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Abstract—The aim of this article is to present a novel paral-
lelization method for temporal Gaussian process (GP) regression
problems. The method allows for solving GP regression problems
in logarithmic O(logN) time, where N stands for the number of
observations and test points. Our approach uses the state-space
representation of GPs which, in its original form, allows for linear
O(N) time GP regression by leveraging Kalman filtering and
smoothing methods. By using a recently proposed parallelization
method for Bayesian filters and smoothers, we are able to reduce
the linear computational complexity of the temporal GP regres-
sion problems into logarithmic span complexity. This ensures
logarithmic time complexity when parallel hardware such as a
graphics processing unit (GPU) are employed. We experimentally
show the computational benefits of our approach on simulated
and real datasets via our open-source implementation leveraging
the GPflow framework.

Index Terms—Gaussian process, state space, parallelization,
logarithmic time, Kalman filter and smoother

I. INTRODUCTION

Gaussian processes (GPs) are a family of function-space
priors used to solve regression and classification problems
arising in machine learning [1]. In their naive form their
complexity scales as O(N3), where N is the number of
training data points, which is problematic for large datasets.
For a large class of covariance functions, the associated
GP regression problem can be reformulated as a smoothing
problem for a linear state-space model [2], [3]. This reduces
the GP regression problem into a Kalman smoothing algorithm
with linear time complexity O(N). This improvement comes
at the cost of a loss of precision for all covariance functions
that do not have an exact state-space representation [4]. The
linear complexity is optimal on single-threaded computational
architectures, as processing data needs to be done sequentially.
However, it is suboptimal on hardware where parallelization
is possible, such as multi-core central processing units (CPUs)
or, more importantly, on massively threaded architectures such
as graphics processing units (GPUs). The aim of this letter is
therefore to develop parallel state-space GP (PSSGP) methods
which reduce the computational complexity (in the sense of
parallel span complexity) of state-space GPs to logarithmic
O(logN) (see Fig. 1 in experiments). To do so, we leverage
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the parallel Bayesian filtering and smoothing methodology
presented in [5].

Over the recent years, several other approaches to paral-
lelization of GPs have been proposed. For instance, in [6],
[7] the authors consider mini-batching the dataset to form
mixtures of local GP experts. This incurs a cubic cost only
in the size of the batches, and achieves additional problem
decomposition that could potentially be combined with our
approach. More closely related to this letter are the works
in [8], [9] which proposed to leverage the sparse Markovian
structure of Markovian and state-space GPs (SSGPs). Specifi-
cally, they use parallel matrix computations, thereby reaching
O(logN) span complexity in the dataset size in some special
cases. However, the methods outlined in [8], [9] effectively
require computations with large (albeit sparse) matrices, and
their logarithmic span complexity is hard to guarantee for
all the subproblems [8]. Orthogonally to these parallelization
efforts, different approximation methods have been introduced
in order to reduce the computational complexity of GPs. These
include, for example, inducing points, spectral sampling, and
basis function methods (see, e.g., [1], [10]–[13]).

The contribution of our paper is three-fold:

1) We combine the state-space formulation of GPs with
parallel Kalman filters and smoothers [5].

2) We extend the parallel formulation to missing measure-
ments to allow for predicting with state-space GPs.

3) We experimentally show the computational gains of our
proposed methods on simulated and real datasets1.

II. GAUSSIAN PROCESSES IN STATE-SPACE FORM

In this section, we quickly recall results about the state-
space formulation of Gaussian processes before we present
their temporal parallelization formulation. Given a covari-
ance function C(t, t′) and a set of observations {yk : k =
1, . . . , N}, a temporal GP regression problem of the form

f(t) ∼ GP(0, C(t, t′)),

yk = f(tk) + ek, ek ∼ N (0, σ2
k),

(1)

1We implemented the method as an open-source extensible library. The
code can be found at https://github.com/EEA-sensors/parallel-gps.

https://github.com/EEA-sensors/parallel-gps


can be converted into a smoothing problem for an nx-
dimensional continuous-discrete state-space model

dx(t)

dt
= Gx(t) + Lw(t), yk = Hx(tk) + ek, (2)

where x is the state, yk is the measurement, w is a white
noise process with a constant spectral density matrix Q, and
ek is the Gaussian measurement noise [2], [3]. The dimension
nx of the state, as well as the matrices G, L, H, and Q in
the model, depend on (and define) the covariance function at
hand.

In the state-space formulation (2), the Gaussian process
in Equation (1) has the representation f(t) = Hx(t). In
the case of Matérn covariance functions, this representation
is exact and available in closed form [2]. Other stationary
covariance functions, such as the squared exponential, can
be approximated up to an arbitrary precision by using Taylor
series or Páde approximants [2], [4], [14]–[17] in the spectral
domain.

The continuous-time state-space model (2) can be dis-
cretized into an equivalent discrete-time linear Gaussian state-
space model (LGSSM, e.g., [18]) of the form

xk = Fk−1 xk−1 + qk−1 yk = Hxk + ek, (3)

where qk−1 ∼ N (0,Qk−1). Then, the GP regression problem
can be solved by applying Kalman filtering and smoothing
algorithms on model (3) in O(N) time [2].

In the rest of the article, we show how the sequential
Kalman filters and smoothers used in SSGP can be replaced
by their parallel versions [5]. This reduces the computational
complexity of SSGP regression to O(logN). Additionally,
by combining these with automatic differentiation softwares
(e.g., TensorFlow [19]), we also show how this parallelization
benefits GP parameter learning.

III. HANDLING MISSING OBSERVATIONS IN PARALLEL
KALMAN FILTER

In [5], the authors introduce an equivalent formulation of
Kalman filters and smoothers in terms of an associative opera-
tor. This enables them to leverage distributed implementations
of scan (prefix-sum) algorithms, such as [20] and [21], in
order to reduce the time complexity of Kalman filtering and
smoothing down to O(logN). However, this formulation does
not take into account missing observations. This prevents its
application for inference in state-space GP models, where test
points are treated as missing data [3].

The method introduced in [5] consists in writing the filtering
step in terms of an associative operator of a sequence of
five elements (Ak,bk,Ck,ηk,Jk), which are first initialized
in parallel and then combined using parallel associative scan
[20], [21]. At the initialization step of the original algorithm,
these elements need to be computed so as to correspond to
the following quantities:

p(xk | xk−1, yk) = N (xt | Akxk−1 + bk,Ck), (4)
p(yk | xk−1) = NI(xk−1 | ηk,Jk), (5)

where NI denotes the information form of the Gaussian
distribution. However, when no observation is available at step
k, these equations do not hold directly and need to be modified.

By redoing the original derivation, it turns out that, in the
case of missing measurements, the posterior density p(xk |
xk−1, yk) should be replaced by the transition density p(xk |
xk−1) = N (xk | Fk−1xk−1,Qk−1) for k > 1 and p(x1) for
k = 1. Specifically, in the case of missing measurements, the
initialization equations for Ak, bk, Ck, ηk, and Jk can be
written as ηk = 0, Jk = 0, for all k, and

Ak = Fk−1, bk = 0, Ck = Qk−1, (6)

for k > 1, while, for k = 1, they become

A1 = 0, b1 = 0, C1 = P∞. (7)

When the quantities Ak, bk, Ck, ηk, and Jk have been
initialized for time steps with and without observations, they
can be combined using parallel scan, with the associative
operator ⊗ defined in the same way as in [5]:

Aij = Aj (Inx
+CiJj)

−1
Ai,

bij = Aj (Inx +CiJj)
−1

(bi +Ciηj) + bj ,

Cij = Aj (Inx
+CiJj)

−1
CiA

>
j +Cj ,

ηij = A>i (Inx
+ JjCi)

−1
(ηj − Jjbi) + ηi,

Jij = A>i (Inx
+ JjCi)

−1
JjAi + Ji.

Then, running a parallel scan algorithm on the elements above
with the operator ⊗ produces a sequence of “prefix-sum”
elements {(A∗k,b∗k,C∗k,η∗k,J∗k) : k = 1, . . . , N}. Finally, the
terms xk , b∗k and Pk , C∗k will correspond to the filtering
mean and covariance at time step k, respectively.

Proposition 1 (Equivalence of sequential and parallel Kalman
filters). For any k = 1, 2, . . . , N + M , the Kalman filter
means and covariances are given by xk = b∗k and Pk = C∗k,
respectively.

Proof. The detailed proof is omitted due to space limitations,
but the result follows by explicitly writing down the forward
recursion for the elements (A∗k,b

∗
k,C

∗
k,η
∗
k,J
∗
k), and checking

that equations for b∗k and Pk = C∗k coincide with the Kalman
filter equations.

On the other hand, the parallel smoothing algorithm needs
no modifications with respect to [5] in order to handle missing
observations, as it only relies on the result of the filtering
algorithm and not directly on the observations.

IV. TEMPORAL PARALLELIZATION OF GAUSSIAN
PROCESSES

An immediate consequence of the equivalence of the par-
allel and sequential Kalman filters and smoothers [5] is the
fact that the parallel and sequential versions of SSGP are
equivalent too. In this section, we provide the details of the
steps needed to create the linear Gaussian state-space model
(LGSSM) representation of SSGPs. The resulting end-to-end
algorithm is automatically differentiable and has a total span
complexity of O(logN), from training to inference.



A. Computation of the steady-state covariance

To represent a stationary GP, one must start the state-
space model SDE from the stationary initial state x(t0) ∼
N (0,P∞) given by the Lyapunov equation [2]. The complex-
ity of this step is independent of the number of time steps and
does not need time-parallelization. There exist a number of
iterative methods for solving this kind of algebraic equations
[22]. However, in order to make automatic differentiation
efficient, in this work, we use the closed-form vectorization
solution given in [23] (p. 229). This relies on matrix algebra,
and does not need any explicit looping. This solution is feasi-
ble because we only need to numerically solve the Lyapunov
equation for small state dimensions. Furthermore, as this
solution only involves matrix inversions and multiplications,
it is easily parallelizable on GPU architectures.

B. Balancing of the state space model

In practice, the state-space model (3) obtained via discretiza-
tion is often numerically unstable due to the transition matrix
having a poor conditioning number. This in turn results in
inaccuracies in computing both the GP predictions and the
marginal log-likelihood of the observations. To alleviate this
issue, we need to resort to balancing algorithms [24] in order to
obtain a transition matrix F which has rows and columns that
have approximately equal norms, thereby obtaining a more
stable state-space model. Formally, for any diagonal matrix
D ∈ Rnx×nx , the continuous-discrete model

dz(t)

dt
= D−1 GDz(t) +D−1 Lw(t),

yk = HDzk + ek,
(8)

with its initial condition given by z(t0) ∼ N (0,D−1 P∞D),
is equivalent to the state-space model (2) started at x(t0) ∼
N (0,P∞), in the sense that for all t ≥ t0 we have f(t) =
HDz(t).

In particular, this means that the gradient of the log-
likelihood log p(y1, . . . , yN | θ) with respect to the parameter
θ is left unchanged by the choice of the scaling matrix D. This
property allows us to condition our state-space representation
of the original GP using a scaling matrix D computed with
the iterative methods described in [24]. It also allows us to
compute the gradient of the log-likelihood of the observations
with respect to the GP parameters as if D did not depend on
F and, therefore, on the parameter θ. This is crucial to obtain
a stable gradient by avoiding to unroll the gradient through
the iteration necessary to compute D.

C. Converting GPs into discrete-time state space

In order to use the parallel formulation of Kalman filters and
smoothers in Section III, we need to first form the continuous
state-space model representation from the initial Gaussian
process definition. This operation is independent of the number
of measurements and, therefore, has a complexity of O(1).
When it has been formed, we then need to transform it into
a discrete-time LGSSM as given by Equation (3). In practice,
the discretization can be implemented using, for example,

matrix fractions or various other methods [18], [25]. These
operations are fully parallelizable across the time dimension
and, therefore, have a span complexity of O(1) when run on
a parallel architecture.

It is worth noting that, in the parameters learning phase, the
discretization needs only to happen for the training data points.
However, when predicting, it is necessary to insert the M
requested prediction times at the right location in the training
data so as to be able to run the Kalman filter and smoother
routines. When done naively, this operation has complexity
O(M + N). However, it can be done in parallel with span
complexity O(log(min(M,N))) by using merging operation
[26]. In addition, for some GP models, such as Matérn GPs
the discretization can be done offline, as it admits closed-form
solutions [18].

D. End-to-end complexity of parallelized state-space GPs

The complexity analysis of the six stages for running the
parallellized state-space GPs are the following:

1) Forming the continuous state-space model has both O(1)
work and span complexities.

2) Discretizing the state-space model has O(N) work com-
plexity and O(1) span complexity.

3) At training time, the parallel Kalman filtering operations
have O(N) total work complexity and O(logN) total
span complexity.

4) At training time, automatic differentiation shares the
same computational graph structure as the parallel
Kalman filter. Therefore, it has the same work and span
complexities: O(N) and O(logN), respectively.

5) At prediction time, merging the training and test data
has work complexity O(N +M) and span complexity
O(log(min(M,N))).

6) At prediction time, the parallel Kalman filtering and
smoothing operations have O(N +M) total work com-
plexity and O(log(N +M)) total span complexity.

Putting together the above we can conclude that the total
work and span complexities of doing end-to-end inference
to prediction in parallelized state-space GPs are O(N +M)
and O(log(N + M)), respectively. The memory complex-
ity is similar, although higher, than that of the sequential
algorithm, whereby we need to store all the parameters
(Ak,bk,Ck,ηk,Jk) at each time step, resulting in O(Nn2x)
memory complexity.

V. EXPERIMENTS

In this section, we show the benefits of our approach for in-
ference and prediction on simulated and real datasets. Because
GPUs are inherently massively parallelized architectures, they
are not optimized for sequential data processing, and have a
lower clock speed than cost-comparable CPUs. This makes
running the standard state-space GPs on a GPU less attractive
than running them on a CPU, contrarily to standard GPs which
can leverage GPU-enabled linear algebra routines. In order to
offer a fair comparison between our proposed methodology,
the standard GPs, and the standard state-space GPs, we have



therefore chosen to run the sequential implementation of state-
space GP on a CPU while we run the standard GP and
our proposed parallel state-space GP on a GPU. We verified
empirically that running the standard state-space GP on the
same GPU architecture resulted in a tremendous performance
loss for it (∼ 100× slower), justifying running it on a CPU for
benchmarking. All the results were obtained using an AMD®

Ryzen Threadripper 3960X CPU with 128 GB DDR4 RAM,
and an Nvidia® GeForce RTX 3090 GPU with 24GB memory.

A. Simulation model

We first study the behavior of our proposed methodology
on a simple noisy sinusoidal model given by

f(t) = sin(π t) + sin(2π t) + sin(3π t),

yk = f(tk) + rk,
(9)

with observations and prediction times being equally spaced
on (0, 4). By increasing the number of training points we can
measure the empirical time complexity (in terms of wall clock)
of our proposed parallel state-space GP (PSSGP) method
compared to the standard GP and state-space GP (SSGP).

We have taken the covariance function to be the squared
exponential (approximated to the 6th order for the state-
space GPs), corresponding to nx = 6. The training dataset
size ranges from 212 to 215 points, while the test dataset
contains 10 000 points. As it can be inferred from Figure 1, our
proposed method consistently outperforms standard GP and
SSGP across the chosen range of dataset sizes with standard
GP eventually running out of memory for larger datasets.

Figure 1. Average run time in seconds required to predict M = 10 000 test
points for noisy sinusoidal data with RBF covariance function for standard
GP, SSGP, and PSSGP (ours). The number of training data points N is given
on the x-axis.

B. Sunspots dataset

In this section, we compare regression and parameter learn-
ing via likelihood maximization using L-BFGS [27], [28] on
the monthly sunspot activity dataset provided by World Data
Center SILSO, Royal Observatory of Belgium, Brussels2. We
learn the GP parameters on the whole dataset which contains
N = 3200 points. Then, we interpolate the data on every
single day from 1749-01-31 to 2018-07-31. This results in
96 000 prediction points.

2The data is available at http://www.sidc.be/silso/datafiles.

Table I
RUNNING TIME OF LEARNING THE GP PARAMETERS ON THE SUNSPOT

DATASET RELATIVE TO PSSGP. PSSGP TOOK 39, 46, AND 48
MILLISECONDS PER FUNCTION/GRADIENT EVALUATION WHEN

N = 1200, 2 200, AND 3 200, RESPECTIVELY.

N GP SSGP PSSGP

1200 1.03 12.08 1
2200 3.82 25.7 1
3200 10.1 43.86 1

The running times of the different algorithms are shown in
Table I. PSSGP is respectively 10 and 43 times faster than GP
and SSGP, when N = 3200. Interpolating daily took 0.14s
for PSSGP, while SSGP on our CPU and standard GP on our
GPU were respectively 23 and 33 times slower.

C. CO2 concentration dataset

In order to understand the impact of the dimensionality of
the SDE, we finally consider the Mauna Loa carbon dioxide
concentration dataset3. Specifically, to model the periodic
pattern of the data, we use the composite covariance function
Cco2(t− t′) = CPer.(t− t′)CMat.(t− t′) +CMat.(t− t′) and
convert its periodic component to its state-space form using
its Taylor expansion [14]4 up to order 1, 2, and 3. This results
in SDEs of dimensions nx = 10, 14, and 18, respectively.
Then we perform HMC sampling (see, e.g., [29]) on the GP
regression model parameters. We selected monthly and weekly
data from year 1974 to 2021, which contains 3192 training
points.

Table II
RELATIVE TIME OF SAMPLING FROM THE PARAMETERS POSTERIOR

DISTRIBUTION USING HMC WITH 10 LEAPFROG STEPS ON THE CO2
DATASET. THE GP TOOK 3 SECONDS PER SAMPLE.

Order GP SSGP PSSGP

1 1 4.5 0.55
2 1 5.73 1.36
3 1 6.9 2.55

As it can be inferred from Table II, while PSSGP is still
competitive compared to SSGP for high dimensional SDE
representations, its complexity increases with the dimension to
the point where it eventually does not outperform the standard
GP anymore.

VI. DISCUSSION

We have presented a sublinear algorithm for learning and
inference in state space Gaussian processes, leveraging and
extending the parallel Kalman filter and smoother introduced
in [5]. This has allowed us to dramatically reduce the training
time for regression problems on large datasets as evidenced

3The data is available at https://www.esrl.noaa.gov/gmd/ccgg/trends/.
4Our choice of covariance function is slightly different from the one

suggested in [14] where the authors also add an RBF covariance function
term to Cco2. However, we did not see any improvement from adding this
supplementary degree of freedom and therefore left it out.

http://www.sidc.be/silso/datafiles
https://www.esrl.noaa.gov/gmd/ccgg/trends/


by our experiments on synthetic and real data. However, our
final experiment has also revealed that PSSGP scales worse
than SSGP as the dimension of the state in the state-space
representation of the GP regression problem increases. This
is due to the necessity of solving a system of nx equations
in the current parallel form of Kalman filtering, whereas
the sequential form only requires to solve ny < nx ones.
Finally, recent works [30] show that similar parallelization
techniques can also be used for non-linear state-space models,
which could then make it possible to exploit the present
methodology for Gaussian process classification and deep
state-space Gaussian processes [31].
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[3] S. Särkkä, A. Solin, and J. Hartikainen, “Spatiotemporal learning via
infinite-dimensional Bayesian filtering and smoothing,” IEEE Signal
Processing Magazine, vol. 30, no. 4, pp. 51–61, 2013.
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inverse formulation Gaussian processes (SpInGP),” in Proceedings of
the 2017 IEEE International Workshop on Machine Learning for Signal
Processing (MLSP), 2017, pp. 1–6.

[9] F. Lindgren, H. Rue, and J. Lindström, “An explicit link between
Gaussian fields and Gaussian Markov random fields: The stochastic
partial differential equation approach,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), vol. 73, no. 4, pp. 423–498,
2011.
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