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Fourier-Hermite Kalman Filter Taylor series. The first order truncation gives the previous
known SLF [5] in a similar way as the first order truncation
Juha Sarmavuori and Sima&ka, Member, IEEE of the Taylor series gives the basic EKF. The new approach

also makes it possible to use higher order truncation of the
: __Fourier-Hermite series similar to the second order EKF. Due
. Abstract—lnthls.note, we shall presen.tanew class ofGaL{SS|an to the orthogonality of the Hermite polvnomials. anv order
filters called Fourier-Hermite Kalman filters. Fourier-Hermite A 9 Yy poly . ! Yy .
Kalman filters are based on expansion of nonlinear functions truncation is almost as easy to use as the first o_rder_ tramcati
with the Fourier-Hermite series in same way as the traditional and gives the best possible polynomial approximation in the
extended Kalman filter is based on the Taylor series. The mean squared error sense. With the Taylor series the higher
first order truncation of the Fourier-Hermite series gives the qrger truncations are much more difficult to develop than the
previously known statistically linearized filter. first or the second order truncations, and a truncation of the
Index Terms—nonlinear Kalman filtering, extended Kalman Taylor series is not the best possible polynomial approtiona
filtering, statistical linearization, Fourier-Hermite series under any simple criterion. Fourier-Hermite series exjuars
can also be derived for non-differentiable functions whsre
Taylor series expansions only exist for differentiablediions.
_ _ _ ~ We feel that introduction of orthogonal basis functions for
The Kalman filter (KF) [1] is concerned with estimation Gaussian filtering framework can lead to many new develop-
of the dynamic state from noisy measurements in the claggents.
of estimation problems where the dynamic and measurementoyrier-Hermite expansions of non-linear functions are th
processes can be approximated by linear Gaussian sta® Spaated Wiener chaos expansions of stochastic functionals
models. The KF is also applicable to linear state spapgye previously been used for approximating the formal
models with a wide range of non-Gaussian noise distribstiogontinuous-time filtering equations, for example, in [14B}.
[2]. General filtering theory for non-linear and non-Gaassi The Edgeworth series and related approximations are based
models was already presented in [3], [4], but in practicgn Fourier-Hermite expansions of probability densitiesd a
numerical solutions derived as approximations to the génethey have also been applied in optimal filtering context {17]
theory are usually computationally more demanding than tieg]. |n [14]-[19] the Fourier-Hermite expansion is applie
Gaussian approximations derived as extensions to the K&. %§ probability density. In this article, the probability rsity

Taylor series base@xtended Kalman filte(EKF) [4], and s always approximated as Gaussian and the Fourier-Hermite

filter (SLF) [5] are the classical Gaussian approximation based
extensions of the KF to nonlinear dynamic and measurem%(lt
models. ’
Recently, numerical integration based sigma point filters In this artigle, we consider discrete-time state space fsode
[6]-[10], have been introduced as alternatives to the iaks ©f the following form:
linearization based methods. Many of the sigma point method _
: . I X, = f(Xp—1) +
can also be interpreted as numerical approximations toltke S
[11]-[13]. In this note, we shall take the opposite approach Vi = hxe) + 1, @
from the sigma point methods — instead of approximatingherex, < R” is the state of the model at a time stepy,, <
the SLF we shall develop higher order approximations by? is the measuremerd,, ~ N(0,Q,,) andr, ~ N(0,R;) are
extending SLF. In numerical comparison, the new approacfaussian process and measurement noises, respectively. Th
is found to give similar results as the sigma point methodsaussian filter [7], [20] for the above model is the following
The advantage of the new method compared to the sigmg pregiction
point methods is that it provides a closed form approxinmatio
instead of applying a numerical method directly. The imple- M, = E[f(xx—1)]
mentation of the clqsed. form soluti.on can be more efficient. P, = E[(f(Xg—1) — my ) (F(Xg—1) — m;)T] +Q,;, (2
If closed form solution is not possible for some part of the ] )
problem then it is still possible to use the numerical sigma Where the expectation&[] are with respect toa 1 ~
point approach for that part. N(mg—1,Pr—1).
In this paper, we shall introduce a new class of filters that* UPdate
we call Fourier-Hermite Kalman filters (FHKF). The filters w. = E[h(xz)]
are based on a finite truncation of the Fourier-Hermite serie S — Ei(h _ h T AR
in a similar way as the EKF is based on a truncation of the k= Bl(h(k) — gy ) (0Oxk) = 1) 7] + R
Ky = E[(xe —my)(h(xi) — p;) "] S

I. INTRODUCTION

Gaussian Filter
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[I. MAIN RESULTS of the integration and the differentiation:

A. Computation of Gaussian Expectations via Fourier- 1 1y

Hermite Series &=/, g(x) [H1(L™H(x = p))], N(x|p, ) dx

The Gaussian filter (see Section |-A) requires computation :/ g(x) Zn:L 4iN(x|u %) dx

of three kinds of expectations: n = 7" O, ’

9= Elo0) ) =3 Lo [ 900N D) dx (12)
Cov[g(x)] = E[(g(x) — 8) (9(x) — "] (6) =1 Hi Jee
Cov[x,g(x)] = E[(x — E[x]) (g(x) — 8)"], (6)  Further indicesk = 2, ... follow similarly. n

. - Thus with the Theorems 1 and 2 we can construct Fourier-

whereg is f on the prediction step (2) dr on the update step . . S )
. : : S Hermite series based approximations to the Gaussian expect
(3) andx ~ N(u, X). As discussed in the introduction, in the.. : . . o
: . : tions in terms of the integral (10) and its derivatives. Aliigh,
EKF, these expectations are approximated with Taylor seri ; : . .
: . : o . .~ the closed form integration of (10) is not always possibde, f

of the function and in the sigma-point filters with numerical

intearation. As the followina theorem shows. the expectati T27Y common functions it is possible to use the random input
9 ' . 9 " b€ describing functions tabulated in [21]. Finding closednfor
can ".".SO be easily com_puted from the Four|er-Herm|te S ¥mulas for the expectations in terms of elementary fumdi
co$1;]f|C|ents c1>f At\he func?ﬁng(:(g (sFee Appgndlx_)t. . or special functions is also nowadays easier than before due
eorem 1.Assume that the Fourier-riermite Series repreg, availability of powerful computer algebra systems (CAS)

sentation (37) for the functiog(x) exists. The expectation of U . : -
T N ) sually, the integral is the hardest part, but the deriestiare
the function is the zeroth coefficient in (38) or (39): an easy task for a CAS.

E[g(x)] = ¢’ O

. L B. Fourier-Hermite Kalman Filter
and the covariance of the function is

- We present the Fourier-Hermite Kalman filter up to third
1 order using the method described in section II-A. It is easy t
Covigk)] ];1 B R ®) deduce how to compute fourth and higher order terms.

] ] « Compute mean functions
where the matriceF', € R"*™ are given by (42) or (43). The

cross-covariance between the random variable and theidanct f(m,P) = f(x) N(x|m, P) dx
can be expressed as R
Covlx, g(x)] = LCT = £ AT, ) h(m,P) = / h(x) N(x|m, P) dx. (13)

where we have arranged the vectors of (38) and (40) intoe Compute Jacobians
matrix formsC =[c} ¢} ... cl]andA =[al &} ... a]. . 9 .

Proof: Equation (7) is trivial from (38) withk = 0. [Fm(m, P)l;: = o, (M P)
Equation (8) follows from the Parseval relation (41). Equat . '
(9) is trivial from (38) and (39) witht = 1. [ ] Hm(m,P)]; i = S hi(m,P). (14)

Unfortunately, the direct use of the formulas (38) and (40) f _ o
the Fourier-Hermite series coefficient vectors would regjui + Compute higher derivatives

computation of complicated expectation integrals. Howeve » 92 .
by using the idea originally presented in [5, Eq. (6.4-18)§ f, ;(m,P) = Wf(m, P)
required number of the expectation integrals can be reduced ! 3]
to only one: " (m,P) = 0 f(m,P)
Theorem 2:Assume that we can compute the following v Om;Om;omy,
integral in closed form: : (15)
91, 2) = [ g N(x|p, ) dx. (10) »
n ~1 ~
N i, (m,P) = = ——h(m, P)
Then the derivative expectation terms in (40) can be equiva- Om;Om,
lently expressed as: N d? .
i P)= —————h(m,P
et i.gou(M: P) Im;0m;0m,, (m,P)
k A
e = g oy, S E) (1) : (16)

Proof: k = 0 is trivial. Fork = 1, we can assume that for With these approximations, the prediction and update
most functions of practical interest, we can change therorde steps of the Gaussian filter can be written as follows:
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« Prediction The second order approximation for the covariance can also
be written in a form closer to the approximation used in the

. second order EKF [22]:
m, =f(mg_1,Pr_1)

T

) 71 s T Cov[g(x)] ~ E [Gx(X)] X E [Gx(X)]
P]; = Qk + Fm Pk:—l Fm + 5 Zf;iu ]Di,j]Du,v f;‘/,q; 1 n ]
' +5 > eel tr [E[Gy(x)] = E[GL(xX)] X,
1 R T i,j=1
+3 N Hwa PiiPunPastypp oo (A7) (26)
“h whereeg; is a coordinate axis column vector with one at index
a,b

1 and zeros elsewhere.
where we used shorthand notatiéh; = [Pk,’—l]ij and Due to the orthogonality of the Hermite polynomials, the
the derivatives are evaluatedrat._; andPy_;. ’ Fourier-Hermite Kalman filter is relatively easy to compfde
« Update any given order. The Taylor series used in EKF does not have
the same property. We demonstrate this with one dimensional
expansion of the variance:

. . 1 N .
Sk =R;+Hnm Pl; Hz; + 5 Z h;,,u Pi,qu,U h;/:;,: 1
'S Vaalg(a)] = ()% + (506" 0 + 9/ ()g" (0 )
]. ~ 111 AT
+ 3 Z Riva Pij PuoPap Ny + - (18) +... (27)
W The second order EKF [22] omits thg(u)g” (1) term. It is
ab possible to develop higher order Taylor series based EKf, bu
the expansion for variance will have more and more terms
-l et of the form g® (1)g(™ (u)o**™. The Fourier-Hermite series
Kr =P, Hy S,

" L gives only terms of the forni [g(k)(x)]2 o2k,
mi =My, + Ky (v, — h(my, Py)) For a monomial of orden, thenth order FHKF gives exact
Pr =P}, — Ky S KL, (19) results for all the Gaussian expectations (4), (5) and (Bg T
_ L same is true for amth order Taylor series based EKF. The
whereP; ; = [P,],  and the derivatives are evaluated afi,scented transform [6] and the spherical cubature iniegra
m,; andP, . [9] give exact results only for first order monomials, but
the unscented transform can be made exact for second order
I1l. DISCUSSION monomials with a suitable selection of parameters [8]. The
] ] ] ) ] ~ Gauss-Hermite quadrature rule of ordegives exact results
The first order truncation of the Fourier-Hermite serie®giv fq, (n— 1)th order monomial [7]. More advanced inequalities

the statistically linearized filter [5]. The first order tation ¢, the accuracy of the FHKF could be derived from the results
of the series (37) using the coefficients of (38) leads to ”Eﬁesented in [23], [24].

same filter form as in [5], which is also correct linearizatio
for any non-Gaussian distribution. In the Gaussian case, th
statistical linearization based approximations for (4), énd

(6) can be written with the first order truncation of (37) gsin 10 illustrate the practical applicability of the proposed
the coefficients of (40) and (39) as: filters, we consider the following simulated pendulum model

whose discretized dynamic model can be written as

IV. NUMERICAL EXAMPLE

g =E[g(X)] : (20) Tt = Tx1a + 12 At
Cov[g(X)] = E[Gx(X)] = E[Gx(X)] (21) T = Th 12— g (e 1 1) AL+ g1, (28)
Cov(x,g(x)] = X E[Gx(x)]". (22) ’ ’ ’

where At = 1/1000 is the sampling periodg = 9.81 and
where the expectations[-] are with respect t&x ~ N(u, ).  qr—1 ~ N(0,Q), with Q = At/100. The measurement model
The corresponding approximations for EKF are very similais the following:

g~ g(E[X)) (23) Yo = h(@pa) + e, 1~ N(O,R), (29)
Cov[g(x)] ~ Gx(E[X]) = G (E[X])” (24) whereR = 1/1000 andh is the piecewise constant function
Cov[x,g(x)] = = Gx(E[x))". (25) -1, fz<—a/2+0b
hz)=< 0 , if —a/24+b<zx<a/2+D (30)

The order of the expectation and the nonlinear functions are
the opposite in the EKF and the SLF. Of course, with a linear
function the order is exchangeable. Also, the SLF recursiovhere the constants have the values= 0.5,6 = 0.4. In
becomes the EKF, i is small and we use approximationthe simulation it was assumed that the initial conditionseve
3 — 0 in the expectations. known with a small error of variano@01 in both of the state

1 , ifz>a/2+0,
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15

15 new filter was also compared in a humerical simulation with
1 . ¢ R ! ' ‘ the EKF and the sigma-point methods: UKF, CKF and GHKF.
O‘S\J\m 0s The performance of the FHKF and the sigma-point methods
otd _J | 0 were found equal in the simulation.
-0.5 -05
SIp “  w . \ \ APPENDIX
-15 s FOURIER-HERMITE SERIES
’ ’ (;) EKFG Rt z(b) ST_F/FHSKFl T 2;’/Ve use the following definition of the Hermite polynomials
15 15 [ ] qr
1 H,(z) = (71)“6‘?2/2 —e*‘/”z/Q, n=0,1,..., (31)

dxm
which are orthogonal with respect to the inner product ddfine
by the expectation with respect to the standard normalidistr
butionN(0,1) as(f, g) = E[f(z)g(x)]. If g(x) is a function
such thatE[g(z)?] < oo, then it has the Fourier-Hermite series
[25]:

2 4 6 8 10

(c) FHKF2 (d) FHKF3 1
9(a) = 3 7 Elg(a) Hy(«) Hy(x) (32)
Fig. 1. The results of (a) EKF (RMSE = 0.41), (b) first order FHERMSE k=0
= 0.16), (c) second order FHKF (RMSE = 0.04), and (d) thirdeorBHKF x4
(RMSE = 0.03). The measurements are marked with small dots, itlketh o L (k)
gray line is the real signal and thinner black line is thereatée. - Z k! E[g (x)]H’“ (m), (33)

k=0
where the latter representation also requires that Atie
components. Note that implementing an EKF to the model d®rivatives of the function satiSfE[g(k) (2)?] < co. When
quite hard due to the piecewise constant measurement magiel standard normal distributioN(0, 1) is replaced with an

function. Probably, the biggest practical advantage ofShE  arbitrary normal distributioN (1, o2), the representations (32)
or FHKF is that the functions do not have to be differentiableind (33) become:

The expectation of the function (10) is differentiable aligh oo

the function is not. A sensible way to implement an EKF (or ¢(;) = Z e [g(x)Hk <x — “)} H, (x — “) (34)
linearized filter) is to replace the measurement model with 0 ! g g

h(z) = (z — b)/a. The result of tracking with this simple © 4 z—p

linearized model is shown in Figure 1(a). As can be seen, = Zk'E[g(k)(z)]Hk( > )Uk. (35)

the result is quite far away from the correct one, because k=0 "

the approximation is unable to take the asymmetry in thghe Fourier-Hermite series (34), (35) can be generalized to
measurements into account. higher dimensions [25]. The multidimensional Hermite poly

Much better result can be obtained with the statisticallyomials are multi-index objects, whose elements are ptsduc
linearized filter (SLF/FHKF1), that is, the first order Farri of one dimensional Hermite polynomials. Although, the Uisua
Hermite Kalman filter, as shown in Figure 1(b). Becaus@ulti-index notation used in [16], [25], [26] is more elegaih
here the linearization takes into account the distributidn s difficult to manipulate non unity covarianc&s# | with it.

r, the asymmetry is also better accounted and the resultTigerefore we use notation similar to [26, Section 8]. Foran

much more accurate. The results of the second order Fourigider Hermite polynomial of. dimensional vectok we need
Hermite Kalman filter (FHKF2) in 1(c), and the third ordefy, indicesi,, iy, ..., € {1,2,...,m}. Indices are divided

Fourier-Hermite Kalman filter (FHKF3) in 1(d) are even morénto n, sets(J, = {k|ir, = s})"_, of, which some may be

accurate. The RMSE values for each of the filters are givempty. The size of the sets ig = |J,| € {0,...,m} so that

in the caption of the Figure 1. S ", gs = m. The elements of the Hermite polynomial are
For comparison, the same simulation was repeated atgen:

with unscented Kalman filter (UKF) [6], [10], [13], cubature n

Kalman filter (CKF) [8], [9] and Gauss-Hermite Kalman filter Him (X)]iy.o iy = H H,, (z). (36)

(GHKF) [7]. In terms of RMSE, the GHKF gives similar s=1

results as the equal order FHKF. UKF and CKF give similgfor example, lets = 3, m = 4, i1 = 3,45 = 2,i3 = 2,44 = 1,

results as the second order FHKF or GHKF. thenJ, = {4}, o = {2,3}, s = {1}, 1 = 1,2 = 2,¢3 = 1
and [H4(X)]3.2.2.1 = Hi(z1)Hz(22)Hy(z3). For smallm we
V. CONCLUSION can use other notationsly(x) = 1 is a scalarH;(x) = x is

In this note we have introduced a novel Fourier-Hermita vector andH(x) = xxT — | is a matrix.

Kalman filter for nonlinear filtering and developed a pragtic In a multidimensional case the standard deviationis
method for computation. We have also analyzed, how the negplaced with the Cholesky decompositibrof the covariance
filter solution relates to the older filters EKF and SLF. Thenatrix ¥ = LL”. One dimensional=£ is replaced with
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L~!(x— ). The multidimensional Fourier-Hermite series cam]
be written as:

S ITID VI U

Lip=1
(37)

(12]

[13]
where the coefficients corresponding to the one-dimenkiona

series (34) are given as: [14]
¢ =Blo0 -], L] @)

For sufficiently differentiable function, the multidimeasal
analog of (35) is: [16]

n k
Chrvcin = 2 &g [ L (39 1]
J1seendk=1 m=1 [18]
where
ok [19]
k _

% = B [axh . om, g(x)] ' (40)

[20]

Due to the orthogonality, the coefficient vectors satisfg th

Parseval’s relation: [21]
o0
1 [22]
Elg0) g (x)] = > 17T, (41)
k=0"" (23]
where the matrice¥;, are given by: 2
- k k T
'y = _ Z,l Cir\onin (Czllk) (42) Eg}
V1yeeeyllp=—
T k
= Z all, ik j17 H Zinnj'rn' (43)
i1yt =1 m=1
Jise-dk=1
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