing the following computations on each time step
k = T − 1, T − 2, . . . , 0:

1) Prediction: Compute the predicted meanmk+1|k, pre-
dicted covariancePk+1|k and cross-covarianceCk,k+1

from the filtering results using the equations (7).
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2) Smoothing: Compute the smoothing gainGk, the
smoother meanmk|T and the covariancePk|T from the
equations

Gk = Ck,k+1 P−1
k+1|k

mk|T = mk|k + Gk (mk+1|T − mk+1|k)

Pk|T = Pk|k + Gk (Pk+1|T − Pk+1|k)GT
k .

(17)

B. General Fixed-Point Smoother Equations

The general fixed-interval smoother described in the previ-
ous section has the property that given the gain sequence, we
only need linear operations for performing the smoothing, and
in this sense, the smoothing is a completelylinear operation.
The only non-linear operations in the smoother are in the
approximations of the integrals (7). However, these operations
are performed to the filtering results and thus we can compute
the smoothing gain sequenceGk from the filtering results
in causal manner. Because of these properties we may now
derive a fixed-point smoother using similar methods as have
been used for deriving the linear fixed-point smoother from
the linear Rauch-Tung-Striebel smoother in [13].

The result is that thegeneral fixed-point smootheralgo-
rithm for smoothing the time pointj can be implemented
by performing the following operations on each time step
k = 1, 2, 3, . . .:

1) Gain computation: Compute the predicted mean
mk|k−1, predicted covariancePk|k−1 and cross-
covarianceCk−1,k from the filtering results using the
equations (7). Then compute the gain from the equation

Gk−1 = Ck−1,k P−1
k|k−1. (18)

2) Fixed-point smoothing:

a) If k < j, just store the filtering result.
b) If k = j, setBj|j = I. The fixed-point smoothed

mean and covariance on stepj are equal to the
filtered mean and covariancemj|j andPj|j .

c) If k > j, compute the smoothing gain and the
fixed-point smoother mean and covariance:

Bj|k = Bj|k−1Gk−1

mj|k = mj|k−1 + Bj|k[mk|k − mk|k−1]

Pj|k = Pj|k−1 + Bj|k[Pk|k − Pk|k−1]B
T
j|k.

(19)

Because only constant number of computations is needed on
each time step, the algorithm can be easily implemented in
real time.

C. General Fixed-Lag Smoother Equations

It is also possible to derive a general fixed-lag smoother by
using a similar procedure as in the previous section. However,
this approach will lead to a numerically unstable algorithmas
will be seen shortly. Following similar procedure as in [13],

we arrive in the following equations:

mk−n|k = mk−n|k−n−1

+ G−1
k−n−1[mk−n−1|k−1 − mk−n−1|k−n−1]

+ Bk−n|k[mk|k − mk|k−1]

Pk−n|k = Pk−n|k−n−1

+ G−1
k−n−1[Pk−n−1|k−1 − Pk−n−1|k−n−1]G

−T
k−n−1

+ Bk−n|k[Pk|k − Pk|k−1]B
T
k−n|k.

(20)

The equations above can be,in principle, used for recursively
computing the fixed-lag smoothing solution. The number of
computations does not depend on the lag length. This solution
can be seen to be of the same form as the fixed-lag smoother
given in [4], [13], [14]. Unfortunately, it has been shown [15]
that this form of smoother isnumerically unstableand thus
not usable in practice.

In [16], [17] stable algorithms for optimal fixed-lag smooth-
ing are derived by augmenting then lagged states to a Kalman
filter. This approach ensures the stability of the algorithm.
Using certain simplifications it is possible to reduce the
computations, and this is also possible when certain types
extended Kalman filters are used [16], [17]. Unfortunately,
such simplifications cannot be done in more general case and,
for example, when the unscented transformation [7], [8] or a
quadrature rule [5] is used, the required amount of computa-
tions becomes high, because the Cholesky factorization of the
whole joint covariance of then lagged states would be needed
in the computations.

Another possibility, which is employed here, is to take
advantage of the fact that Rauch-Tung-Striebel smoother
equations are numerically stable and can be used for fixed-
lag smoothing. The fixed-lag smoothing can be efficiently
implemented by taking into account that the gain sequence
needs to be evaluated only once, and the same gains can be
used in different smoothers operating on different intervals.
Thus thegeneral fixed-lag smoothercan be implemented by
performing the following on each time stepk = 1, 2, 3, . . .:

1) Gain computation:During the Gaussian filter prediction
step compute and store the predicted meanmk|k−1, pre-
dicted covariancePk|k−1 and cross-covarianceCk−1,k

defined in equations (7). Also compute and store the
smoothing gain

Gk−1 = Ck−1,k P−1
k|k−1. (21)

2) Fixed-lag smoothing:Using the stored gain sequence,
compute the smoothing solutions for stepsj = k −
n, . . . , k using the following backward recursion, start-
ing from the filtering solution on stepj = k:

mj|k = mj|j + Gj

[

mj+1|k − mj+1|j

]

Pj|k = Pj|j + Gj

[

Pj+1|k − Pj+1|j

]

GT
j .

(22)

The required number of computations per time step grows
linearly with the length of lag. Thus the computational re-
quirements are comparable to algorithms presented in [16],
[17]. The algorithm defined in equations (20) would be com-
putationally more efficient, but as already stated, it wouldbe
numerically unstable.



PREPRINT 4

D. Non-Additive Noise Models

The idea of the assumed Gaussian approximation and mo-
ment matching can also be generalized to more general non-
additive state space models of the form

xk = f(xk−1, qk−1)

yk = h(xk, rk),
(23)

whereqk−1 and rk are Gaussian. The integrals in equations
(7) should be then replaced with the more general expressions

mk+1|k =

∫

f(xk, qk)N(xk |mk|k, Pk|k)

× N(qk | 0, Qk) dxk dqk

Pk+1|k =

∫

[f(xk, qk) − mk+1|k] [f(xk, qk) − mk+1|k]T

× N(xk |mk|k, Pk|k)N(qk | 0, Qk) dxk dqk

Ck,k+1 =

∫

[xk − mk|k] [f(xk, qk) − mk+1|k]T

× N(xk |mk|k, Pk|k)N(qk | 0, Qk) dxk dqk.

(24)

Note that in the case of unscented transformation this approach
is equivalent to the augmentation approach commonly used
in unscented Kalman filtering [8], [18], [19]. The approach
was also used in the unscented Rauch-Tung-Striebel smoother
presented in [12]. The distribution of random variableqk could
also well be non-Gaussian and the only change would be to
replace the Gaussian distributionsN(qk | 0, Qk) with the non-
Gaussian ones.

III. S IMULATION

A. Tracking of Maneuvering Target

As a simulation example we consider the problem of track-
ing a target in two dimensional space executing a maneuvering
turn with unknown and time-varying turn rate. This is very
typical setup in target tracking applications, and is useful for
testing non-linear filters and smoothers since the dynamicsare
non-linear due to the unknown turn rate. Recently, very similar
simulation setup was used in [9] for assessing the Cubature
Kalman filter.

The dynamic model of the coordinated turn model [20] is

xk =















1 sin(ω∆t)
ω

0 −
(

1−cos(ω∆t)
ω

)

0

0 cos(ω∆t) 0 − sin(ω∆t) 0

0 1−cos(ω∆t)
ω

1 sin(ω∆t)
ω

0
0 sin(ω∆t) 0 cos(ω∆t) 0
0 0 0 0 1















xk−1+qk−1,

(25)
where the state of the target isx = (x1, ẋ1, x2, ẋ2, ω), and
x1, x2 are the coordinates anḋx1, ẋ2 are the velocities in two
dimensional space. The process noise parameters used in the
simulation were the same as in [9].

In the simulation setup we have four sensors measuring the
anglesθ between the target and the sensors. The non-linear
measurement model for sensori can be written as

θi
k = arctan

(

yk − si
y

xk − si
x

)

+ ri
k, (26)

TABLE I

TRACKING OF MANEUVERING TARGET: RMSE VALUES OF POSITION,

VELOCITY AND TURN RATE ESTIMATES FOR THE TESTED FILTERS AND

SMOOTHERS OVER1000SIMULATIONS.

Filter RMSE(pos) RMSE(vel) RMSE(ω)
EKF 264.6 248.2 0.1184
UKF 85.7 74.9 0.0375

CDKF 84.1 72.9 0.0374
GHKF 82.3 70.1 0.0374

Smoother RMSE(pos) RMSE(vel) RMSE(ω)
ERTS 208.4 201.6 0.1132
URTS 60.8 35.9 0.0152

CDRTS 58.7 34.1 0.0148
GHRTS 56.3 32.1 0.0145

where (si
x, si

y) is the position of the sensori in two dimen-
sions, andri

k ∼ N(0, σ2
θ) is the measurement noise. The

measurement noise in the angular measurement was assumed
to beσθ =

√
5 mrad. The target trajectory and measurements

were simulated 1000 times for 100 time steps by drawing
the initial state randomly from the prior on each simulation
run. By using the simulated trajectories and measurements we
assessed the performance of following filters and smoothers:

• EKF & ERTS: extended Kalman filter and RTS smoother.
• UKF & URTS: unscented Kalman filter and RTS

smoother with transformation parametersα = 1, β = 0
andκ = 3 − n.

• CDKF & CDRTS: Central difference Kalman filter and
RTS smoother with step sizehcd =

√
3.

• GHKF & GHRTS: Gauss-Hermite Kalman filter and RTS
smoother withm = 3 quadrature points.

Table I lists the RMSE values for the tested filters and
smoothers, which shows that the errors of UKF, CDKF and
GHKF are quite similar, but GHKF gives slightly smaller error
than the other filters. The EKF errors are a couple of times
higher than of the other methods. The effect of smoothing is
similar with all the methods, that is, the smoothing simply
reduces the estimation error, but the ordering of the methods
stays the same.

IV. CONCLUSION

In this note, we have presented a new framework for
approximate Gaussian optimal smoothing of non-linear state
space models. The framework is based on generalizing the
unscented transformation based smoothing formalism pre-
sented by S̈arkkä in [11], [12] in the same sense as Ito
and Xiong, and Wu et al. [5], [6] generalized the filtering
formalism of Julier et al. [7]. We have also shown how the
resulting methodology can be used for approximating non-
linear fixed-point and fixed-lag smoothing solutions aside with
the fixed-interval (Rauch-Tung-Striebel) smoothing solution.
A simulated example demonstrating the performance of the
proposed smoothers has also been presented.
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