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On Gaussian Optimal Smoothing of Gauss-Hermite quadrature and central differences basexs fil
Non-Linear State Space Models aside with the UKF and EKF. It is also possible to use other
numerical integration methods instead of the mentionech su
Simo Sirkka, Member, IEEEand Jouni Hartikainen as Cubature rules [9] or Monte Carlo integration [10].
In ADF, the Gaussian approximation to the filtering distri-

: _ bution is of the form
Abstract— In this note we shall present a new Gaussian approx-
imation _based framevyork for approximate optimal smoo_thlng (k| yin) ~ N(zy |mk\k7Pk|k)7 2)
of non-linear stochastic state space models. The approximation

framework can be used for efficiently solving non-linear fixed- where N(z;, | My, Pyp) denotes the multivariate Gaussian

interval, fixed-point and fixed-lag optimal s_moothlng pr_oble_ms. probability density with meam, and covariancePMk.
We shall also numerically compare accuracies of approximations,

which are based on Taylor series expansion, unscented transfor- 1€ @pproximation is formed by first approximating the

mation, central differences and Gauss-Hermite quadrature. prediction stepwith the following integrals for the mean and

Index Terms—non-linear Rauch-Tung-Striebel smoothing, covariance.
Gaussian assumed density smoothing, non-linear optimal smooth-
ing, Bayesian smoothing Mglk—1 = f(@r—1) N(zg—1 |mk71|k71aPkfl\kfl) dry_q

Pyjr—1 = /[f(xk—l) — M) [f (Te—1) — Mg—1]"
I. INTRODUCTION

In this note we shall consider fixed-point, fixed-lag and X N(@pe—1 [mg1k—1s Projp—1) dTp—1 + Qr—1.
fixed-interval optimal smoothing afon-linear stochastic state ®)
space modelsf the form On theupdate stepwe first compute the measurement mean,

prediction covariance and cross-covariance by approxigat

T = Ll— + —
b= JTo1) g (1) the integrals

yr = h(xg) + i,

wherez; € R" is the statey, € R™ is the measurement Z= /h(gck)N(:Ek|mk‘k._1,Pk.|k_1)dxk
at time stepk, gx—1 ~ N(0,Qr_1) is the Gaussian process
noise,r; ~ N(0, Ry) is the Gaussian measurement nojée) P, = /[h(xk) — 2] [M(z) — 2T
is the dynamic model function ankl(-) is the measurement (4)
model function. The time stepgsrun from0 to 7 and at time X N(xp [ mijp—1, Prje—1) da,
step 0 there is no measurement, only the prior distribution P, — /[a?k — o] () — 27
o ~ N(mo,Po).
X N(zp | mgjk—1, Prjk—1) dzg.
A. Gaussian Optimal Filtering The mean and covariance in the Gaussian approximation (2)
Gaussian optimal filtering or assumed density filteringan be then computed as
(ADF) with Gaussian assumption (see, e.g., [1]) is a well 1
known method, where the filtering distributions are assumed Ly = Poz (Ric + Pz2)
to be approximately Gaussian. In the method, the formal Mk = Mgp—1 + L [yr — 2] )
Bayesian filtering equations are then computed assumirig tha Pyjx = Pyje—1 — Li, PT.
the distributions are indeed Gaussian. The ADF framework is
similar to the classical non-linear filtering and smoothfog II. MAIN RESULTS

malism (see, e.g., [2]-[4]) in the sense that both are based o
approximations of the first two moments of the distributions,

However, the ADF framework is a bit more general than t ; .
classical formalism. 12] in the same sense as Ito and Xiong, and Wu et al. [5], [6]
lto andi@ve generalized the formalism of Julier at al. [7]. In aiddit

Based on the ADF method, in the article [5], h hall al how h h i hodol
Xiong presented a generalized numerical integration bag@qhat we shall also show how the resulting methodology can

framework for Gaussian filtering of state space models of thg used fo_r approx_imating_ non-_linear fi_xed-point and fixed-
form (1), and framework was further analyzed and extendg?)g smoqthmg solutlon.s aside W'th the f|xeq-|nterval (Rauc
by Wu et al. in [6]. The framework is similar to the unscentearung'smebel) smoothing solution. In Section II-D we shal

transformation based UKF filtering formalism of Julier et algenerallze the results to models with non-additive proaesss

[7], [8], but has been generalized to contain, for examplg]easurement NOISES. _ )
In mathematical terms we shall form the following Gaussian
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In this note, we shall generalize the unscented transforma-
n based smoothing formalism presented lByk& in [11],
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« Fixed point smoothing solution Note that the termsn;, ), and Py, are simply the pre-
dicted mean and covariance of the corresponding Gaussian
p(xj lyie) = N(wj [my, Pojg), filter and the termsCj 1 could be easily computed and
where the point indey is fixed andk is increasing. storgd during .the filtering. The in.tegrfals abo_ve can be ap-
« Fixed lag smoothing solution proximated using analogous numerical integration or ditally
approximation schemes as in the filtering case [5], [6], [9],
P(Tr—n |y1:k) = N(@h—n | Mp—njt, Po—n|k)s [10].

L L . The Gaussian approximation to the joint distribution can be
where the lag length is fixed andk is increasing. then formed as: PP J

. . ~ M|k Dk Ck,k+1))
- Tk, T k) ~N R .
A. General Fixed-Interval Smoother Equations P(Th; Tt [ Y1k ((mk M) (Cak . Prsi

First assume that the means and covariances of the approx-

imate filtering distributions The division of the distributions in the equation (6) is jtis¢

p(ar | yx) = N(zx | 1k, ), definition of conditioning onz;; and thus by the computa-
' tion rules of Gaussian distributions we get
for the model (1) have been computed by some Gaussian

approximation based filter falling into the class of appnoaie P(@k | Thsr, yrr) = (2| x’“j”’ Z//l:k) )
filters presented in [5], [6]. Further assume that the sningth = N(zy |m/, P'),
distribution of time stepk + 1 is approximately Gaussian  where
-1
P(Trs1 | yrr) = N(Zpr1 | mpga 7, Pregryr)- m’ = mpy; + Ch k1 Pk+1|k(xk+1 — Miy1f) (10)
/ —1 T
Due to the Markov properties the statg, is independent of P = Py — Cr i Pk-+1|k Cle1-
Yr+1:7 givenzyy1, and thus we have (cf. [12]): If we define an additional temporary variable, the smoother
. gain, as
(x| Trp1, y1:7) = Tk | Thg1, Y1ek)-
_ —1
By using theBayes' rulethe distribution ofx; given xy. Gr = Crpr1r Py a1
andy,.r can be expressed as then the equations can be written as:
p(@k | Tht1,y1.1) = p(@k | Tht1, y1k) m' = My + Gr (Thg1 — Mpy1|k) (12)
_ P(@k, Thia \ym)_ (6) P' = Py — Gy, Poyap GF.

P( Tkt | Y1)

The joint distribution ofz;, andz,11 given all the data is now
That is, Gaussian approximation g6z, | 2x+1,y1.7) can be

formed as follows: P(Thy1, Tk \Z/LT) = p(ok | Trq1, y1:T)p(33k+1 |y1:T)
1) Form a Gaussian approximation to the joint distribution =N ((zkﬂ) ’m”7p”) (13)
P(Tks Tht1 | Y1ok)- o

2) Compute Gaussian approximation to the distributiowhere
p(zk | zr41, y1.7) by conditioning the joint distribution m
above toxj; with the well known computation rules m' = (m +G (mk“‘T —m )>
of Gaussian distributions. ;‘k R ;H'k aT

Here we shall use the ADF approach and form the approxi-P’ = ( T BT Pk T) :
mation by matching the first tV\E)(E) moments of the distriEStion GrPesar B+ Gi (Peryr = Pesaie) Gy (14)
p(zk, Tr+1 | y1:1). Note that because the distribution is inde-
pendent of the future measurements:.r, the approximation The marginal distribution ok, is then
depends only on the filtering distributions and dynamic nhode

If we assume that the filtering distribution is Gaussian
p(@k | y1:6) = N(zg | myr, Pejx), then the approximation canwhere
be obtained as follows. First compute the Gaussian integral

p(xk |y1.7) = N(@k | myr, Pryr), (15)

My = Mgk + G (Mg — Micy1r)
Pyir = Py + G (Pogrjr — Prgan) Gi -
Thus thegeneral fixed-interval smoothean be implemented

(16)
Mpp1|k = /f(xk)N(fEk: | Mk, Prjie) vk

Py = /[f(xk) — miegrii] [f (@) — Mgl by starting from the filtering solutionnzr, Prir and by
@ performing the following computations on each time step
x N(zg | M)k, Prjx) dog + Qk k=T-1,T-2,...,0:
C _ L -~ T 1) Prediction: Compute the predicted mean,,,;, pre-
Pkt /[xk el [F (@) = s dicted covarianceP, ., and cross-covarianc€', 1

x N(zg | M)k, Prjx) dg. from the filtering results using the equations (7).
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2) Smoothing: Compute the smoothing gairG;, the we arrive in the following equations:
smoother meam,r and the covariancé’,r from the

. Mg—n|k = Mk—n|k—n—1
equations

—1
+ G Mb—n— k=1 — Mg—n—1|k—n—1)

Gr = Cg k+1 Pk_l + Bk—n\k[mmk - mklkfl}

+1]k
Mg = M|k + G (mk+1‘T — mk+1|k) (17) Pk-—n\k = Pk'—n\k—n—l
- -T
P’f\T = Pk|k + Gg (Pk+1|T - Pk+1|k) Gz + Gk_ln_l[Pk—n—Hk—l - Pk—n—l\k—n—l]Gk_n_l
+ Bi—njk[Pujk — Prjp—1]Bf_ 1.
(20)

The equations above can be,principle, used for recursively
The general fixed-interval smoother described in the prewiomputing the fixed-lag smoothing solution. The number of
ous section has the property that given the gain sequence,a@gputations does not depend on the lag length. This saolutio
only need linear operations for performing the smoothimgl acan be seen to be of the same form as the fixed-lag smoother
in this sense, the smoothing is a completéhear operation given in [4], [13], [14]. Unfortunately, it has been showrb]1
The only non-linear operations in the smoother are in thbat this form of smoother isumerically unstableand thus
approximations of the integrals (7). However, these ofmrat not usable in practice.
are performed to the filtering results and thus we can computdn [16], [17] stable algorithms for optimal fixed-lag smoeth
the smoothing gain sequencg, from the filtering results ing are derived by augmenting thdagged states to a Kalman
in causal manner. Because of these properties we may nigter. This approach ensures the stability of the algorithm
derive a fixed-point smoother using similar methods as hausing certain simplifications it is possible to reduce the
been used for deriving the linear fixed-point smoother froepmputations, and this is also possible when certain types
the linear Rauch-Tung-Striebel smoother in [13]. extended Kalman filters are used [16], [17]. Unfortunately,
The result is that thegeneral fixed-point smoothaalgo- such simplifications cannot be done in more general case and,
rithm for smoothing the time poin§ can be implemented for example, when the unscented transformation [7], [8] or a

by performing the following operations on each time stefuadrature rule [5] is used, the required amount of computa-
k=1,2,3,... tions becomes high, because the Cholesky factorizatioheof t

1) Gain computfation: Comp.ute the predicted mean}’xhtﬂ: gm;&\gg?‘z_ce of the lagged states would be needed
my-1, Predicted covariance Py, and Cross- = npqior possibility, which is employed here, is to take
covarllanceCk,Lk from the filtering lresults using thg advantage of the fact that Rauch-Tung-Striebel smoother
equations (7). Then compute the gain from the equ""t'%riﬁuations are numerically stable and can be used for fixed-

lag smoothing. The fixed-lag smoothing can be efficiently

implemented by taking into account that the gain sequence

) . . needs to be evaluated only once, and the same gains can be

2) Fixed-point smoothing: used in different smoothers operating on different intkstva

a) If k < j, just store the filtering result. Thus thegeneral fixed-lag smootharan be implemented by
b) If k= j, setB;; = I. The fixed-point smoothed performing the following on each time stdp=1,2,3,...:
mean and covariance on stgpare equal to the 1) Gain computationDuring the Gaussian filter prediction

B. General Fixed-Point Smoother Equations

Gr-1=Cr_1 P,;‘,i,l- (18)

filtered mean and covarianee;; and P; ;. step compute and store the predicted megn,_1, pre-
¢) If k > j, compute the smoothing gain and the  gicted covarianceP,;_; and cross-covarianc€y_ x
fixed-point smoother mean and covariance: defined in equations (7). Also compute and store the
smoothing gain
Bike = BilkrGir Gor = Ch1 s P 1)
Mk = Mjjk—1 + Bjje[mee — mee—1]  (19) _ k__l B _k_l’k klk—1" _
Pjjk = Pjji_1 + Bjji[Paj — Pk\kq]B}TW 2) Fixed-lag smoothingUsing the stored gain sequence,

compute the smoothing solutions for steps= k —

Because only constant number of computations is needed on 7 -- -k using the following backward recursion, start-
each time step, the algorithm can be easily implemented in  ing from the filtering solution on step = £:
real time. mjik = mj; + Gy [mj+1|k- - mj+1|j}
Pji, = Pjjj + G [Py — Pisays] GF-

The required number of computations per time step grows
linearly with the length of lag. Thus the computational re-

It is also possible to derive a general fixed-lag smoother lgypirements are comparable to algorithms presented in [16],
using a similar procedure as in the previous section. Howevfl 7]. The algorithm defined in equations (20) would be com-
this approach will lead to a numerically unstable algoritasn putationally more efficient, but as already stated, it woodd
will be seen shortly. Following similar procedure as in [13]Jnumerically unstable.

(22)

C. General Fixed-Lag Smoother Equations
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TABLE |

D. Non-Additive Noise Models _
) ) ) ) TRACKING OF MANEUVERING TARGET. RMSE VALUES OF POSITION
The idea of the assumed Gaussian approximation and Mg oc Ty AND TURN RATE ESTIMATES FOR THE TESTED FILTERS AND

ment matching can also be generalized to more general non- SMOOTHERS OVERL000SIMULATIONS.

additive state space models of the form

Filter RMSE(pos) | RMSE(vel) | RMSE(w)

o = f(Tr_1,qr-1) 23 EKF 264.6 248.2 0.1134

— h(zk,re) (23) UKF 85.7 74.9 0.0375

Yk ko Tk ) CDKF 84.1 72.9 0.0374

where g,_, andr;, are Gaussian. The integrals in equations GHKF 82.3 70.1 0.0374
(7) should be then replaced with the more general expression Smoother | RMSE(pos) | RMSE(vel) | RMSE(w)
ERTS 208.4 201.6 0.1132

URTS 60.8 35.9 0.0152

Mpg1jk = /f(xk,qzc)N(xk | M)k Pr) CDRTS 58.7 34.1 0.0148
GHRTS 56.3 32.1 0.0145

x N(qi | 0, Qr) d. dp,
Py = /[f(Ik,Qk) — M1 i) [f (@, @) — mpyap]”
x N(zr | M)k, Pre) N(gr |0, Qr) dy, dgy,
Crky1 = /[wk — mypp] [ (@ i) — mga i) "
x N(@p, | M, Pejr) N | 0, Q) dzy dgy,.

where (s’ s!) is the position of the sensarin two dimen-
sions, andr!, ~ N(0,0%) is the measurement noise. The
measurement noise in the angular measurement was assumed
to besy = /5 mrad. The target trajectory and measurements
were simulated 1000 times for 100 time steps by drawing

(24) the initial state randomly from the prior on each simulation

Note that in the case of unscented transformation this agpro "UN- By using the simulated trajectories and measuremeats w

is equivalent to the augmentation approach commonly usaspessed the performance of following filters and smoathers

in unscented Kalman filtering [8], [18], [19]. The approach  EKF & ERTS: extended Kalman filter and RTS smoother.

was also used in the unscented Rauch-Tung-Striebel smroothe UKF & URTS: unscented Kalman filter and RTS

presented in [12]. The distribution of random varialecould smoother with transformation parameters= 1, 3 = 0

also well be non-Gaussian and the only change would be to ands =3 —n.

replace the Gaussian distributioNgq;, | 0, Q) with the non- o CDKF & CDRTS: Central difference Kalman filter and

Gaussian ones. RTS smoother with step sizZe.q = /3.

o GHKF & GHRTS: Gauss-Hermite Kalman filter and RTS
smoother withm = 3 quadrature points.

IIl. SIMULATION
Table | lists the RMSE values for the tested filters and

A. Tracking of Maneuvering Target
. . . moothers, which shows that the errors of UKF, CDKF and
As a simulation example we consider the problem of track:

. . ; : ; HKF are quite similar, but GHKF gives slightly smaller arro
ing a target in two dimensional space executing a Manewerian the other filters. The EKF errors are a couple of times
turn with unknown and time-varying turn rate. This is ver ' P

typical setup in target tracking applications, and is ulstt ¥1|gher than of the other methods. The effect of smoothing is

testing non-linear filters and smoothers since the dynaaries similar with all _the _methods, that is, the s_moothlng simply
. .. reduces the estimation error, but the ordering of the method
non-linear due to the unknown turn rate. Recently, verylgimi
. . : . stays the same.
simulation setup was used in [9] for assessing the Cubature
Kalman filter.

The dynamic model of the coordinated turn model [20] is IV. CONCLUSION

| smwAn o (17cos(wAt)> 0 In this note, we have presented a new framework for
w w approximate Gaussian optimal smoothing of non-linearestat
0 cos(wAt) 0  —sin(wAt) 0 space models. The framework is based on generalizing the
Tk = izcoswdt) sin(wli) 0 | “»=1T4k~1, unscented transformation based smoothing formalism pre-
0 sin(wAt) 0 cos(wAt) 0 sented by &rkka in [11], [12] in the same sense as Ito
0 0 0 0 1 and Xiong, and Wu et al. [5], [6] generalized the filtering

(25) formalism of Julier et al. [7]. We have also shown how the
where the state of the target is= (z1,#1,72,42,w), and resulting methodology can be used for approximating non-
r1, 7o are the coordinates and, i, are the velocities in two |inear fixed-point and fixed-lag smoothing solutions asidkaw
dimensional space. The process noise parameters used inflgefixed-interval (Rauch-Tung-Striebel) smoothing sohut
simulation were the same as in [9]. A simulated example demonstrating the performance of the

In the simulation setup we have four sensors measuring {h@posed smoothers has also been presented.
anglesé between the target and the sensors. The non-linear

measurement model for sensocan be written as

0! — arctan <y’“ — Sy) ey (26)
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