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ABSTRACT

In this article, we introduce the Fourier–Hermite Rauch–

Tung–Striebel smoother which is based on expansion of

nonlinear functions in a Fourier–Hermite series in same way

as the traditional extended Rauch–Tung–Striebel smoother is

based on the Taylor series. The first order truncation of the

Fourier–Hermite series gives the previously known statisti-

cally linearized smoother.

Index Terms— nonlinear smoothing, nonlinear filtering,

statistical linearization, Fourier–Hermite series

1. INTRODUCTION

In this article, we introduce a new Fourier–Hermite series

based method for approximate optimal smoothing of non-

linear state space models. The stochastic state space models

(see, e.g., [1, 2]) are assumed to be of the form:

xk = f(xk−1) + qk−1

yk = h(xk) + rk, (1)

where xk ∈ R
n is the state and yk ∈ R

d is the measurement of

the model at the time step k. The terms qk−1 ∼ N(0,Qk−1)
and rk ∼ N(0,Rk) are the Gaussian process and measure-

ment noises, respectively. Finally, f(·) and h(·) are the non-

linear dynamic and measurement model functions.

Smoothing solutions are used to improve filtering solu-

tions in a wide range of applications, such as guidance sys-

tems, integrated inertial navigation and passive sensor based

target tracking [1, 2, 3, 4]. Mathematically, the smoothing

solution consists of the sequence of conditional probability

distributions p(xk | y1:T ), k = 1, . . . , T of the states given all

the measurements up to the step T > k. Computing the exact

probability distributions is intractable for nonlinear functions

f and g. Here we follow the Gaussian smoothing approach

[5], where we approximate the distributions with Gaussian

distributions:

p(xk | y1:T ) ≈N(xk |mk|T ,Pk|T ), (2)

where the mean vectors mk|T and the covariance matrices

Pk|T of the approximating Gaussian distributions are com-

puted by the smoothing algorithm.

For linear f and g, the solution is exactly Gaussian and

has been found already in the 1960s. The solution con-

sists of the Kalman filter, which computes filtering distri-

butions p(xk | y1:k) = N(xk |mk|k,Pk|k) of the state xk

given all measurements up to the step k, for k = 1, . . . , T
[6, 1, 7], and the Rauch–Tung–Striebel smoother [8, 9, 10],

which computes the smoothing distributions p(xk | y1:T ) =
N(xk |mk|T ,Pk|T ).

The filtering and smoothing solutions to non-linear state

space model can be approximated with Gaussian filters and

smoothers [11, 12, 5]. In that approach, we first compute

Gaussian approximations to the filtering distributions with a

non-linear Kalman filter (= Gaussian filter) and then Gaus-

sian approximations to the smoothing distributions with

a non-linear Rauch–Tung–Striebel smoother (= Gaussian

smoother) [5].

Both the Gaussian filter and Gaussian smoother require

computation of the following three kinds of expectations [11,

12, 5, 13]:

ĝ = E[g(x)] (3)

Cov[g(x)] = E[(g(x)− ĝ) (g(x)− ĝ)T ] (4)

Cov[x, g(x)] = E[(x − E[x]) (g(x)− ĝ)T ], (5)

over Gaussian distributions. Computation of the exact values

of the Gaussian expectations is intractable for most nonlin-

ear functions. Therefore, several methods for approximating

the Gaussian expectations have been developed. A Taylor

series based approximation is used in the extended Kalman

filter (EKF) [1]. The smoother equivalent is the extended

Rauch–Tung–Striebel smoother (ERTS) [14, 15, 10]. Dur-

ing the last decade, various sigma-point and numerical in-

tegration based Gaussian approximations have been devel-

oped for the filtering problem: unscented Kalman filter (UKF)

[16, 17], Gauss-Hermite Kalman filter (GHKF) [11], central

differences Kalman filter (CDKF) [11], cubature Kalman fil-

ter (CKF) [18] and various others [19, 20, 12]. The same ap-

proximations have also been applied to non-linear smoothing

[21, 22, 23, 24].

One old nonlinear filtering method, which has not gained

that much attention since its discovery at 1970’s, is the sta-

tistical linearization based statistically linearized filter (SLF)



[25]. The smoother equivalent has been presented in [23]. Re-

cently, a Fourier–Hermite series based filter, Fourier–Hermite

Kalman filter (FHKF) was proposed [13] and it turned out

that SLF is a special case of the truncated Fourier–Hermite

series based filters [13]. In Gaussian case, Taylor series can

also be seen as an approximation to the Fourier–Hermite se-

ries [13]. Interestingly, several sigma-point methods can be

considered as numerical approximations to the statistical lin-

earization [20, 26] and thus it is likely that new higher order

sigma-point type of methods can be developed as approxima-

tions to the Fourier–Hermite series based methods.

In this article, we describe the application of Fourier–

Hermite series to non-linear smoothing and demonstrate its

performance with a numerical example.

1.1. Gaussian Smoother

In Gaussian smoothing, we assume that Gaussian approxi-

mations to filtering solution p(xk | y1:k) ≈ N(xk |mk|k,Pk|k)
have already been computed. We use the following shorthand

notation for Gaussian expectations:

E[g(xk) |mk|k,Pk|k] =

∫

Rn

g(xk) N(xk |mk|k,Pk|k) dxk

The Gaussian smoother solution is then given by [5]:

mk+1|k = E[f(xk) |mk|k,Pk|k]

Pk+1|k = E[(f(xk)− mk+1|k)

× (f(xk)− mk+1|k)
T |mk|k,Pk|k] + Qk

Ck,k+1 = E[(xk − mk|k)(f(xk)− mk+1|k)
T |mk|k,Pk|k]

Gk = Ck,k+1P−1
k+1|k

mk|T = mk|k + Gk (mk+1|T − mk+1|k)

Pk|T = Pk|k + Gk (Pk+1|T − Pk+1|k)GT
k , (6)

where we start from the filtering result on step k = T and

iterate the above equations back to k = 0. Note that all

the expectations are of the form (3) - (5). The resulting ap-

proximations to the smoothing distributions are then Gaussian

p(xk|y1:T ) ≈ N(xk |mk|T ,Pk|T ).

1.2. Linearization Based Smoothing

The classical approach to Gaussian filtering and smoothing is

linearization. It is very natural way of extending the linear

KF and RTS for nonlinear problems, because both KF and

RTS are well defined even if the linear function is different

at each time step. A linearized filter or smoother acts almost

like a linear filter or smoother which is using different linear

function at each time step. It is also easier to compute the

Gaussian expectations for the linearized functions. Lineariza-

tion by zeroth and first terms of the Taylor series leads to EKF

[1] and ERTS [14, 15, 10].

1.3. Statistical Linearization

In statistical linearization [25] of nonlinear function f(x), we

seek vector b and matrix A so that they minimize the mean

square error:

MSE(b,A) = E[(f(x)− (b + A (x − m)))T

× (f(x)− (b + A (x − m)))], (7)

where the expectation is taken over the distribution of x. The

result is:

b = E[f(x)]

A = E[f(x)(x − m)T ]P−1. (8)

It would be possible to use some other error criterion than

the square error, but with this choice the result is simple to

compute and also quite natural for our Gaussian view.

1.4. Fourier–Hermite series

The idea of linearization can be extended to higher order poly-

nomial approximations. In principle, we could extend sta-

tistical linearization to arbitrary order statistical polynomial

approximations. With arbitrary probability distribution that

would be cumbersome. For example, see general second or-

der approximation of a scalar function in [25].

For Gaussian distribution, we can simplify the computa-

tions by reformulating the problem as an orthogonal projec-

tion of the function in a Hilbert space. We define the inner

product of functions f(x) and g(x) as [13]:

〈f, g〉 = E[f(x) g(x) |m,P]. (9)

Functions for which 〈f, f〉 < ∞ form a complete inner prod-

uct space or a Hilbert space in other words.

The optimal polynomial approximation is easy to form

with an orthogonal basis of the Hilbert space, which is given

by the Hermite polynomials [27]:

H[i1,...,ik](x) = (−1)n exp

(

1

2
xT x

)

∂k exp(− 1
2xT x)

∂xi1 . . . ∂xik

.

The Hermite polynomials are orthogonal with respect to the

inner product (9) with m = 0 and P = I:

〈H[i1,...,ik], H[j1,...,jm]〉 =







k! , k = m, ip = jp,
for p = 1, . . . , k

0 , otherwise

For arbitrary m and P we have to adjust the polynomials a

little to make them orthogonal:

H[i1,...,ik](x;m,P) = H[i1,...,ik](
√

P
−1

(x − m)), (10)

where
√

P is symmetric non-negative definite square root ma-

trix. We could use Cholesky factorization L LT = P as in



[13], but due to commutativity, symmetric square root matri-

ces are easier to use in the derivation of the equations.

With the orthogonal basis, we can expand functions in a

Fourier–Hermite series as follows [13]:

f(x) =

∞
∑

k=0

1

k!

n
∑

i1,...,ik=1

E[H[i1,...,ik](x;m,P) f(x) |m,P]

×H[i1,...,ik](x;m,P)

=
∞
∑

k=0

1

k!

n
∑

i1,...,ik=1
j1,...,jk=1

E

[

∂kf(x)

∂xi1 . . . ∂xik

∣

∣

∣

∣

m,P

]

×
(

k
∏

r=1

[√
P
]

ir,jr

)

H[j1,...,jk](x;m,P)

=

∞
∑

k=0

1

k!

n
∑

i1,...,ik=1
j1,...,jk=1

∂k E[f(x) |m,P]

∂mi1 . . . ∂mik

×
(

k
∏

r=1

[√
P
]

ir,jr

)

H[j1,...,jk](x;m,P). (11)

The later two forms can be derived by repeated integration

by parts [13]. As P → 0, the FH-series becomes the Taylor

series. The uth order truncation of this series gives the MSE-

optimal uth order polynomial approximation to the function

f(x).

With orthogonal basis, we can compute the covariance by

Parseval relation [13]:

Cov[f(x)] =

∞
∑

k=1

1

k!

n
∑

i1,...,ik=1

E[H[i1,...,ik](x;m,P) f(x) |m,P]

× E[H[i1,...,ik](x;m,P) f(x) |m,P]T

=
∞
∑

k=1

1

k!

n
∑

i1,...,ik=1
j1,...,jk=1

E

[

∂kf(x)

∂xi1 . . . ∂xik

∣

∣

∣

∣

m,P

]

×
(

k
∏

r=1

Pir,jr

)

E

[

∂kf(x)

∂xj1 . . . ∂xjk

∣

∣

∣

∣

m,P

]T

=
∞
∑

k=1

1

k!

n
∑

i1,...,ik=1
j1,...,jk=1

∂k E[f(x) |m,P]

∂mi1 . . . ∂mik

×
(

k
∏

r=1

Pir,jr

)

∂k E[f(x) |m,P]T

∂mj1 . . . ∂mjk

. (12)

The covariance of the corresponding uth order approximation

is given by the uth order truncation of this series.

2. FOURIER-HERMITE RTS SMOOTHER

With Fourier–Hermite series, we can compute the expecta-

tions of (6) as

mk+1|k = E[f(xk) |mk|k,Pk|k]

Pk+1|k = Qk +

u
∑

s=1

1

s!

n
∑

i1,...,is=1

E[H[i1,...,is](xk;mk|k,Pk|k) f(xk) |mk|k,Pk|k]

× E[H[i1,...,is](xk;mk|k,Pk|k) f(xk) |mk|k,Pk|k]
T

= Qk +
u
∑

s=1

1

s!

n
∑

i1,...,is=1
j1,...,js=1

E

[

∂sf(x)

∂xi1 . . . ∂xis

∣

∣

∣

∣

mk|k,Pk|k

]

×
(

s
∏

r=1

[

Pk|k

]

ir,jr

)

× E

[

∂sf(x)

∂xj1 . . . ∂xjs

∣

∣

∣

∣

mk|k,Pk|k

]T

= Qk +
u
∑

s=1

1

s!

n
∑

i1,...,is=1
j1,...,js=1

∂s E[f(xk) |m,Pk|k]

∂mi1 . . . ∂mis

∣

∣

∣

∣

m=mk|k

×
(

k
∏

r=1

[

Pk|k

]

ir,jr

)

× ∂s E[f(xk) |m,Pk|k]
T

∂mj1 . . . ∂mjs

∣

∣

∣

∣

∣

m=mk|k

(13)

Ck,k+1 = E[(xk − mk|k) (f(xk)− mk+1|k)
T |mk|k,Pk|k]

= Pk|k E

[[

∂f(x)

∂x1
. . .

∂f(x)

∂xn

]T
∣

∣

∣

∣

∣

mk|k,Pk|k

]

= Pk|k













∂
∂m1

...
∂

∂mn






E[f(xk) |m,Pk|k]

T







∣

∣

∣

∣

∣

∣

∣

m=mk|k

First order truncation u = 1 gives the statistically linearized

RTS smoother SLRTS. If we also approximate the expecta-

tions with Pk|k = 0, we get the Taylor series based ERTS.

3. NUMERICAL EXAMPLE

To illustrate the practical applicability of the FHRTS smoother,

we applied the method to the simulated pendulum model used

in [13]. The dynamic and measurement models can be written



as

xk,1 = xk−1,1 + xk−1,2 ∆t

xk,2 = xk−1,2 − g sin(xk−1,1)∆t+ qk−1

yk = h(xk,1) + rk, (14)

where qk−1 ∼ N(0, Q), rk ∼ N(0, R), and

h(x) =







−1 , if x < −a/2 + b
0 , if − a/2 + b < x < a/2 + b
1 , if x > a/2 + b.

(15)

The parameters of the model were the same as in [13]. For

this model the FHRTS equations can be computed in closed

form.

The result of the EKF/ERTS estimate is quite far away

from the correct one and smoothing does not improve the es-

timate much, most likely because the covariance estimate of

the filtering solution is quite inaccurate. A better result is

obtained with the statistical linearization (SLRTS/FHRTS1),

that is, the first order FHRTS smoother, as shown in Figure

1(b). Because here the linearization takes into account the

whole distribution of x, the asymmetry is better accounted

and the result is much more accurate. The results of the sec-

ond order, (FHRTS2) in 1(c), and the third order, (FHRTS3)

in 1(d), smoothers are even more accurate. The RMSE val-

ues for each of the filters and smoothers are given in the cap-

tion of the Figure 1. The smoothing improves the estimates

especially with second and third order approximations. The

second order smoother is even better than the third order filter.

We implemented unscented transform, spherical cubature

and Gauss-Hermite quadrature based smoothers [22, 5, 24]

(URTS, CRTS and GHRTS, respectively) to the same prob-

lem. The error of CRTS and URTS with equivalent parame-

ters (α = 1, β = 0, κ = 0) was RMSE = 0.040, which is

similar to second order FHRTS2. With URTS different set of

parameters (α = 1, β = 0, κ = 1) result in better RMSE =

0.023 that is similar to third order GHRTS (RMSE = 0.020)

or to third order FHRTS3.

The theoretical advantage of the FH series based approach

is that a uth order truncation of the FH series is exact for poly-

nomials up to order u. Thus the uth order FHRTS smoother

computes the Gaussian expectations exactly for functions f

that are polynomials up to order u. In comparison, URTS and

CRTS smoothers compute the Gaussian expectations (in par-

ticular, the covariance) exactly only for linear f [12]. Also the

ERTS and SLRTS smoothers compute the Gaussian expecta-

tions exactly only for linear functions, that is, polynomials up

to order u = 1. GHRTS is another method that can com-

pute expectations correctly for an arbitrary order polynomial.

GHRTS smoother of order p computes the Gaussian expecta-

tions exactly for functions f that are of order p− 1 [11, 12].

The disadvantage of GHRTS is that its computational

complexity is exponential in the number of state dimensions.
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(b) First order FHRTS1
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(c) Second order FHRTS2
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(d) Third order FHRTS3

Fig. 1. The results of (a) EKF (RMSE = 0.413) and ERTS

(RMSE = 0.406), (b) first order FHKF1 (RMSE = 0.164) and

FHRTS1 (RMSE = 0.160), (c) second order FHKF2 (RMSE

= 0.041) and FHRTS2 (RMSE = 0.025), and (d) third order

FHKF3 (RMSE = 0.031) and FHRTS3 (RMSE = 0.018). The

measurements are marked with small dots, the solid blue line

is the real signal, solid green the filter estimate and dashed red

the smoother estimate.

The computational complexity depends on order p and di-

mension n as O(pn) [11, 12]. From Equation (13) we can

see that the computational complexity of uth order FHRTS is

O(nu), that is, polynomial on the state dimension.

4. CONCLUSION AND DISCUSSION

In this article, we have introduced a new Fourier–Hermite se-

ries based method for approximate optimal smoothing of non-

linear state space models. We have also analyzed the connec-

tion of the new smoother to the SLRTS and ERTS smoothers.

The new smoother was also compared in a numerical simula-

tion with the ERTS and the sigma-point based URTS, CRTS

and GHRTS smoothers.
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[23] S. Särkkä and J. Hartikainen, “Sigma point meth-

ods in optimal smoothing of non-linear stochastic state

space models,” in Proceedings of IEEE International

Workshop on Machine Learning for Signal Processing

(MLSP), 2010, pp. 184–189.

[24] I. Arasaratnam and S. Haykin, “Cubature Kalman

smoothers,” Automatica, vol. 47, no. 10, pp. 2245–2250,

2011.

[25] A. Gelb, Applied Optimal Estimation, The MIT Press,

Cambridge, MA, 1974.

[26] T. Lefebvre, H. Bruyninckx, and J. De Schutter, “Com-

ment on ”a new method for the nonlinear transformation

of means and covariances in filters and estimators” [and

authors’ reply],” IEEE Transactions on Automatic Con-

trol, vol. 47(8), pp. 1406–1409, 2002.

[27] P. I. Kuznetsov, R. L. Stratonovich, and V. I. Tikhonov,

“Quasi-moment functions in the theory of random pro-

cesses,” Theory of Probability and its Applications, vol.

V, no. 1, pp. 80–97, 1960.


