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Abstract—Multi-layered Gaussian process (field) priors are
non-Gaussian priors, which offer a capability to handle Bayesian
inference on both smooth and discontinuous functions. Previ-
ously, performing Bayesian inference using these priors required
the construction of a Markov chain Monte Carlo sampler. To
converge to the stationary distribution, this sampling technique is
computationally inefficient and hence the utility of the approach
has only been demonstrated for small canonical test problems.
Furthermore, in numerous Bayesian inference applications, such
as Bayesian inverse problems, the uncertainty quantification of
the hyper-prior layers is of less interest, since the main concern is
to quantify the randomness of the process/field of interest. In this
article, we propose an alternative approach, where we optimize
the hyper-prior layers, while inference is performed only for
the lowest layer. Specifically, we use the Galerkin approximation
with automatic differentiation to accelerate optimization. We
validate the proposed approach against several existing non-
stationary Gaussian process methods and demonstrate that it
can significantly decrease the execution time while maintaining
comparable accuracy. We also apply the method to an X-ray
tomography inverse problem. Due to its improved performance
and robustness, this new approach opens up the possibility for
applying the multi-layer Gaussian field priors to more complex
problems.

Index Terms—Bayesian learning, Gaussian Processes, Markov
chain Monte Carlo, inverse problems, Galerkin approximations

I. INTRODUCTION

Multi-layered Gaussian process (or field) priors are flexible
non-Gaussian priors for classification, regression, and inverse
problems and they have been recently studied in [1]–[5]. These
statistical priors are flexible due to their ability to offer both
smoothing and edge preservation capabilities, which typically
are considered as competing objectives. Previously, discon-
tinuous functions were predominantly modeled by specific
non-Gaussian priors, the total variation prior being the most
common [6]. However, upon increasing the number of points
in the discretization grid, total variation prior is prone to losing
edge preservation [6] and introducing patchy artifacts [7].

A multi-layered Gaussian process (GP) prior can be ex-
pressed in terms of a set of stochastic partial differential
equations, which can be solved either using spatial grid
approximations [2], or using Galerkin type of spectral methods

[4]. Until now, the use of multi-layered GP has been restricted
to small toy problems since the posterior distributions of each
conditionally Gaussian field are obtained via computationally
expensive Markov chain Monte Carlo (MCMC) approxima-
tions. For example, consider the Bayesian inversion problem
in [2], [4], where the authors used the preconditioned Crank–
Nicolson (pCN) [8] sampler to draw samples from the resulted
posterior distribution. Although the pCN algorithm is simple
and has nice analytical properties in very high dimensions,
it is infamously known for its strong sample autocorrelation
[9]. In addition to the MCMC techniques, other lines of
research in multi-layered Gaussian processes inference have
been proposed to alleviate the computational burden. These
include inducing point and variational methods [1], [10]. In [5]
it is shown that one can also use state-space methods (i.e.,
non-linear stochastic filters and smoothers) to solve the multi-
layered GP regression problems. However, this method applies
to temporal data only, since their model formulation is re-
stricted to finite-dimensional stochastic differential equations.

In many inference applications, such as Bayesian inverse
problems, often the main interest is to recover the posterior
distribution of the unknown field from a set of observations.
In such cases, drawing samples from all hyper-prior layers is
less important. Therefore, we propose an alternative approach,
where we optimize the hyper-prior layers, while sampling only
the last layer.

Regarding hyper-prior optimization, the negative log-
likelihood of the hyper-prior of multi-layered Gaussian process
is non-convex due to the log-determinant terms, which are
concave functions of a positive definite matrix [11, Theorem
11.25] (see Section II). Therefore, the convexity of the hyper-
prior negative log-likelihood with respect to the Galerkin
expansion of coefficients is also not guaranteed. The absence
of the convexity opens up the possibility of existence of
multiple local minima, making global optimization difficult
and computationally demanding [12]. Similar non-convexity
condition also holds if we use a spatial grid discretization
instead of the Galerkin expansion [2]. Moreover, obtaining the
Jacobian of the negative log-likelihood analytically becomes



challenging due to the presence of the chain of operations,
and the involvement of inverse Fourier–Fourier transform
pairs. While we could still approximate the Jacobian via
finite differentiation, generally, it is numerically unstable and
computationally expensive. This has rendered the optimization
approach to be less attractive, as the cost of evaluating the
optimizer to maintain the quality of the Jacobian could be
almost comparable to the time obtaining the MCMC samples
[2], [13]. Fortunately, one can obtain an exact Jacobian and
other derivatives (up to machine precision) by using auto
differentiation approaches [14]. In this work, we use the JAX
library [15] to develop an algorithm of similar utility to [4]
that builds upon auto differentiation to improve performance.

The contributions of this article are as follows. We propose a
Bayesian inference procedure for multi-layered Gaussian pro-
cess priors, where we perform the optimization of the Galerkin
coefficients of hyper-prior layers via auto-differentiation. The
posterior distribution of the last layer is calculated via the
standard Gaussian form conditioned on the optimized hyper-
prior layers. Therefore, our approach can be considered as
a hybrid that mixes hyper-prior optimization with standard
Gaussian inference. We validate our method with other state-
of-the-art non-stationary Gaussian process methods. We also
demonstrate that our proposed method can significantly de-
crease the execution time without compromising the accuracy.
In particular, we reduce the execution time of an X-ray
tomography Bayesian inverse problem in [4] from 12 days
to just around 40 minutes, while achieving better peak-signal-
to-noise ratio (PSNR) scores. Moreover, the runtime speed-
up is not the only advantage that the proposed optimize-
and-sample method has over the work of [4]. Due to the
optimization approach, we can also automatically find values
for the Matérn covariance function scale parameter parameter,
which previously had to be set by the user with educated
guesses.

The article is structured as follows. In Section II, we briefly
review the multi-layered GP prior formulation. We also show
that there is an equivalent neural network realization of this
prior. In Section III, we describe our optimization approach
to obtain the Galerkin coefficients of the hyper-prior layer
via auto-differentiation. In Section IV, we validate the method
using two numerical experiments: a one-dimensional denoising
problem and an X-ray tomography problem. Conclusions
are drawn in Section V. All codes related to the simula-
tions are available from https://anonymous.4open.science/r/
JaxDeepSPDE-DEC7.

II. MULTI-LAYERED GAUSSIAN PROCESS PRIOR

In this section, we briefly summarize the multi-layered
Gaussian process (or field) prior proposed in [2], [4]. Suppose
we would like to infer an unknown process v : Ω → R,Ω ⊆
Rd from a set of discrete measurements y ∈ Rm. In a
multi-layered Gaussian process prior with J hyper-layers, the
unknown process v is assumed to be the last layer from a
collection of J + 1 layers of conditionally Gaussian random
processes, where the first layer is assumed to be a stationary

Gaussian process with chosen hyper-prior parameters. Using
a Matérn covariance function for the first layer u0, we can
represent the prior as a stochastic partial differential equation
(SPDE) of the form(

1− `20∆
)α/2

u0(x) =
√
β0`d w0(x), (1)

where ∆ is the Laplacian, α = ν + d/2, ν is a smooth-
ness parameter, w0(x) is white noise field on Rd, `0 is the
length-scale constant of the Matérn covariance, and β0 =
σ2

02dπd/2Γ(α)/Γ(ν) with σ2
0 being a scale parameter. In this

study, we restrict to α = 2 so that (1) becomes second order
linear SPDE. For the remaining fields uj for j = 1, 2, . . . , J ,
we modify the previous SPDE such that the length-scale `j
is modeled as a function of process uj−1 with a Matérn co-
variance function. We select κj(x) := 1/`j(x) = g(uj−1(x)),
where g is a smooth positive function g : R→ R+. Since the
length-scale is always greater than zero, with probability of
one, we obtain(

κ(uj−1(x))2 −∆
)
uj(x) =

√
βjκ(uj−1(x))νwj(x). (2)

Assuming periodic boundary condition on the domain Ω, we
seek an approximate solution to the SPDE using the Galerkin
method. With this boundary condition, it is useful to consider
that the fields {uj}0≤j≤J as elements of a complex Hilbert
space H = L2(Ω) where we choose the Hilbert space basis to
be the Fourier complex basis φl = exp

(
i cd x

>k(l)
)
, where

cd is a scaling constant related to Fourier transform and k(l)
is a multi-index unique to each l. The weak form of (2) is
given by

〈∇uj ,∇ϕ〉+ 〈κ2(uj−1)uj , ϕ〉 = β
1/2
j 〈wjκ

ν(uj−1), ϕ〉 (3)

where 〈·, ·〉 is the inner product on the Hilbert spaceH and ϕ is
a test function. The j−th field uj is expressed as a linear com-
bination of the Fourier basis functions as uj =

∑∞
l=−∞ ûj,lφl.

The finite Galerkin approximation uNj ∈ HN , where N
denotes a user-specified truncation limit for the Fourier series,
satisfies (3) for all ϕ ∈ HN , spanned by {φl}−N≤l≤N ,
which is a subspace of the full Hilbert space H, spanned by
{φl}−∞≤l≤∞. In other words, we require discretization error
of each term to be orthogonal to the subspace HN .

The weak form can be written as a series of mappings as

L(ûj−1)ûj = ŵj , (4)

where ŵj ∼ N (0, I), ŵj ∈ C2N−1 and L(ûj−1) ∈
C2N−1×2N−1. L(ûj−1) is referred to as the square root of
the precision operator that is a function of the previous field
ûj−1, and it is given by

L(ûj−1) = β
− 1

2
j (MN (κ

d/2
j )−MN (κ−νj )D). (5)

Here, κj(x) := κ(uNj−1(x)), and the constant βj are computed
using the same procedure as for the first layer. The matrix
D ∈ C2N−1×2N−1 is a diagonal matrix with elements equiv-
alent to the eigenvalues of the Laplacian, following −∆u =∑∞
l=−∞ λi〈u, φi〉φi. The matrix MN (z) ∈ C2N−1×2N−1 is
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the matrix representation of the multiplication operator corre-
sponding to a field z. In our case it has the form MN (κ(uj)

γ),
and it can be obtained by applying the mapping κγ(·) to
the inverse Fourier transform of ûj , and taking the Fourier
transform of the result.

We assume that the measurement is a linear function of the
field in the last layer v = uJ ; that is y = Hv + e = ĤûJ +
(Hv−ĤûJ)+e, e ∼ N (0, R). The matrix Ĥ ∈ Cm×(2N−1) is
the spectral representation of the linear measurement operator
H , R ∈ Rm×m is a positive definite matrix, and the term
(Hv − ĤûJ) approaches zero (in the Hilbert space norm) as
N approaches infinity.

The white noise Galerkin coefficients are sampled as w̄ :=
{ŵj}0≤j≤J−1, instead of {ûj}0≤j≤J−1. This is referred to
as a non-centered formulation and it makes the calculation of
the log posterior simpler, since it breaks the dependence of
Galerkin coefficients in each layer. For more details, see [4].
The construction of a multi-layered Gaussian process given
by (4) is general in a sense that many other multi-layered
Gaussian process formulations can be cast into this framework
as shown in [3]. Therefore, the use of this approach is not only
restricted to inverse problems, but it can be used also in other
Gaussian process applications such as regression and classifi-
cation. Note that to obtain ûJ−1, all Galerkin coefficients from
the previous layers need to be obtained via (4), therefore, ûJ−1

is a function of all white noises Galerkin coefficients w̄. Under
this formulation, the probability distribution of w̄ is given by

P(dw̄|y) ∝ exp (−Ψ(w̄, y))P(dw̄), (6a)

Ψ(w̄, y) =
1

2
‖y‖2Q +

1

2
log det(Q), (6b)

Q =ĤL(ûJ−1)−1L(ûJ−1)−>Ĥ> +R. (6c)

Once we have computed ûJ−1, a standard Gaussian form is
used to calculate the mean and covariance matrix of Fourier
coefficients of the field of the last layer uJ = v as

v̂ ∼ N (Z(ûJ−1)−1Ĥ>R−1y, Z(ûJ−1)), (7)

where Z = (L(ûJ−1)>L(ûJ−1))−1 + Ĥ>RĤ . Subsequently,
since the inverse Fourier transform of the Fourier elements v̂
can be expressed as matrix vector multiplication: v = Φv̂, the
stochastic field (or process) v is distributed according to

v ∼ N
(
ΦE[v̂],ΦV[v̂]Φ>

)
. (8)

Here, E and V are the expectation and covariance operators,
respectively and V[v̂] := E[v̂v̂>]− E[v̂]E[v̂]>.

III. PROPOSED METHOD

In this section, we present our hybrid Bayesian inference
approach. Essentially, we replace the Metropolis sampling part
in the Metropolis-within-Gibbs sampling algorithm proposed
in [4] with an optimization procedure. For one complete
measurement set y(k), we initialize the Galerkin coefficients
of each hyper-prior layer and their respective field strength
with some initial values {ŵj}0≤j≤J , {σj}0≤j≤J . Then we

run an optimization procedure to obtain the optimized pa-
rameters {ŵj}0≤j≤J , {σj}0≤j≤J . The optimization via auto-
differentiation procedure is possible since the function Ψ can
be considered differentiable as follows. If we consider the
negative log likelihood function Ψ as a function of both w̄, w̄∗;
i.e., Ψ : (w̄, w̄∗)→ R, then the derivative of Ψ is well defined
even though Ψ is non-holomorphic with respect to w̄. For
an infinitesimal change δz = (δw̄, δw̄∗), the change of Ψ is
given by δΨ = 2 Re

[
(∂w̄∗Ψ)>δw̄

]
. By a well-known result

from complex analysis [16], the stationary points are points
where the gradient ∂w̄∗Ψ vanishes, and the optimum decrease
in Ψ happens when δw̄ is in the direction of −∂w̄∗Ψ.

Using the optimized hyper-prior Galerkin coefficients, we
solve the square root of the precision matrix for the last hyper-
prior layer via Equations (4) and (5). Then we use (8) to
calculate the conditional Gaussian distribution of the last layer.
This procedure is summarized in Algorithm 1.

Algorithm 1 Multi-layered GP Bayesian inference with opti-
mization
Precondition:

{
y(k)

}
1≤k≤Ns

set of Ns independent measurement samples, J

number of layers,
{
ŵ•

j

}
0≤j≤J

initial Galerkin coefficients,
{
σ•
j

}
0≤j≤J

initial

field strength.

1: function MGP OPTIMIZE THEN INFER-
ENCE(

{
y(k)

}
, {ŵj,0}0≤j≤J−1 , {σj,0}0≤j≤J−1)

2: for k ← 1 to Ns do
3: y ← y(k)

4: {ŵj}0≤j≤J ←
{
ŵ•

j

}
0≤j≤J

5: {σj}0≤j≤J ←
{
σ•
j

}
0≤j≤J

6: Obtain optimized {σj}0≤j≤J−1,{ŵj}0≤j≤J−1 w.r.t. (6b).
7: Compute ûJ−1 and L(ûJ−1) via eq. (4).
8: Compute (7), store as

{
E[v̂(k)],V[v̂(k)]

}
.

9: Compute (8), store as
{
E[v(k)],V[v(k)]

}
.

10:
11: `(k) ← 1/κ(uJ−1)
12: end for
13: return

{
E[v(k)],V[v(k)], `(k)

}
1≤k≤Ns

14: end function

A wide class of optimization procedures can be used to
obtain the optimized parameters {σj}0≤j≤J ,{ŵj}0≤j≤J with
respect to (6b). In this work, we consider ADAM [17],
Rmsprop, and AdaHessian [18] optimizers. While the first two
methods are popular within the machine learning community,
AdaHessian is a recently published alternative. It was proposed
as an approximation of Newton based optimization where the
Hessian matrix is approximated as a diagonal matrix and the
diagonal elements are computed via Hutchinson’s methods
[19]. This approach seems to be cheaper to evaluate compared
to many Newton/quasi-Newton approaches as the cost of
evaluating a diagonalized Hessian and a vector is similar to
the ordinary gradient backpropagation.

IV. NUMERICAL EXPERIMENTS

In this section, we compare the proposed multi-layered
Gaussian process prior (MGP) via optimization approach with
other methods in the literature. In particular, we compare
our method with the deep state space GP (DGP) [5] for a



one-dimensional signal denoising problem, and filtered back-
projection (FBP) and Tikhonov regularization for an X-ray
tomography problem. The comparison of MGP with vanilla
GP methods and other non-stationary GP methods is not
performed here as they have been studied previously in [5].

A. SIGNAL DENOISING PROBLEM

In this section, we present a numerical example of a signal
denoising problem using two artificial signals as follows:

v(t) =


exp

(
4− 1

2t−4t2

)
, t ∈ (0, 0.5),

1, t ∈ [0.7, 0.8],

−1, t ∈ (0.8, 0.9],

0, otherwise.

(9a)

v(t) =


1, t ∈

[
1
7 ,

2
7

)
,

0.6, t ∈
[

3
7 ,

4
7

)
,

0.4, t ∈
[

5
7 ,

6
7

)
,

0, otherwise.

(9b)

Notice that the signal v(t) defined in (9a) contains both
smooth Gaussian bell in (0, 0.5) and a sudden jump. Denoising
this type of signal using total variation prior would normally
result in a patchy restoration in (0, 0.5). For the simulations,
we take the artificial signal, superpose it with noise e ∼
N (0, 0.12I), measure it at a set of temporal grid points and
finally compute the posterior, given the measurements. This
process is then repeated for 100 independent noise realizations
to gather statistics for error metrics. We use mean absolute
error (MAE), root mean squared error (RMSE), negative log
predictive distribution (NLPD), and peak signal to noise ratio
(PSNR) metrics to compare the different methods, where
the error is given by the difference between the estimated
mean and the ground truth of the unknown v. Instead of
selecting κ to be an exponential function as in [4], we choose
κ = log(exp(x) + 1) for numerical stability. This function
also allows an exponential decay of the length scale near
the jump points, while satisfying the analytic growth rate
conditions required to ensure the Galerkin series convergence.
We use 127 Fourier basis functions, that is, N = 64, and the
number of measurement temporal grid points is set to 255.

From Tables I and II, we can see that the estimation results
using MGP with any optimizer outperforms DGP (solved
either via the extended Kalman smoother (EKFS) or the
cubature Kalman smoother (CKFS)), with the PSNR values
of MGP being almost double compared to those of DGP. One
exception is the RMSE value of signal (9a), where the DGP
performs better.

Fig. 1a shows the mean estimate for the signal (9a). Here,
we can observe that the increase in MGP RMSE appears to be
caused by the Gibbs phenomena which results in large squared
error values near the jump points. This does not occur in
DGP since no Fourier transformation is involved. In the bell-
shaped region, AdaHessian outperforms ADAM and Rmsprop
by yielding a smoother estimate. Fig. 1c plots the optimized

length scale associated with the mean estimate in Fig. 1a.
The length scale obtained with AdaHessian exhibits smaller
variation relative to ADAM and Rmsprop. The length scales
obtained with ADAM and Rmsprop optimizations have more
pronounced local maxima and minima which results in mean
estimates v that resemble straight lines joined together, which
is an indication of over-smoothing.

Fig. 1b plots the mean estimate for the signal (9b). Here,
the MGP estimate using ADAM optimization has the best per-
formance in terms of both RMSE, MAE and PSNR, although,
the MGP estimate using Rmsprop appears visually closer to
the ground truth signal. Fig. 1d plots the optimized length
scale associated with the mean estimate in Fig. 1b. Again,
the length scale obtained with AdaHessian exhibits smaller
variation relative to Adam and Rmsprop. In this case, the
AdaHessian produces a mean estimate that under-fits the last
rectangular section.

B. X-RAY TOMOGRAPHY

In this section we apply the proposed method to a simulated
X-ray tomography problem using the Shepp–Logan phantom,
where the unknown is a collection of ellipses in a two
dimensional domain. The elements of the measurement matrix
H correspond to the Radon operator that is given by applying
the Radon transform to the basis functions [4]. For this
numerical simulation, we use 63 Fourier basis functions for
each dimension. For the measurements, we take 45 projective
measurements out of 180 using parallel beams, with the height
of the sinogram equals to 255 pixels. The measurement noise
standard deviation is set to 0.01. Subsequently, we upscale the
image during the inverse Fourier step so that the unknown has
a resolution 1023×1023 pixels. For simplicity, we set Ns = 1.

The noise and reconstruction artifacts in this problem are
clearly noticeable. This can be seen from the filtered back-
projection (FBP) reconstruction where considerable amounts
of noise and artifacts appear; see Fig. 2f for the FBP re-
construction. As a reference, we also use Tikhonov regular-
ization to obtain the Galerkin coefficients of the last layer
where the regularization constant is determined by grid search
optimization. The reconstructed image is given by Fig. 2e.
The reconstructed images using MGP via different optimizers
are shown in Fig. 2b, 2d, 2c for the Rmsprop, ADAM, and
AdaHessian respectively, while their length-scales are shown
in Figures 2g, 2i, and 2h respectively. Table III shows the
error metrics for the X-ray tomography case. We can see that
the MGP reconstructions have significantly lower MAE and
RMSE values as well as better PSNR scores relative to FBP.
MGP reconstructions also outperform Tikhonov regularization
in terms of MAE and PNRS, while having similar RMSE.

To give context to the efficiency of the proposed approach,
we also benchmarked the performance of the X-ray tomogra-
phy code associated with [4]. It uses the same test case with a
configuration analogous to ours, apart from the Phantom scale
being [0, 1] instead of [0, 2]. To achieve the reported PSNR
value of 22.246 in [4], approximately a million samples needs
to be taken which equates to a total execution time of 12.59



(a) v(t) bell (b) v(t) rect

(c) `(t) -bell (d) `(t) -rect

Fig. 1: Realization no 49 of the estimation results for signals described in (9a) and (9b) respectively. In 1a and 1b, the ground
truth is the black dash-dotted line, the mean estimates are the solid lines, and the two standard deviation confidence interval
are given by the dotted lines of each color.

days. The total execution time to obtain the results in Table III
is 71 minutes with AdaHessian and 41 minutes with Rmsprop
and ADAM using a single NVIDIA Tesla V100 GPU. This
gives confidence that an optimizer-based solution approach can
significantly decrease the execution time of Gaussian processes
formulated with Galerkin expansion.

V. CONCLUSIONS AND FUTURE OUTLOOK

In this article, we described a Bayesian inference procedure
for multi-layered Gaussian process priors where the hyper-
prior layers are obtained via optimization. We showed that the
hyper-prior layer parameter results via optimization with auto
differentiation can lead to an equivalent if not better estimate
of the last layer compared to MCMC procedure described in
[4]. Compared to the DGP method of [5], the estimation results
of one dimensional signal denoising are substantially better
in many metrics and also closely resemble the ground truth.
For the tomography problem, the proposed Bayesian inference
resulted in a reconstructed image that has lower MAE and
higher PSNR scores relative to those obtained with FBP and
Tikhonov methods.
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TABLE I: Metrics comparison of signal (9a) denoising.

Methods MAE↓ RMSE↓ PSNR↑ NLPD ↓

MGP
AdaHessian 0.037 ± 0.004 0.099± 0.004 20.351 ± 0.426 −239.329± 1.288

ADAM 0.041± 0.004 0.110± 0.005 20.155± 0.523 −226.334± 2.331
Rmsprop 0.040± 0.003 0.110± 0.005 20.056± 0.555 −241.906 ± 1.689

DGP-ekfs
ADAM 0.044± 0.003 0.072± 0.008 12.700± 0.683 −169.891± 9.542

BFGS 0.044± 0.003 0.067 ± 0.005 13.043± 0.528 −169.488± 6.129
Rmsprop 0.045± 0.003 0.072± 0.009 12.656± 0.680 −165.362± 9.898

DGP-ckfs
ADAM 0.044± 0.003 0.075± 0.003 12.352± 0.460 −169.355± 5.905

BFGS 0.043± 0.003 0.074± 0.005 12.425± 0.431 −169.598± 5.464
Rmsprop 0.044± 0.003 0.075± 0.005 12.358± 0.466 −169.338± 5.911

TABLE II: Metrics comparison of signal (9b) denoising.

Methods MAE↓ RMSE↓ PSNR↑ NLPD ↓

MGP
AdaHessian 0.040± 0.004 0.074± 0.004 23.472± 0.598 −242.618± 1.356

ADAM 0.035± 0.004 0.069± 0.004 24.143 ± 0.691 −244.643 ± 2.760
Rmsprop 0.034 ± 0.004 0.069 ± 0.003 23.811± 0.531 −226.817± 1.967

DGP-ekfs
ADAM 0.055± 0.003 0.092± 0.003 11.012± 0.288 −134.403± 7.286

BFGS 0.056± 0.003 0.093± 0.003 10.956± 0.283 −132.041± 7.638
Rmsprop 0.054± 0.003 0.090± 0.003 11.138± 0.314 −140.291± 6.777

DGP-ckfs
ADAM 0.052± 0.003 0.086± 0.003 11.245± 0.296 −146.762± 6.145

BFGS 0.052± 0.003 0.087± 0.003 11.194± 0.292 −145.279± 6.284
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(a) ground truth (b) Rmsprop (c) AdaHess

(d) ADAM (e) Tikhonov (f) FBP

(g) `, Rmsprop (h) `, AdaHess (i) `, ADAM

Fig. 2: Comparison of reconstruction results using MGP with Rmsprop, AdaHessian, and ADAM, their length respective scales,
and the reconstruction result using Tikhonov regularization (λ = 7.50 × 10−3‖H/σr‖, where σr is the measurement noise
standard deviation, ‖·‖ is matrix norm) and filtered back projection.
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