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State Space Model

State space model with state xk and measurements yk :

xk = f(xk−1,qk−1)

yk = h(xk , rk ),

where qk−1 is the process noise and rk is the
measurement noise.
The state xk is the hidden internal dynamic state of the
system on the time step k
The measurements yk model the output of the system
We want to estimate the state from the measurements and
use it for model based prediction of the time series
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Optimal Filters and Predictors

Given measurements y1, . . . ,yT optimal filter produces
MMSE optimal online estimate:

x̂(tk ) = E(x(tk ) |y1, . . . ,yk ).

for each k = 1, . . . ,T .
Can be also used for computing the optimal predictions:

x̂(t) = E(x(t) |y1, . . . ,yk ).

for t > tk .
If the state space model is linear (i.e., Gaussian process),
then Kalman filter provides the optimal solution
If it is non-linear, then unscented Kalman filter can be used
for approximating the optimal solution
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Optimal Smoothers

Optimal smoother produces the optimal batch estimate:

x̂(tk ) = E(x(tk ) |y1, . . . ,yT ).

If the dynamic model is linear, then Rauch-Tung-Striebel
(RTS) smoother provides the optimal solution
Approximate smoothers for nonlinear problems exists also
In this article, the dynamic model is linear (i.e., Gaussian
process) given the parameters and thus the linear RTS
smoother suffices
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Idea of the Approach

Model the time series as consisting of periodic and bias
components with a linear state space model
Model the signal-residual dependence by including a
non-linear correction term into the model
Model the remaining residual autocorrelation with an
autoregressive (AR) model
Estimate the parameters and predict the time series with
the model using the unscented Kalman filter (UKF) and
Rauch-Tung-Striebel (RTS) smoother as the numerical
methods
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Bias and Periodic Components 1/3

0 100 200 300 400 500 600 700 800 900
18

20

22

24

26

28

30

Signal model:

yk = xb(k)+xr (k)+rk

Bias component xb(t) is
modeled as integral of a white
noise process wb(t)

dxb

dt
= wb(t)

Periodic component xr (t) is
modeled as a white noise
driven stochastic resonator

d2xr

dt2 = −ω2 xr + wr (t)
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Bias and Periodic Components 2/3

Can be written as discretely measured continuous-time
vector process x(t) = (xb(t) xr (t) dxr (t)/dt)T as follows:

dx
dt

= F x(t) + L w(t)

Linear system theory⇒ equivalent discrete time model:

xk = A xk−1 + qk−1

Measurement model is of the form

yk = H xk + rk

Linear state space model⇒ Kalman filter can be applied.
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Finding the parameters that minimize the 50 step prediction
error, results in the following kind of prediction:
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Non-linear Correction Term
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5th degree polynomial gives a
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non-linear

yk = xb(r)+
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i=0

ci

(
xr (k)
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+ rk

Use unscented Kalman filter
(UKF) instead of Kalman filter
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ek =
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ai ek−i + rark

Can be estimated with
Rauch-Tung-Striebel smoother
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Estimation of parameters

The unknown parameters are the spectral densities of
process noises and the angular velocity of the resonator
Form a discrete grid of sensible parameter values
Evaluate parameters by computing 50 step prediction
errors in known parts of time series
First find roughly the location of minimum and form denser
grid on that area
Find the final smoothed estimate of the time series and
make final prediction with the parameter values giving the
minimum error
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minimum error
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Prediction

The final estimate of the signal and the prediction result:
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Summary

First the bias and periodic components are modeled as
linear state space model
Non-linear dependence between residual and periodic
component is modeled with 5th degree polynomial
Remaining autocorrelation is modeled with second order
autoregressive (AR) model
The estimation and prediction is done with unscented
Kalman filter and Rauch-Tung-Striebel smoother
Quite classical model based (Bayesian) approach, where
the uncertainties are modeled as stochastic processes
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