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Abstract

In this article we introduce the DRIFTER algorithm, which is a new model based Bayesian method for retrospective elimination

of physiological noise from functional magnetic resonance imaging (fMRI) data. In the method, we first estimate the frequency

trajectories of the physiological signals with the interacting multiple models (IMM) filter algorithm. The frequency trajectories

can be estimated from external reference signals, or if the temporal resolution is high enough, from the fMRI data. The estimated

frequency trajectories are then used in a state space model in combination of a Kalman filter (KF) and Rauch-Tung-Striebel (RTS)

smoother, which separates the signal into an activation related cleaned signal, physiological noise, and white measurement noise

components. Using experimental data, we show that the method outperforms the RETROICOR algorithm if the shape and amplitude

of the physiological signals change over time.

Keywords: Functional magnetic resonance imaging, Physiological noise, Kalman filter, RTS smoother, Interacting multiple

models, Bayesian inference

1. Introduction

The methodology of functional Magnetic Resonance Imag-

ing (fMRI, Ogawa et al., 1990; Belliveau et al., 1991; Kwong

et al., 1992) is rapidly evolving and as the spatial resolution,

sampling frequency and signal-to-noise-ratio (SNR) of fMRI

increases, the accurate treatment of various noise sources in

measurements becomes more and more important. In addition

to thermal and other random noises, which can be modeled as

white noise, there exists several non-white noise sources as well

(Lund et al., 2006). One of the most significant non-white fac-

tors is physiological noise, which mainly consists of vascular

fluctuations and quasi-periodic oscillations caused by cardiac

and respiratory activity (Krüger and Glover, 2001). At 3 T, in

gray matter, the cardiac and respiratory noise account for a bit

over 30% of the total standard deviation. At higher fields the

physiological noise is likely to be more dominant (Krüger and

Glover, 2001).

There exists several approaches to suppress cardiac, respi-

ration and related physiological noise from fMRI measure-

ments. If the temporal resolution of the fMRI time series is

high enough, it is possible to design notch filters, which re-

move the frequency bands corresponding to cardiac pulsation,

respiration and their harmonics (Biswal et al., 1996). However,

this approach cannot cope with spectral aliasing, and it assumes

stationarity of the signal, which is not a valid assumption if the

frequency of the cardiac activity or respiration changes.
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One widely used approach to physiological noise elimination

is RETROICOR (Glover et al., 2000), which is based on fitting

a low-order Fourier basis to the data and eliminating the com-

ponents corresponding to the cardiac activity and respiration

together with their harmonics. The phases of the cardiac and

respiratory cycles are estimated from reference signals by peak-

detection and histogram based methods, respectively (Glover

et al., 2000). Unlike the notch filtering approach, RETROICOR

is able to cope well with spectral aliasing and time-varying fre-

quencies.

Other image-based physiological noise reduction approaches

include adaptive filtering (Deckers et al., 2006), Principal Com-

ponent Analysis (PCA) and Independent Component Analysis

(ICA, Thomas et al., 2002), and IMPACT (Chuang and Chen,

2001). It is also possible to do retrospective noise reduction in

k-space (Hu et al., 1995; Le and Hu, 1996; Frank et al., 2001)

or to utilize the phase information (Cheng and Li, 2010).

Due to the typical 2–4 second time resolution of echo planar

imaging (EPI) based fMRI, the physiological signals are heav-

ily aliased in the data and thus the methods have to be able to

cope with the aliasing. In image-based retrospective methods

this usually means using reference signals or taking the timings

of individual slices into account (Frank et al., 2001). In re-

cent fast acquisition methods such as Inverse Imaging (InI, Lin

et al., 2006, 2008) the sampling rates can reach 10 Hz (0.1 s),

which enables possibility to eliminate physiological noises even

without reference signals (Lin et al., 2011).

In this article, we introduce the DRIFTER algorithm, which

is a Bayesian method for physiological noise modeling and re-

moval allowing accurate dynamical tracking of the variations
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in the cardiac and respiratory frequencies by using Interact-

ing Multiple Models (IMM), Kalman Filter (KF) and Rauch-

Tung-Striebel (RTS) smoother algorithms (Bar-Shalom et al.,

2001; Grewal and Andrews, 2001). Due to the model based ap-

proach DRIFTER is not limited by the Nyquist frequency, and

can remove physiological noises also from long TR fMRI data,

provided that the frequency trajectories are estimated from a

more densely sampled signal. The frequency trajectories can

be either estimated from reference signals, or if the time res-

olution allows, directly from the fMRI signal. The estimated

frequency trajectory is used for accurate model based separa-

tion of the spatio-temporal fMRI signal into activation, physi-

ological noise and white noise components using Kalman filter

and RTS smoother algorithms. We test the performance of the

method with simulated data and fMRI data, and compare it to

the RETROICOR method.

2. Models and methods

2.1. Kalman filtering, RTS smoothing and IMM

The Kalman filter and Rauch-Tung-Striebel smoother (see,

e.g., Grewal and Andrews, 2001) are algorithms, which can be

used for computing the exact Bayesian posterior distributions

of the state in discrete-time linear Gaussian state space models

of the form:

~x(tk+1) = Ak ~x(tk) + ~q(tk)

~y(tk) = Hk ~x(tk) + ~ǫ(tk),
(1)

where ~x(tk) ∈ R
n is the state at time tk, where k = 0, 1, 2, . . .,

~y(tk) ∈ R
d is the measurement at time tk, ~q(tk) ∼ N(0,Qk) is

the Gaussian process noise, and ~ǫ(tk) ∼ N(0,Σk) is the Gaus-

sian measurement noise. Matrix Ak is the state transition ma-

trix and Hk is the measurement model matrix. In this context,

state refers to the minimum set of variables, which represents

the configuration of the system at any given time.

Note that we can also handle continuous dynamic models

(stochastic differential equations, see, Øksendal, 2003) of the

following form using the Kalman filter and RTS smoother:

d~x(t)

dt
= F ~x(t) + L~ξ(t), (2)

where ~ξ(t) is a white noise process with a given spectral density

matrix W. If we define ∆tk = tk+1 − tk then the (weak) solution

to this continuous-time stochastic differential equation can be

expressed as

~x(tk+1) = exp(∆tk F) ~x(tk)+

∫ tk+1

tk

exp((tk+1−s) F) L~ξ(s) ds. (3)

The second integral1 above is just a Gaussian random variable

with covariance

Qk =

∫ ∆tk

0

exp((∆tk − τ) F) L W LT exp((∆tk − τ) F)T dτ. (4)

1In rigorous sense the integral in (3) is actually a stochastic integral w.r.t. a
Wiener process (Øksendal, 2003), but the white noise definition is sufficient for
the present class of models.

Thus if we define Ak = exp(∆tk F), then the model becomes

equivalent to the discrete-time model in Equations (1).

The Interacting Multiple Models (IMM) algorithm (Bar-

Shalom et al., 2001) can be used for computing posterior distri-

butions of switching linear state space models, where the model

matrices depend on an additional latent variable θk:

~x(tk+1) = Ak(θk) ~x(tk) + ~q(tk)

~y(tk) = Hk(θk) ~x(tk) + ~ǫ(tk).
(5)

This variable takes values in a finite set θk ∈ Ω = {θ
(1), . . . , θ(S )}

and its dynamics are modeled with a Markov chain with a tran-

sition matrix Π:

P(θ
(i)
k
| θ

( j)

k−1
) = Πi j. (6)

The IMM algorithm provides the efficient means for computing

an S -component Gaussian mixture approximation to the joint

posterior distribution of the latent variables and states.

2.2. Modeling quasi-periodic signals with noisy resonators

As well known, band-limited zero-mean periodic signals

with period frequency f can be approximated to an arbitrary

precision with truncated Fourier series:

c(t) ≈

N
∑

n=1

an cos(2π n f t) + bn sin(2π n f t). (7)

Here we are interested in modeling quasi-periodic signals,

where the frequency f (t) is a function of time. Substituting

this into the Fourier series gives

c(t) ≈

N
∑

n=1

an cos(2π n f (t) t) + bn sin(2π n f (t) t). (8)

This model now has the serious problem that it is very sen-

sitive to changes in frequency. When t is large, even a tiny

change in the frequency causes a large change in signal c(t).

Also when the frequency suddenly changes (i.e., when f (t) has

a discontinuity), the signal c(t) has a discontinuity. One way

to circumvent this is to use the phase of the signal instead

of the frequency, that is, φ(t) =
∫ t

0
2π f (t) dt. For example

RETROICOR (Glover et al., 2000) estimates the signal phase

from the reference signals and never explicitly works with fre-

quencies. This indeed solves the problem of time-varying fre-

quencies, but there is another problem: if the coefficients an and

bn are assumed to be constant in time, this implies that the am-

plitude of the phenomenon is assumed to be constant, which is

a quite unrealistic assumption in real data.

Our approach is based on the observation that the Fourier

series (7) can also be represented in an alternative form by ob-

serving that the following differential equation (oscillator)

d2cn(t)

dt2
= −(2π n f )2 cn(t), (9)

has the solution

cn(t) = an cos(2π n f t) + bn sin(2π n f t), (10)
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where the constants an and bn are set by the initial conditions

of the differential equation. We can now replace the constant

frequency with a time varying one, which leads to the following

differential equation model for the nth harmonic:

d2cn(t)

dt2
= −(2π n f (t))2 cn(t). (11)

Unlike the extended Fourier series (8), this signal has the pleas-

ant property that it is continuous even when frequency has dis-

continuities. Note that in the case of time-varying frequency,

the solution to this differential equation is not given by the n’th

term in the Fourier series (8).

Another source of aperiodicity in the signal are the small

changes in the shape of the signal, which correspond to changes

in amplitudes and phases in the harmonics. These changes can

be modeled by adding a white noise component ξn(t) with spec-

tral density qn to the differential equation of each harmonic

component:

d2cn(t)

dt2
= −(2π n f (t))2 cn(t) + ξn(t). (12)

This equation could now be written in stochastic differential

equation form (cf. Eq. (2)) as follows:

d

dt

(

cn(t)
dcn(t)

dt

)

=

(

0 1

−(2π n f (t))2 0

) (

cn(t)
dcn(t)

dt

)

+

(

0

1

)

ξn(t). (13)

This model has the disadvantage that its discretized version

does not preserve the norm of the signal and thus when the fre-

quency changes, the amplitude changes as well. A better state

space model in this sense is

d

dt

(

cn(t)
dc̃n(t)

dt

)

=

(

0 2π n f (t)

−2π n f (t) 0

) (

cn(t)
dc̃n(t)

dt

)

+

(

0

1

)

ξ̃n(t), (14)

where the signal derivative and noise have been rescaled by di-

viding with 2π n f (t). However, this model is no longer an ex-

act state space representation of (13), because in general, there

should be a term depending on the derivative of the frequency

as well. But it is safe to leave it out, because we are model-

ing our frequency trajectory as a piecewise constant signal, and

because we have a noise term, which is able to account for the

potential modeling error.

The full quasi-periodic signal then has the representation

c(t) =

N
∑

n=1

cn(t). (15)

The model can also be represented in canonical state space form

by defining the state and vector of noises respectively as

~x =
(

c1 dc̃1/dt c2 dc̃2/dt · · · cN dc̃N/dt
)T

~ξ =
(

ξ1 ξ2 · · · ξN
)T
.

(16)

If we now define

G( f ) =

(

0 2π f

−2π f 0

)

(17a)

Fo( f ) = blockdiag (G( f ),G(2 f ), . . . ,G(N f )) , (17b)

then the stochastic state space model for the quasi-periodic sig-

nal can be written as follows:

d~x(t)

dt
= Fo( f (t)) ~x(t) + L~ξ(t) (18a)

c(t) = H ~x(t), (18b)

where the matrix L has elements L2n,n = 1 for n = 1, . . . ,N,

and all other are zero, and H = (1 0 1 0 · · · 1 0). When the

frequency trajectory f (t) is known, the model above is a time-

varying linear state space model, which is directly suitable for

Kalman filters. With unknown f (t) we can use the IMM algo-

rithm for inferring the state and frequency trajectories as will

be shown in the next section.

2.3. Processing of physiological reference signals

Assume that we have some reference sensor, which measures

the cardiac cycle such as an ECG sensor or pulse oximeter. The

cardiac signal can now be modeled with the quasi-periodic sig-

nal model described in the previous section.

To account for the possible drifting of the reference signal,

we include a time-varying bias b(t), and model it using a Wiener

velocity model:
d2b(t)

dt2
= ξb(t), (19)

where ξb(t) is a white noise process with spectral density qb.

If we define the joint state consisting of the bias and a quasi-

periodic signal with Nrc harmonics as

~xrc =
(

b db/dt c1 dc̃1/dt · · · cNrc
dc̃Nrc
/dt

)T
, (20)

then the measured reference cardiac signal yrc, which is sam-

pled at times tk can be written in form

d~xrc(t)

dt
= Frc( fc(t)) ~xrc(t) + Lrc

~ξrc(t)

yrc(tk) = Hrc ~xrc(tk) + ǫrc(tk),

(21)

where ǫrc(tk) is a Gaussian measurement noise (residual noise)

with zero mean and variance s2, which accounts for the physical

noise, uncertainties and the differences between the model and

the reality. The matrices Lrc and Hrc are defined in analogous

manner as in Equations (18).

If the frequency fc(t) is constant between the measurements,

say, has value fc(tk) on the interval t ∈ [tk, tk+1), then we can use

the discretization procedure presented in Section 2.1 to convert

the dynamic model into the form

~xrc(tk+1) = Arc( fc(tk)) ~xrc(tk) + ~qrc(tk), (22)

where ~qrc(tk) ∼ N(0,Qrc( fc(tk))). Because the frequency trajec-

tory fc(t) is unknown, we shall model it as a stochastic process

as well. We assume that the frequency is constant between the

measurements and that it can only take values from a given dis-

crete set fc ∈ { f
(1)
c , . . . , f

(Mc)
c }. If we model the time behavior of

the discrete set of frequencies as a Markov chain, we obtain a

switching linear state space model as in Equations (5) and (6),

where the latent variable is the frequency. Thus we can use the
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IMM algorithm for inferring the state and frequency trajectories

from the measurements.

The respiratory reference signal and its frequency trajectory

fr(t) can be modeled in a completely analogous manner as the

cardiac signal. Obviously, the discrete set of frequencies needs

to be different and the spectral densities of the noises need to be

set to differ from the cardiac case.

2.4. Models for physiological and activation related brain sig-

nals in fMRI

From the reference signal analysis described in the previous

section, we obtain estimates of the cardiac frequency trajectory

fc(t) and respiratory frequency trajectory fr(t). We also get es-

timates of all the harmonic components of the signals, but be-

cause the harmonic decomposition of the cardiac and respira-

tion signals as seen in the fMRI signal are likely to be com-

pletely different from what is seen in the reference signals, we

only use the frequency trajectories at this stage. We assume

that the delays between the reference signals and brain are short

enough such that the instantaneous frequencies of cardiac and

respiration signals are the same in the reference signals and in

the brain.

The fMRI data is a four-dimensional signal, where we have

separate time series for each voxel in 3D space. At this stage

we do not make assumptions about the spatial structure of the

signal or noise and treat all the voxel time series independently.

We assume that the measured signal consists of the following

components:

1. The cardiac signal is modeled as a zero mean quasi-

periodic signal with the given frequency trajectory fc(t) as

estimated from the reference signal. Thus the model has

similar form as Equation (18a), where the cardiac state ~xc

contains the states of the Nc harmonics.

2. The respiratory signal is modeled in analogous manner as

the cardiac signal, but with different frequency trajectory

fr(t) and number of harmonics Nr.

3. The activation related brain signal is assumed to be

smooth and it is modeled using the Wiener velocity model

in Equation (19). Note that if there are other slowly vary-

ing signal components, such as the scanner drift, they be-

come parts of this component and should be later removed

with appropriate filtering (e.g., high-pass filtering).

4. The measurement noise is assumed to be additive spa-

tially and temporally independent Gaussian noise with

zero mean and standard deviation s.

We can now define the state of a single voxel as concatenation

of the states of cardiac, respiration and activation related brain

signals. The full brain state is different in each spatial location

~r and thus it has the form ~x(t,~r). The full model for the dy-

namics of the state and the corresponding measurements can be

expressed as

∂~x(t,~r)

∂t
= F ~x(t,~r) + L~ξ(t,~r)

y(tk,~r) = H ~x(tk,~r) + ǫ(tk,~r),

(23)

where ǫ(tk,~r) is a spatially white zero mean Gaussian sequence

with standard deviation s, which models the measurement noise

in fMRI images. The white noises ~ξ(t,~r) are assumed to be

independent in each voxel and have a joint spectral density W,

which is independent of the position ~r.

The discretization procedure presented in Section 2.1 now

results in a model of the form

~x(tk+1,~r) = Ak ~x(tk,~r) + ~q(tk,~r)

y(tk,~r) = H ~x(tk,~r) + ǫ(tk,~r),
(24)

where ~q(tk,~r) ∼ N(0,Qk). The state transition matrix Ak and

the process noise covariance Qk are independent of the position

~r as well. This model is now of the form, which is suitable for

Kalman filter and RTS smoother.

2.5. Efficient implementation of Kalman filter and RTS

smoother for separation of fMRI signals

Because the processes are assumed to be independent in each

voxel, the estimation of the state from the fMRI data amounts to

running independent Kalman filters and RTS smoothers (Gre-

wal and Andrews, 2001) for each voxel. The computations of

the filters and smoothers can be significantly reduced by notic-

ing that if the initial covariances of the voxel signals are inde-

pendent of the voxel position, the state covariances, innovation

covariances, and gains become independent of the voxel posi-

tion as well. Thus we need to compute the covariances and

gains only once per measurement time, not for each voxel sep-

arately.

The filter and smoother means depend on the measurements

and consequently on the positions, and for this reason we still

need to evaluate mean prediction, update and smoothing equa-

tions for each voxel separately. However, they are simple ma-

trix expressions without any matrix inversions and thus light to

evaluate. As the equations are independent in each voxel, they

can very easily be computed in parallel.

3. Materials and benchmarking

3.1. Simulated data

For testing the overall behavior of the method we generated a

simple artificial data. Because all methods work quite well with

constant amplitude periodic signals, we concentrated on the less

ideal cases. The simulated data involves frequency changes,

amplitude changes, and stimulus-related drifting of the signal.

To further test the performance of the method in known con-

ditions, we generated fMRI-like artificial data. The goal was

to include all the main effects in the real data to the simulated

data. Simulated fMRI and external reference data were gener-

ated as a superposition of three different oscillating shapes. The

shapes were a ‘smiley face’ and the letters ‘A’ and ‘B’, which

can be seen in Figure 1. The face shape represents the underly-

ing noise-free hemodynamical signal and it is slowly oscillating

with a frequency around 0.03 Hz and a relative amplitude of 40

points. The letters are representing the cardiac and respiratory

signals with relative maximum amplitudes of 20 points each,
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NOISY OBSERVATION RECONSTRUCTED

Figure 1: The amplitude components in the artificial data are shown on the up-
per row. The lower row shows a noisy observation frame and the corresponding
DRIFTER reconstruction.

alternating over time. Their frequency trajectories are drawn

randomly so that they alter smoothly over time in a range of 60–

120 bpm and 10–70 cpm, respectively. The phases of the sig-

nals are non-homogeneously spatially distributed so that each

waveform spreads from the center towards the edges. Each ob-

servation is disturbed by independent Gaussian normal noise

with a relative standard deviation of 5 points. Ten independent

Monte Carlo simulations were performed to set up the datasets.

3.2. Empirical data

Empirical fMRI data and anatomical images for one volun-

teer were obtained with a 3.0 T scanner (Signa HDxt; Gen-

eral Electric) located at Advanced Magnetic Imaging Centre

of Aalto University School of Science using both 8-channel

(MRI Devices Corporation) and 16-channel (MR Instruments,

Inc.) receive-only head coils. The visual stimuli were presented

with a 3-micromirror data projector (Christie X3; Christie Dig-

ital Systems) using the Presentation software (Neurobehavioral

Systems). For the functional imaging, the major parameters

were two different repetition times (TR), 100 ms and 1800 ms;

echo time (TE), 20 ms; flip angle (FA), 60◦; field-of-view

(FOV), 20 cm; and matrix size, 64×64. In the data sets with TR

100 ms, only two slices were acquired with a spacing of 5 mm

and slice thickness of 5 mm, due to limited time for data acqui-

sition when using an extremely short TR. In the data sets with

TR 1800 ms, 29 slices were acquired with a slice thickness of

3 mm and spacing 1 mm.

The stimuli consisted of 50 achromatic photographs of fa-

miliar objects presented in the center of the visual field of the

volunteer at a distance of 37 cm from the eyes. The stimulus

condition was contrasted with fixation alone. The runs, each

roughly 120 (runs 1–8) or 240 (runs 9–12) seconds in length,

comprised of similar blocks (∼15 s of stimulus-on and ∼7 s

of stimulus-off). During the EPI-runs, the heart and respira-

Table 1: The properties of the 12 runs of fMRI data.

Run TR (ms) Coil Channels Noise Fluctuations

1–4 100 16 Moderate

5–8 100 8 Moderate

9 1800 8 Strong

10 100 8 Strong

11 1800 8 Low

12 100 8 Low

tory signals were acquired time-locked to the fMRI data using

the scanner integrated peripheral pulse measure and respiratory

belt, respectively. The sampling frequency of the physiolog-

ical signals was 1 kHz. The measurements conformed to the

guidelines of the Declaration of Helsinki, and the research was

approved by the ethical committee in the Hospital District of

Helsinki and Uusimaa.

The data consists of 12 runs altogether, where session 1 (runs

1–4) was acquired with the 16-channel coil and sessions 2 and

3 (runs 5–12) with the 8-channel coil. The amount of variation

is physiological noise signals varied in the runs. The runs are

summarized in Table 1. In runs 9 and 10 the subject was in-

structed to start breathing heavily during the run while staying

as still as possible. This was to include more extreme data into

the analysis. The fMRI data was used without any additional

preprocessing.

The number of harmonics were 3 and 4 for cardiac- and respi-

ration induced noise in both DRIFTER and RETROICOR. The

IMM algorithm was initialized with 60, 61, . . . , 120 bpm and

10, 11, . . . , 70 cpm for the cardiac and respiration frequencies,

respectively.

3.3. RMSE and SNR based benchmarking

We test the performance of the proposed DRIFTER method

by comparing it to the well-known RETROICOR method due

to Glover et al. (2000). There is a slight interpretation differ-

ence in the estimation results of RETROICOR and DRIFTER,

because RETROICOR estimates the physiological noise signals

and then subtracts them from the measured signal. DRIFTER

in turn estimates the cleaned activation related brain signal di-

rectly and thus also filters out the measurement noise. For

fair comparison, we also test DRIFTER in a RETROICOR-

compatible mode (DRIFTER(x+ ǫ), see below), where we only

subtract the estimated physiological noises from the measured

signal and retain the measurement noise part. The estima-

tion results itself are not affected, but only the interpretation

of which part of the results is noise and which part is signal.

The tested methods can be summarized as follows:

• True: The true signal characteristics (available only in the

simulated case). The SNR is calculated as the ratio of

the standard deviations of the activation and measurement

noise signals.
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• Uncorrected: The result of using the plain measured signal

without any corrections. The SNR is calculated as the ratio

of standard deviations of observed and measurement noise

signals.

• RETROICOR: The result of RETROICOR. The SNR is

calculated as the ratio of the standard deviations of the

RETROICOR result and measurement noise signals.

• DRIFTER(x + ǫ): The result of DRIFTER in the

RETROICOR-compatible mode, when we only subtract

the estimated physiological noises from the signal and re-

tain the measurement noise. The SNR is calculated from

the standard deviations of the estimation result and mea-

surement noise.

• DRIFTER(x): The result of DRIFTER when we estimate

the activation related brain signal directly, that is, also filter

out the measurement noise. The SNR is calculated from

the standard deviations of the estimation result and resid-

ual noise (i.e. the estimation error).

The methods are numerically benchmarked in terms of the fol-

lowing values:

• Root mean squared errors (RMSE) of the estimates with

respect to the true signals (available only for simulated

data).

• Signal-to-noise ratios (SNR) averaged over the voxels.

Here the SNR in a single voxel is defined by the ratio

SNR = σs/σn, where s stands for the part interpreted as

signal and n is the noise part.

• Normalized standard deviations of the components2 σx,

σn, σc, and σr averaged over the voxels, denoting the

cleaned signal, unexplained noise, cardiac and respiration

component standard deviations, respectively. The normal-

ization was done by dividing signals with the voxel stan-

dard deviation σy before averaging.

In the empirical data there is no real signal to compare to, so

we estimated the noise variance σ2
n required in the SNR cal-

culations by studying the parts of the data between the activa-

tions, where it can be supposed that the brain signal has mini-

mal contribution. To diminish the post-stimulus effects of the

hemodynamic responses to the estimate, a two-second period

of adaption was excluded after the end of each stimulus block.

However, the hemodynamic response remains non-zero also af-

ter this adaptation period (cf. Handwerker et al., 2004) and this

needs to be accounted for. To diminish the contribution of

the remaining activation and other remaining slow drifting in

the signal (such as scanner drift), we applied a windowed de-

trending smoother to the signal before estimating the noise vari-

ance. Because this simple de-trending only removes the slowly

2A detailed description of how each voxel is split into components y(t) =
x(t)+c(t)+ r(t)+ ǫ(t) and the sigmas are calculated is available as supplemental
material online.
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Figure 2: Four simple examples using one fundamental oscillator and no har-
monics. In each case the true signal sampled at 1 kHz is shown in gray, and both
the RETROICOR and DRIFTER estimates sampled at 10 Hz (TR=100 ms).

varying part of the signal, the remaining faster post-stimulus

undershoot effects still have a small contribution to the esti-

mate. This may cause slight overestimation of noise variance

and consequently underestimation of SNRs. In the case of long

TR, the filtering can over-fit to the signal, which in turn can

cause slight underestimation of the noise variance. In any case,

the comparison of the methods is fair, because same noise esti-

mation is used with all the methods.

3.4. SPM based statistical analysis

We also perform general linear model (GLM) analysis using

the Statistical Parametric Mapping software (‘SPM8’, Friston

et al., 2007) in MATLAB using the classical GLM approach3.

The design matrix of the experimental design is constructed us-

ing the stimulus timing from the experiments, with an epoch

design. As the convolution kernel function the default ‘canon-

ical HRF’ approach is used, and the activations are separately

studied. A default high-pass filter with cutoff 128 seconds is ap-

plied during the analysis. No spatial pre-processing (referred in

SPM to as realignment, normalization, and smoothing) is per-

formed.

4. Results

4.1. Results with simulated data

Figure 2 shows the performance of the RETROICOR method

and the proposed DRIFTER method in tracking simulated sig-

nals with changing frequency, changing amplitude, and DC-

level shift. Both methods can cope with time-varying fre-

quency quite well. Because such effects seem to have a stronger

3A MATLAB implementation of the DRIFTER method is available as a
SPM8 Toolbox at http://www.lce.hut.fi/research/mm/drifter/.
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Table 2: Results from the simulation study. Root mean square errors (RMSE),
signal-to-noise ratios (SNR), and the normalized standard deviations of the sig-
nal components averaged over 10 independent simulations.

Method RMSE SNR σx σn σc σr σǫ

TR=100 ms (moderate fluctuations)

True — 1.86 0.53 0.44 0.27 0.19 0.44

Uncorrected 14.28 1.55 1.00 0.74 — — —

RETROICOR 5.95 2.00 0.80 0.47 0.29 0.19 —

DRIFTER(x + ǫ) 4.67 2.35 0.75 0.40 0.34 0.24 —

DRIFTER(x) 1.06 9.18 0.57 0.09 0.34 0.24 0.39

TR=1800 ms (moderate fluctuations)

True — 0.78 0.34 0.56 0.32 0.21 0.56

Uncorrected 14.11 1.14 1.00 0.90 — — —

RETROICOR 7.43 1.13 0.73 0.66 0.48 0.30 —

DRIFTER(x + ǫ) 8.16 1.21 0.76 0.64 0.46 0.36 —

DRIFTER(x) 6.52 1.37 0.63 0.49 0.46 0.36 0.29

TR=100 ms (strong fluctuations)

True — 1.85 0.51 0.43 0.28 0.19 0.43

Uncorrected 16.77 1.54 1.00 0.75 — — —

RETROICOR 7.82 1.77 0.81 0.52 0.28 0.18 —

DRIFTER(x + ǫ) 5.00 2.23 0.74 0.40 0.34 0.24 —

DRIFTER(x) 1.20 8.47 0.55 0.09 0.34 0.24 0.39

TR=1800 ms (strong fluctuations)

True — 0.78 0.32 0.55 0.31 0.21 0.55

Uncorrected 15.89 1.14 1.00 0.90 — — —

RETROICOR 11.74 1.14 0.85 0.76 0.38 0.25 —

DRIFTER(x + ǫ) 11.07 1.19 0.80 0.69 0.31 0.31 —

DRIFTER(x) 7.38 1.35 0.62 0.47 0.31 0.31 0.37

presence in respiration signals than in cardiac signals, we

used the respiration reference signal processing algorithm of

RETROICOR (Eq. 3 in Glover et al., 2000). Normally, the

RETROICOR algorithm only computes the phases and does not

provide the direct means to reconstruct the reference signal, but

for visualization purposes we have done the Fourier reconstruc-

tion to the RETROICOR signal in the same way as is normally

done for the fMRI data itself.

The case of varying amplitude reveals one shortcoming of

RETROICOR: because it uses a global Fourier series, the am-

plitude changes cannot be taken into account and therefore the

signal reconstruction has wrong amplitude. Another shortcom-

ing is revealed by the signal drifting: there is no mechanism

in RETROICOR to track the DC-level change in the signal and

thus the RETROICOR fit is seriously distracted by the level

change in the reference. The DRIFTER method is able to track

the time varying amplitudes and level changes very well.

Table 2 and Figure 3 show the results from the simulated

fMRI-like data with repetition times 100 ms and 1800 ms

with moderate and strong fluctuations in frequency and am-

plitude. The RMSE values show that the uncorrected signal

suffers from bad divergence from the actual signal. By apply-

ing RETROICOR or DRIFTER(x + ǫ) to the data, the RMSE

levels fall considerably. In the case of short repetition times

(100 ms) DRIFTER(x + ǫ) performs on average clearly better

than RETROICOR. With the longer repetition time (1800 ms)
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Figure 3: The signal-to-noise ratios for each batch of simulated data with error
bars illustrating the minimum, maximum and mean standard deviation of the
results over 10 independent simulations.

the difference between the methods is smaller than with shorter

repetition time. In most cases, the results of DRIFTER(x) are

better than of other methods, but when interpreting the results,

one has to remember that DRIFTER(x) is the only method

where the measurement noise is also filtered out.

The SNR results for the methods are consistent with the

RMSE results. Theoretically, the SNRs of all the methods

should match the ‘True’ SNR except for DRIFTER(x), where

the elimination of measurement noise increases the SNR sig-

nificantly. It can be seen that the SNR values of RETROICOR

and DRIFTER(x+ǫ) are often higher than the true values, which

means that some of the noise has been interpreted as part of the

actual signal. This effect is stronger with shorter TRs and with

the DRIFTER method.

The dynamical properties in DRIFTER have an influence

on the accuracy of the noise component standard deviation

estimates σc, σr and σǫ , which are also shown in Table 2.

DRIFTER can be seen to have the tendency to overestimate the

amplitudes of the reference signals.

4.2. Results with empirical data

Figure 4 features results based on run 1 (see Table 1), where

the noise fluctuations are moderate. One voxel from the high-

order object-sensitive cortex (marked by a cross), with con-

firmed activation using a GLM study, was chosen for further

analysis. A spectrogram of the voxel time series shows that the

IMM estimates of the frequency trajectories match the frequen-

cies of the periodic effects in the time series.

An extract of the voxel time series over a time span of 40 s

shows the signal component estimates. Both RETROICOR and

DRIFTER return similar estimates for both cardiac- and res-

piration induced noise components. The cleaned activation re-

lated brain signal estimates by RETROICOR and DRIFTER(x+
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Figure 4: Part of the time series data of one voxel in run 1 from the high-order object-sensitive cortex with moderate fluctuations in both respiration and heart beat
rate. The spectrogram of the voxel is shown together with frequency trajectories estimated from external data. The noisy observations are shown with no correction.
The shaded background signals stimulus-on.

ǫ) resemble each other, whereas DRIFTER(x) returns a smooth

estimate with all noise contribution removed. Please note that

although we here talk about activation related signal, the slowly

varying signal in Figure 4 (and Fig. 5) actually also contains the

scanner drift, which will later be removed with a high pass filter

in SPM.

Opposed to the ideal case of well-behaved data, we also study

a similar figure with strong fluctuations in both signal amplitude

and frequency (run 10). This is visualized in Figure 5 similarly

as earlier, with a standard deviation map and component-wise

voxel time series. The difference in the scales of the time series

data in Figure 4 and 5 is due to the fact that measurements were

made on different days and with different coils.

The fluctuations in the respiration frequency strongly affect

the estimation results. This can be seen in the both cardiac-

and respiration-induced noise components. RETROICOR has

problems with amplitude tracking as anticipated in the section

with simulated data, and finally degenerates to a line when the

frequency suddenly drops. The phase–amplitude interlocking

in RETROICOR proves problematic in the cardiac component

as the amplitude is not able to change. The cleaned activation

related brain signal shows significantly lower variation in both

DRIFTER(x + ǫ) and DRIFTER(x).

Similarly as for the simulated data, we calculated SNR values

and component standard deviation estimates for the empirical

data. The SNR values are visualized as a bar chart in Figure 6.

For runs 1–4 and 5–8 the mean performance is visualized to-

gether with minima and maxima. These results show some im-

provement in SNR when using RETROICOR and clear advan-

tage when using DRIFTER. In the four remaining runs of data

the spread is stronger. RETROICOR suffers from the problem

that it too often loses the track of the signal and is performing

badly on average. DRIFTER shows improvement in SNR in all

cases, even though the difference between DRIFTER(x+ ǫ) and

DRIFTER(x) being smaller with longer TR (in runs 9 and 11).

Table 3 shows average signal standard deviations σy and

normalized standard deviations of the signal components. By

comparing the physiological noise component standard devia-

tions (σc for cardiac, σr for respiratory) it can be noticed that

DRIFTER estimates are on average 1.51- and 1.25-fold com-

pared to the RETROICOR estimates. Consequently the cleaned

BOLD signal standard deviation estimate σx is on average 13%

less in DRIFTER.

The SPM based statistical analysis was run on four differ-

ently treated sets of fMRI acquisitions from runs 1–4 and 5–8.

The tested methods were: No correction, physiological noise

removal using RETROICOR, physiological noise removal us-

ing DRIFTER(x+ǫ), and physiological and measurement noise

removal using DRIFTER(x). We chose an active set of voxels

from the visual cortex for analysis by studying activations in
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SPM and used the data from sessions 1 (runs 1–4) and 2 (runs

5–8), where the condition for successive blocks alternated be-

tween rest and visual stimulation, starting from rest. Due to T1

effects the first four seconds of scans were discarded.

Using a critical threshold of p = 0.05, the numbers of ac-

tivated voxels for which the null hypothesis of stimulus re-

lated correlation could not be rejected were 344/391, 411/439,

583/616, and 1000/920, for each method and the two sessions

respectively. The intersection of these activated voxels sets con-

tained 344 and 391 voxels. By comparing the relative change

in the t-statistic in these voxels against the statistics in the re-

sults for uncorrected noise, average 1.21/1.12-, 1.71/1.65-, and

2.65/2.50-fold increases in t-statistics were documented. These

t-statistics maps are shown in Figure 7 for one slice.

5. Discussion

5.1. Interpretation of experimental results

The simulated and experimental fMRI results clearly point

out the main difference between the RETROICOR and

DRIFTER methods: the dynamic nature of DRIFTER makes

it able to adapt to changes in both shape and amplitude in peri-

odic noise signals, without requiring these effects to be present

in the reference signal. The proposed method was also shown

to be able to track varying frequency and ignore level changes

in reference signals, whereas RETROICOR has often problems

with keeping track of rapidly varying signals, especially in the

case of time-varying amplitudes. This same problem can be ex-

pected to be present in all image-based methods that use low-

order Fourier series fitting (including the methods in Chuang

and Chen, 2001; Hu et al., 1995; Le and Hu, 1996; Frank et al.,

2001).

Artifacts in the reference signals, such as drifting, ampli-

tude changes (deep breaths) and sudden frequency changes, can

be to some extent dealt with by preprocessing the references.

However, as was shown, the IMM based method in DRIFTER

copes well with these problems, and it is able to track the fre-

quency of the desired phenomenon within a given frequency

band with confidence. The IMM based approach was more

robust and required less preprocessing than the peak-detection

and histogram-based methods in RETROICOR.

The dynamic nature of DRIFTER sometimes causes slight

overestimation of the amplitudes of reference signals in fMRI

data. This is because the model allows rapid changes, which

makes it harder to distinguish between the rapidly varying phys-

iological noises and white measurement noise. However, this

effect can be dealt with by setting the parameters of the method

into values that best model the situation. When the physiolog-

ical signal fluctuations are smaller, we can use smaller process

noises for the signals.
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Table 3: Results for the empirical data. Average signal standard deviations σy, and normalized standard deviations σi of the signal components, where the is stand
for cleaned BOLD signal x, unexplained noise n, cardiac-induced noise c, respiration-induced noise r, and the white measurement noise estimate ǫ.

Uncorrected RETROICOR DRIFTER(x + ǫ) DRIFTER(x)

Run σy σx σn σx σn σc σr σx σn σc σr σx σn σc σr σǫ

1 35.21 1.00 0.77 0.90 0.63 0.25 0.29 0.75 0.39 0.37 0.37 0.63 0.10 0.37 0.37 0.37

2 30.69 1.00 0.76 0.91 0.63 0.26 0.25 0.76 0.39 0.37 0.35 0.64 0.10 0.37 0.35 0.38

3 36.65 1.00 0.71 0.92 0.61 0.24 0.24 0.79 0.39 0.35 0.33 0.68 0.10 0.35 0.33 0.37

4 31.03 1.00 0.78 0.90 0.66 0.27 0.26 0.75 0.41 0.38 0.36 0.62 0.11 0.38 0.36 0.39

5 7.89 1.00 0.76 0.92 0.66 0.24 0.25 0.77 0.41 0.37 0.34 0.63 0.10 0.37 0.34 0.40

6 7.35 1.00 0.78 0.92 0.67 0.24 0.23 0.76 0.43 0.37 0.34 0.62 0.11 0.37 0.34 0.41

7 7.30 1.00 0.77 0.93 0.68 0.23 0.23 0.77 0.44 0.36 0.34 0.62 0.11 0.36 0.34 0.42

8 8.78 1.00 0.66 0.95 0.59 0.20 0.19 0.83 0.37 0.32 0.28 0.73 0.08 0.32 0.28 0.36

9 65.79 1.00 0.45 0.95 0.49 0.12 0.28 0.94 0.28 0.19 0.17 0.94 0.27 0.19 0.17 0.04

10 16.09 1.00 0.50 0.92 0.58 0.11 0.35 0.88 0.26 0.22 0.26 0.84 0.08 0.22 0.26 0.24

11 29.82 1.00 0.64 0.93 0.65 0.30 0.29 0.84 0.38 0.33 0.31 0.83 0.36 0.33 0.31 0.06

12 8.54 1.00 0.74 0.93 0.69 0.23 0.24 0.78 0.41 0.37 0.31 0.65 0.09 0.37 0.31 0.40
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Figure 6: The signal-to-noise ratios in experimental fMRI data for each run and
each method. The average performance is shown for runs 1–4 and 5–8 with
error bars illustrating the minimum, maximum and mean standard deviation of
the results.

We have used the DRIFTER method in two different modes

of operation: in DRIFTER(x) we eliminated not only the physi-

ological noise, but also the measurement noise from the signals,

and in DRIFTER(x + ǫ) we retained the measurement noise as

is done in RETROICOR. The former method clearly increases

the SNR of the result significantly, because of the removal of

one more noise component. But the difficulty is to know if this

‘measurement noise’ is really noise at all or should it be re-

garded as part of the activation signal. If the activation related

brain signal really is such a smooth function that our model

assumes, the correct approach would be to eliminate the mea-

surement noise as well, as has been done in DRIFTER(x).

The practical advantages of the DRIFTER method were pre-

sented using GLM analysis in the SPM software. The results in

Figure 7 showed difference in the statistical significance of the

linear model results.

5.2. Extensions and future work

It would also be possible to estimate the frequencies of the

cardiac and respiration signals with IMM directly from the

fMRI measurements, for example, from the average of voxels

in each 3D image or from some suitably chosen active region.

In practice, due to the sampling theorem by Nyquist and Shan-

non (see, e.g., Oppenheim et al., 1999), it is only possible if

the sampling frequency is at least twice the fundamental fre-

quencies of the signals. That is, to reconstruct a typical 72 bpm

cardiac signal this way, TR should be less than roughly 400 ms.

Note that the theorem only applies to continuous spectrum sig-

nals (cf. Candès and Wakin, 2008) and thus is a limitation only

on the frequency estimation stage. In the Kalman filter and RTS

smoother based fMRI signal separation the Nyquist frequency

is not a limitation. The spatial correlation of the physiological

signals could also be used for reconstructing the cardiac and

respiratory signals from multi-slice EPI data, even in the case

of long TR, in a similar way as was done by Frank et al. (2001).

Here we have assumed that we first collect a batch of data and

then estimate the frequencies and eliminate the noises. But the

present methodology would fit to real-time operation as well,

because the Kalman filter and IMM filter algorithms were orig-

inally designed for real time operation. The statistically optimal

non-delay real time operation can be done by running the IMM

filter and Kalman filter continuously with real time data and us-

ing their estimates directly without a backward pass. If we do

afford some delay, we could use so called fixed-lag smoothers
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Figure 7: Statistical parametric mapping (SPM) t-statistics maps acquired using a GLM analysis setup. The results visualize the results from using no correction of
physiological noise and three different correction methods. Only the activated voxels returned by all methods are shown. Compared to the uncorrected data average
16%, 68%, and 157% improvement rates in t-values were documented for the correction methods.

(see, e.g., Grewal and Andrews, 2001) for improving the esti-

mates.

The model constructed in this paper only consists of a smooth

activation related brain signal (that also accounts for other slow

phenomena, such as scanner drift), cardiac and respiration re-

lated physiological noises and white measurement noise. But

there exists other kinds of physiological noises as well (Krüger

and Glover, 2001; Wise et al., 2004; Birn et al., 2006; Shmueli

et al., 2007), and these could be included into the model as addi-

tional oscillators or as other kinds of stochastic state space mod-

els. Instead of using a high-pass filter based preprocessing and

a Wiener velocity model (which has 1/ f 2 spectrum), we could

use a separate long-term model for the slow signal drift (say, a

model with approximately 1/ f spectrum) and a smooth but a

bit quicker varying activation signal on top of that. We could

also use a more elaborate model for the brain activation, which

would account for the known or estimated shape of the hemo-

dynamic response (Buxton et al., 1998; Friston et al., 1998,

2000; Havlicek et al., 2011). In the case of non-linear hemo-

dynamic models, for the separation of the signal components,

we could utilize non-linear Kalman filters and RTS smoothers

(see, e.g., Bar-Shalom et al., 2001; Grewal and Andrews, 2001)

or more recently developed sigma-point and Gaussian integra-

tion based methods (Julier et al., 2000; Ito and Xiong, 2000;

Arasaratnam and Haykin, 2009; Särkkä, 2008; Särkkä and Har-

tikainen, 2010).

Here we have not used any parameter estimation methods for

determining the best parameter values, because all the parame-

ters have a clear physical meaning. However, it would be quite

easy to use a generic parameter estimation method on top of

the present state space model framework. In the Wiener ve-

locity model the process noise parameter defines the diffusion

constant of the derivative and thus ‘stiffness’ of the signal, and it

can be set to a value, which best models the brain activation that

we are expecting. In a fast event-related design we might use

a higher process noise parameter in the Wiener velocity model

than in a relatively slowly varying block design. The process

noises in the resonators define how much the signal harmonics

differ from perfect sinusoids. When setting the values of the

process noises, one should favor larger values to lower values,

to avoid too stiffmodels. The measurement noise variance is re-

ally the variance of the near-white component that we interpret

as the noise.

In the fMRI signal model presented in Section 2.4 we as-

sumed that the signals in each voxel are independent. However,

this is not the case in reality and it might be beneficial to model

interactions between the voxels as well. Especially the respi-

ration signal is highly correlated, because the signal is quite

constant in the whole brain (Glover et al., 2000). There is also

significant spatial structure in the cardiac signal (Dagli et al.,

1999; Glover et al., 2000). The interaction model could be im-

plemented by replacing the matrix F in the Equation (23) with a

suitable linear operator such as differential operator, which acts

on the spatial variable ~r. The resulting model could then be es-

timated using infinite-dimensional versions of the Kalman filter

and RTS smoother (see, e.g., Omatu and Seinfeld, 1989; Cressie
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and Wikle, 2002; Kaipio and Somersalo, 2005). Although, the

resulting algorithm might be overly complex for physiological

noise elimination alone, it might be beneficial when combined

with inversion based fMRI methods (cf. Lin et al., 2006, 2008).

6. Conclusion

In this paper we have introduced the DRIFTER algorithm,

which is a new image-based Bayesian method for retrospec-

tive elimination of physiological noise from fMRI measure-

ments. The method uses a stochastic state space model and

the interacting multiple models (IMM) algorithm for estimating

the frequency trajectories of cardiac and respiration from refer-

ence signals, or if the time resolution allows, from the fMRI

signal itself. The estimated frequency trajectories are then

used as known frequencies in a stochastic state space model,

which consists of a slowly varying activation related brain sig-

nal model and stochastic oscillator models for the physiological

signals and their harmonics. The separation of the fMRI voxel

signals into activation related brain signals and physiological

noises is done using Kalman filter and Rauch-Tung-Striebel

smoother algorithms. Due to the model based approach, the

separation operation is not limited by the Nyquist-Shannon

theorem and can be used with relatively long TRs, provided

that frequency trajectories of the physiological signals are es-

timated from more densely sampled signals. The performance

of the method was compared to RETROICOR and the exper-

imental result show that the new DRIFTER method is able to

cope with sudden changes in physiological signals better than

RETROICOR.
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