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Abstract—In this paper the issue of filtering and smoothing in
continuous discrete time is studied when the state variable evolves
in some submanifold of Euclidean space, which may not have the
usual Lebesgue measure. Formal expressions for prediction and
smoothing problems are reviewed, which agree with the classical
results except that the formal adjoint of the generator is different
in general. These results are used to generalise the projection
approach to filtering and smoothing to the case when the state
variable evolves in some submanifold that lacks a Lebesgue
measure. The approach is used to develop projection filters and
smoothers based on the von Mises–Fisher distribution, which
are shown to be outperform Gaussian estimators both in terms
of estimation accuracy and computational speed in simulation
experiments involving the tracking of a gravity vector.

Index Terms—Continuous Discrete Filtering and Smoothing,
Directional Statistics, Nonlinear Filtering and Smoothing, Rie-
mann manifolds.

I. INTRODUCTION

In this paper we consider the problem of inference in state-
space models of the following form:

dX(t) = a(t,X(t)) dt+ σ(t,X(t)) dW (t), (1a)
Y (tn) | X(tn) ∼ m(tn, y | X(tn)), (1b)

where a : [0, T ]×Rd → Rd is the drift, σ : [0, T ]×Rd → Rd×q
is the diffusion coefficient, W is a standard Wiener process
on Rq , and X is the state variable, which is measured by
{Y (tn)}Nn=1 with measurement densities m(tn, y | X(tn)).
The likelihood at time tn is denoted by L(tn, x) and the
process noise covariance rate is denoted by

Q(t, x) = σ(t, x)σT(t, x). (2)

The problem of filtering and smoothing for the model in Eq.
(1) has been well studied when the filtering and smoothing
distributions on X(t) admit densities with respect to the
Lebesgue measure on Rd [1], [2]. Implementation of the exact
filtering and smoothing relations are in general intractable,
with the notable exception of affine Gaussian systems [3]–
[5]. Consequently approaches to approximate inference have
been developed such as assumed density [6] and the projection
approach [7], [8].

However, the continuous-discrete time inference problem is
not as well studied for the case when the state X is only
supported on some submanifold X of Rd, the assumed density

approach has been taken for matrix Fisher distributions on the
special orthogonal group SO(3) [9] and the von Mises–Fisher
distribution on the unit sphere S2 in R3 [10]. The discrete time
problem has been given attention in, for example, [11]–[16].

The contribution of this paper is to generalise the projection
approach to filtering [7] and smoothing [8] to the case in which
the state variable evolves in a submanifold X of Euclidean
space and for which the filtering and smoothing distributions
admits densities with respect to some measure λ on X. This
gives the same approximation formulae in terms of generators
as in the L2(Rd) case, demonstrating that the Lebesgue
density assumption of previous contributions is unnecessary.
Furthermore, von Mises–Fisher-based filters and smoothers are
developed for gravity vector tracking, which are shown to
both be accurate and computationally fast in comparison to
Gaussian estimators.

The rest of this paper is organised as follows, the formal
solutions to the filtering and smoothing problems are derived in
Section II, in Section III the formal solutions are approximated
by the projection approach. The methodology is applied to
reference vector tracking in Section IV and conclusions are
given in Section V.

II. FORMAL SOLUTION

In this section the formal solutions to the continuous-
discrete filtering and smoothing problems are reviewed, with
proofs included for completeness.

In the following, the set of measurements up to time t is
denoted by Y (t) = {y(tn) : tn ≤ t}, the filtering density
is denoted by pF (t, x) = p(t, x | Y (t)), and the smoothing
density is denoted by pS(t, x) = p(t, x | Y (T )). Recall that
the generator of the Itô process X is given by [17]

G[φ] =
∑
i

ai∂iφ+
1

2

∑
i,j

Qi,j∂
2
i,jφ, (3)

and its adjoint taken in L2(X, λ) is denoted by Ga. The
present development, crucially, does not require the explicit
expression for Ga but it is used in the formal solution formulae.
The Fokker–Planck equation on X with respect to λ is given
in Proposition 1.



Proposition 1. The probability density for X(t) evolves ac-
cording to

∂tp = Ga[p], (4)

where Ga is the adjoint of G taken in L2(X, λ).

Proof. Itô’s formula implies that for arbitrary φ ∈ C2(X)

∂tE[φ(X(t))] =

∫
X
φ(x)∂tp(t, x) dλ(x) = E[G[φ](X(t))]

=

∫
X
G[φ](x)p(t, x) dλ(x)

=

∫
X
φ(x)Ga[p](t, x) dλ(x),

but φ is arbitrary, therefore ∂tp = Ga[p] as claimed.

From the fact that X is a Markov process and Proposition 1
it follows that the filtering distribution, between measurements,
evolves as

∂tpF = Ga[pF ]. (5)

The update is given by Bayes’ rule

pF (tn, x) =
L(tn, x)pF (t−n , x)∫

X L(tn, x)pF (t−n , x) dλ(x)
. (6)

The following Theorem was proved in [1] under the as-
sumption that the filtering and smoothing distributions of X
have densities with respect to the Lebesgue measure.

Theorem 1. The smoothing density satisfies

∂tpS =
pS
pF
Ga[pF ]− pFG

[ pS
pF

]
. (7)

The statement still holds when X(t) evolves in some
submanifold X of Rd, with time marginal distributions ab-
solutely continuous with respect to some measure λ on X.
The argument is the same as in [1], mutatis mutandis, and it
is given in the following proof.

Proof. By the Markov property we have

pS(t, x) =

∫
X
pS(t, x | X(t+ dt) = z)pS(t+ dt, z) dλ(z)

=

∫
X
pF (t, x | X(t+ dt) = z,dY (t))pS(t+ dt, z) dλ(z)

=

∫
X
pF (t, x | X(t+ dt) = z,dY (t))

×
(
pS(t, z) + ∂tpS(t, z) dt

)
dλ(z) + o(dt).

The first term in this integral can be evaluated using Bayes’
rule

pF (t, x | X(t+ dt) = z,dY (t))

=
p(t+ dt, z | X(t) = x, dY (t))pF (t, x | dY (t))

pF (t+ dt, z)

=
p(t+ dt, z | X(t) = x)pF (t, x)

pF (t+ dt, z)

=

(
δ(z − x) + Ga[δ(z − x)] dt

)
pF (t, x)

pF (t+ dt, z)
+ o(dt),

(8)

where the second equality follows from the fact that dY (t) =
{y(tn) : t ≤ tn ≤ t + dt} is empty for sufficiently small dt.
The last equality follows from Eq. (4). Inserting this expression
for the filtering density into the former expression for the
smoothing density yields

pS(t, x) =
pF (t, x)

pF (t+ dt, x)

(
pS(t, x) + ∂tpS(t, x) dt

)
+ pF (t, x)

∫
X
Ga[δ(z − x)]

pS(t, z)

pF (t+ dt, z)
dtdλ(z) + o(dt)

= pS(t, x) + ∂tpS(t, x) dt− pS(t, x)

pF (t, x)
Ga[pF ](t, x) dt

+ G
[ pS
pF

]
(t, x) dt+ o(dt),

and the conclusion follows.

III. THE PROJECTION METHOD

In the following the differential geometric setup of [7] is
reviewed. Consider the metric space of square root densities
P1/2(X) ⊂ L2(X, λ), for which the Hellinger metric is
induced by the L2(X, λ) norm. Furthermore, consider an
m-dimensional manifold in P1/2(X) with one global and
smoothing coordinate chart

P1/2
Θ = {√pθ, θ ∈ Θ ⊂ Rm}. (9)

The tangent space at
√
pθ is a closed subspace of L2(X, λ),

which is given by

T√pθP
1/2
Θ = span{∂θ1

√
pθ, . . . ∂

θ
m

√
pθ} (10)

and the inner product between basis elements of the tangent
space is given by

〈∂θi
√
pθ, ∂

θ
j

√
pθ〉 = g(θ)/4, (11)

where g(θ) is the Fisher information matrix. The projection
Πθ : L2(X, λ) 7→ T√pθP

1/2
Θ is given by

Πθv = 4
∑
i,j

g−1
i,j (θ)〈v, ∂θj

√
pθ〉∂θi

√
pθ. (12)

For particular forms of v the projection formula simplifies
according to the following Lemma [7].

Lemma 1. Let u ∈ L2(X, λ) satisfy Eθ[|u|] < ∞. Then the
projection of v = 1

2

√
pθu onto T√pθ is given by

Πθv = Eθ[u∇θ log pθ]
Tg−1(θ)∇θ

√
pθ. (13)

A. Projection Filtering

It follows from Eq. (5) that
√
pF is governed by

F1/2[φ] =
φ

2φ2
Ga[φ2],

∂t
√
pF = F1/2[

√
pF ].

Let pF (tn−1, x) ∈ PΘ, then the prediction formula from tn−1

due to the projection approach is given by [7]

∂t
√
pθF = ΠθF ◦ F1/2[

√
pθF ]. (15)



Proposition 2. The curve in Θ defined by Eq. (15) is given
by

θ̇F = g−1(θF )EθF
[
G[∇θF log pθF ]

]
. (16)

Proposition 2 was proved in [7] for the case in which
pF is a density with respect to the Lebesgue measure. The
proof method is essentially the same but is given below for
completeness.

Proof. It follows from Lemma 1 that

∂t
√
pθF = ΠθF ◦ F1/2[

√
pθF ]

= EθF
[Ga[pθF ]

pθF
∇θF log pθF

]
g−1(θF )∇θF

√
pθF

= EθF
[
G[∇θF log pθF ]

]T
g−1(θF )∇θF

√
pθF .

On the other hand, by the chain rule ∂t
√
p
θF

= θ̇TF∇θF
√
pθF

and matching terms gives the result.

Corollary 1. Let PΘ be an exponential family, pθ ∝
exp(θTs(x)− ψ(θ)). Then Eq. (16) reduces to

θ̇F = g−1(θF )EθF
[
G[s]

]
. (17)

Proof. It follows from Proposition 2 and direct calculation.

For the filter update, it is herein assumed that PΘ is a
conjugate family for the likelihoods. For a projection approach
to the filter update, see [18].

B. Projection Smoothing

It follows from Theorem 1 that
√
pS is governed by

B1/2[φ] =
φ

2φ2

( φ2

pF
Ga[pF ]− pFG

[ φ2

pF

])
,

∂t
√
pS = B1/2[

√
pS ].

In order to arrive at a tractable algorithm, similarly to [8], the
operator B1/2 is approximated by

B̂1/2[φ] =
φ

2φ2

( φ2

pθF
Ga[pθF ]− pθF G

[ φ2

pθF

])
(19)

and the projection smoother is given by

∂t
√
pθS = ΠθS ◦ B̂1/2[

√
pθS ]. (20)

Remark 1. The approximation of B1/2 by B̂1/2 adds an
additional source of approximation error. At present we have
no method to analyse this error but it is certainly an interesting
topic for future research.

Proposition 3 was proved in [8] for the case in which pF
and pS are densities with respect to the Lebesgue measure.
The proof method is essentially the same but is given below
for completeness.

Proposition 3. The curve in Θ defined by Eq. (20) is given
by

θ̇S = g−1(θS)EθS
[
∇θS

pθF
pθS
G
[ pθS
pθF

]]
. (21)

Proof. It follows from Lemma 1 that

∂t
√
pθS = ΠθS ◦ B̂1/2[

√
pθS ]

= EθS

[
Ga[pθF ]

pθF
∇θS log pθS

]T
g−1(θS)∇θS

√
pθS

− EθS

[
pθF
pθS
G
[ pθS
pθF

]
∇θS log pθS

]T
g−1(θS)∇θS

√
pθS .

The first expectation can be simplified according to

EθS

[
Ga[pθF ]

pθF
∇θS log pθS

]
= ∇θSEθS

[
Ga[pθF ]

pθF

]

= ∇θSEθF

[
G
[ pθS
pθF

]]
= ∇θSEθS

[
pθF
pθS
G
[ pθS
pθF

]]

= EθS

[
∇θS

pθF
pθS
G
[ pθS
pθF

]]

+ EθS

[
pθF
pθS
G
[ pθS
pθF

]
∇θS log pθS

]
.

Inserting this into the previous equation gives

∂t
√
pθS = EθS

[
∇θS

pθF
pθS
G
[ pθS
pθF

]]T
g−1(θS)∇θS

√
pθS

and the conclusion follows by the same argument as in the
proof of Proposition 2.

Corollary 2. Let PΘ be an exponential family, pθ ∝
exp(θTs(x)− ψ(θ)). Then Eq. (21) reduces to

θ̇S = g−1(θS)
(
EθS

[
G[s]

]
+ EθS [JsQJ

T
s ](θS − θF )

)
, (22)

where Js is the Jacobian of the sufficient statistic s.

Proof. It follows from Proposition 3 and direct calculation.

IV. APPLICATION: TRACKING ON S2

Consider the following state space model

dX = −Ω̆(t)×X dt− γ2X dt+ γX × dW, (23a)

Y (tn) | X(tn) ∼ N (gX(tn), α2I), (23b)

where × denotes the vector cross-product and X(t) ∈ S2 for
t > 0 if X(0) ∈ S2 [10]. The model in Eq. (23) can be
used to track the local gravity direction by using gyroscope
measurements Ω̆, accelerometer measurements Y , and setting
g to the local gravity constant. For this model Q and G are

Q(x) = γ2(I‖x‖2 − xxT), (24a)

G[φ] = −(Ω̆(t)× x+ γ2x)T∇xφ+
1

2
tr[Q∇2

xφ]. (24b)

To develop projection filters and smoothers for this inference
problem, a class of densities on the unit sphere needs to be
selected. An obvious choice is the von Mises–Fisher family,
which is an exponential family with respect to the uniform



measure on S2 [19]. The von Mises–Fisher densities on S2

are

pθ(x) = exp(θTx− κ(‖θ‖)), (25)

where κ(r) = − log r+log(4π)+ log sinh r and the sufficient
statistic is s(x) = x. Furthermore, for the von Mises–Fisher
distribution the following holds [19], [20]

Eθ[s(X)] = Eθ[X] = κ′(‖θ‖) θ

‖θ‖
, (26a)

g(θ) =
κ′(‖θ‖)
‖θ‖

P⊥(θ) + κ′′(‖θ‖)P (θ), (26b)

g−1(θ) =
‖θ‖

κ′3(‖θ‖)
P⊥(θ) +

1

κ′′(‖θ‖)
P (θ), (26c)

where P (θ) = θθT/‖θ‖2 and P⊥(θ) = I− P (θ).

A. von Mises–Fisher Filtering

The projection based prediction equation is retrieved by
Corollary 1, Eq. (24), and Eq. (26). It is given by

θ̇F = −Ω̆(t)× θF −
γ2κ′(‖θF ‖)
‖θF ‖κ′′(‖θF ‖)

θF . (27)

The von Mises–Fisher family is conjugate to the likelihood
(Proposition 1 in [10]), yielding the following update

θF (tn) = θF (t−n ) + gy(tn)/α2. (28)

Another parametrisation of the von Mises–Fisher distribution
is given by the mapping

θF 7→ (‖θF ‖ , θF /‖θF ‖) = (βF , µF ). (29)

By the chain-rule and Eq. (27), the predictions in this
parametrisation are

µ̇F = −Ω̆(t)× µF , β̇F = −γ2κ′(βF )[κ′′(βF )]−1. (30)

These are the prediction equations derived in [10] by the
assumed density method. An advantage of the current devel-
opment is that a smoother is readily obtained as well.

B. von Mises–Fisher Smoothing

Using Corollary 2, Eq. (24), and Eq. (26) gives the following
formula for the von Mises–Fisher smoother

G(θ) =
γ2‖θ‖
κ′(‖θ‖)

P⊥(θ) +
γ2[1− (κ′(‖θ‖))2]

κ′′(‖θ‖)
P (θ)− γ2I,

θ̇S = −Ω̆(t)× θS −
γ2κ′(‖θS‖)θS
‖θS‖κ′′(‖θS‖)

+G(θS)
(
θS − θF

)
,

(31)

where θF is the output of the filter.

C. Experimental Results

The von Mises–Fisher filter and smoother (VMFF/VMFS)
are evaluated on the model in Eq. (23) with g = 9.82,
corresponding to tracking the local gravity vector. The sys-
tem is simulated one hundred times for all combinations of
γ ∈ {10−3, 10−2} and α2 ∈ {10−3, 10−2} and for sample
rates of Y and Ω̆ at 50, 100, and 200Hz. The coordinates of
Ω̆ are governed by zero mean Ornstein–Uhlenbeck processes
with mean reversion rate −5 and diffusion constant 2.5.

The von Mises–Fisher filter and smoother estimate the state
by the mode θ/‖θ‖ and are compared against a Gaussian filter
and a Gaussian smoother (GF/GS) (Type II, see [21]), which
use norm-constrained minimum mean-square estimators [22].
The von Mises–Fisher filter and smoother are initialised by the
uniform distribution on S2 and the Gaussian estimators are
initialised by moment matching the uniform distribution on
S2. The von Mises–Fisher based estimators are implemented
with an exponential Rosenbrock–Euler integrator and the
Kalman filter integrates the covariance by a zeroth-order hold
approximation to E[Q(X(t))], the mean is integrated exactly.

The methods are evaluated in terms of the mean angular
error. The angular error when estimating r ∈ S2 by r̂ ∈ S2 is
given by

ε(r̂, r) =
180

π
cos−1 r̂Tr, (32)

and the mean angular error for a series r(tn) estimated by
r̂(tn), n = 1, 2, . . . , N is given by

ε̄N =
1

N

N∑
n=1

ε(r̂(tn), r(tn)). (33)

Additionally, for the von Mises–Fisher distribution, the param-
eter |θ| determines how concentrated the distribution is around
the mode θ/|θ| [19]. The difference between the von Mises–
Fisher filter and the smoother shall be examined in this respect.

The mean angular error for the sample rate at 200Hz is listed
in Table I, where the mean is calculated over all time stamps
and Monte Carlo samples. While the improvement of the von
Mises–Fisher filter over its Gaussian coutnerpart is marginal,
it can be seen that the situation for smoothing is different.
Indeed, the Gaussian smoother performs worse than the filter
for higher noise levels while the von Mises–Fisher smoother
consistently improves upon the filter estimate. The angular
error for one trajectory at the various noise levels is shown
in Figure 1, and the corresponding concentration parameters
are shown in Figure 2. The performance degradation of the
Gaussian smoother is particularly visible. For the concen-
tration parameter, it can be seen that the von Mises–Fisher
filter starts with very low concentration (high uncertainty) but
rapdily converges to a very high steady-state concentration.
The von Mises–Fisher smoother also converges to a steady-
state concentration, which is higher than the filter, as expected.

The mean angular error for the sample rate at 100Hz is
listed in Table II. The situation is similar as for the case of
200Hz in that the von Mises–Fisher filter is slightly better
than the Gaussian filter, while again the Gaussian smoother



TABLE I: Mean angular error (degrees) at sampling frequency
of 200Hz.

(α2, γ) VMFF VMFS GF GS
(10−3, 10−3) 1.0805 0.7853 1.0835 0.9393
(10−2, 10−3) 1.9072 1.3745 1.9144 1.4999
(10−3, 10−2) 3.0830 2.4117 3.1182 3.6434
(10−2, 10−2) 5.8900 4.2922 6.0534 6.4925

TABLE II: Mean angular error (degrees) at sampling fre-
quency of 100Hz.

(α2, γ) VMFF VMFS GF GS
(10−3, 10−3) 1.3013 0.9719 1.3053 1.1028
(10−2, 10−3) 2.3238 1.6702 2.3345 1.7851
(10−3, 10−2) 3.5199 2.9060 3.5523 4.3347
(10−2, 10−2) 6.8638 5.0812 7.0968 7.6803

TABLE III: Mean angular error (degrees) at sampling fre-
quency of 50Hz.

(α2, γ) VMFF VMFS GF GS
(10−3, 10−3) 1.6476 1.3014 1.6528 1.3781
(10−2, 10−3) 2.8490 2.1143 2.8632 2.1944
(10−3, 10−2) 4.0003 3.5788 3.9928 5.1751
(10−2, 10−2) 8.0107 6.0837 8.3466 9.1550

degrades as the noise level increases. However, the von Mises–
Fisher smoother consistently improves upon the filter estimate.
The angular error for one trajectory at the various noise levels
is shown in Figure 3, and the corresponding concentration
parameters are shown in Figure 4. Most notable is gain the
performance degradation of the Gaussian smoother. For the
concentration parameter, the results are the same as in the
200Hz case, except the stead-state levels perhaps being slightly
lower.

The experiemntal results for 50Hz are summarised in Table
III. The situation is similar as for the case of 200 and 100Hz
in that the von Mises–Fisher filter is slightly better than the
Gaussian filter. Now it can also be seen that the perfomance of
all estimators degrades as the sample rate decreases. However,
the performance degradation is most notable for the Gaussian
smoother at high noise levels, where its error in comparison
with the Gaussian filter appears to increase as the sample rate
decreases. This problem is not present for the von Mises–
Fisher smoother, which consistently improves upon the filter
estimate. The angular error for one trajectory at the various
noise levels is shown in Figure 5, and the corresponding
concentration parameters are shown in Figure 6. What can
be discerned from these figures is qualitatively the same as
for the 100 and 200Hz case.

Additionally, the average processing time per sample is cal-
culated for one of the experiments at a sample rate of 200Hz,
see Table IV. It can be seen that another benefit of the von
Mises–Fisher based estimators is their computational speed.
Both the von Mises–Fisher and Gaussian filter can employ for
Rodriguez formula for predictions, but the Gaussian filter also
has to operate on a 3× 3 covariance matrix slowing it down.
However, there appears to be no corresponding trick that can
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Fig. 1: The angular errors for one simulated trajectory at a
sampling rate of 200Hz with varying noise parameters.

be applied for the von Mises–Fisher smoother, which is why
it suffers a major increase in computation time, whiole still
being cheaper than its Gaussian counterpart.
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Fig. 2: The concentration parameter, |θ|, of the von Mises–
Fisher filter/smoother for one simulated trajectory at a sam-
pling rate of 200Hz with varying noise parameters.

V. CONCLUSION

In this paper, the projection approach [7], [8] was gener-
alised to the case in which the state variable evolves in a
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Fig. 3: The angular errors for one simulated trajectory at a
sampling rate of 100Hz with varying noise parameters.

submanifold of Euclidean space. In particular, von Mises–
Fisher based filters and smoothers were developed and shown
to offer performance benefits both in terms of accuracy and
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Fig. 4: The concentration parameter, |θ|, of the von Mises–
Fisher filter/smoother for one simulated trajectory at a sam-
pling rate of 100Hz with varying noise parameters.

computational speed over Gaussian alternatives. Accuracy
benefits are particularly pronounced in noisy systems, where
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Fig. 5: The angular errors for one simulated trajectory at a
sampling rate of 50Hz with varying noise parameters.

Gaussian smoothers may perform worse than Gaussian filters,
owing to the fact that these estimators do not appropriately
account for the geometry of the state-space.
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Fig. 6: The concentration parameter, |θ|, of the von Mises–
Fisher filter/smoother for one simulated trajectory at a sam-
pling rate of 50Hz with varying noise parameters.
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[18] F. Tronarp and S. Särkkä, “Updates in Bayesian filtering by continuous
projections on a manifold of densities,” in 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing. Brighton,
United Kingdom: IEEE, May 12 - 17 2019, pp. 5032–5036.

[19] K. V. Mardia and P. E. Jupp, Directional Statistics. Wiley, 2000.
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