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Abstract. This paper is concerned with estimation of learning curves
for Gaussian process regression with multidimensional numerical inte-
gration. We propose an approach where the recursion equations for the
generalization error are approximately solved using numerical cubature
integration methods. The advantage of the approach is that the eigen-
function expansion of the covariance function does not need to be known.
The accuracy of the proposed method is compared to eigenfunction ex-
pansion based approximations to the learning curve.
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1 Introduction

Gaussian process (GP) regression [1, 2] refers to a Bayesian machine learning
approach, where instead of using a fixed form parametric model such as a MLP
neural network [3] one postulates a Gaussian process prior over the model func-
tions. Learning in Gaussian process regression means computing the posterior
Gaussian process, which is conditioned to observed measurements. The predic-
tion of unobserved values amounts to computing predictive distributions and
their statistics.

This paper is concerned with approximate computation of learning curves for
Gaussian process regression. By learning curve we mean the average generaliza-
tion error ǫ(n) as function of the number of training samples n. A common way
to compute approximations to the learning curves is to express the approximate
average learning curve or its bounds in terms of the eigenvalues of the covari-
ance function [4–8]. Upper and lower bounds for one-dimensional covariance
functions, in terms of spectral densities and eigenvalues have been presented in
[9]. One possible approach is to express the lower bound for the learning curve in
terms of the equivalent kernel [10], which leads to similar results as the classical
error bounds for Gaussian processes (see, e.g., [11, 12]). Statistical physics based
approximations to GP learning curves have been considered in [13, 14].

In this paper we shall follow the ideas presented in [5, 8], but instead of using
the eigenfunction expansion, we approximate the integrals over the training and
test inputs with multidimensional numerical integration. The advantage of the
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approach is that the learning curve can be evaluated without the knowledge of
the eigenfunctions and eigenvalues of the covariance function. In the numerical
integration methods, we shall specifically consider application of multidimen-
sional generalizations of Gauss-Hermite quadratures, that is, Gauss-Hermite cu-
batures for computation of the multidimensional integrals. The usage of such
numerical cubature rules has also recently gained attention in context of non-
linear Kalman filtering and smoothing [15–18].

2 Recursion for Learning Curve

Consider the following Gaussian process regression model:

f(x) ∼ GP(0, C(x,x′))

yk = f(xk) + rk,
(1)

where yk, k = 1, 2, . . . , n are the measurements, rk ∼ N(0, s2) is the IID measure-
ment error sequence, and the input is x ∈ R

d. That is, the unknown function
f(x) is modeled as a zero mean Gaussian process with the given covariance
function C(x,x′). Here we shall assume that both the function f(x) and the
measurements yk are scalar valued, but the extension to vector case is straight-
forward. We shall also assume that the prior Gaussian process has zero mean for
notational convenience.

Given nmeasurements y = (y1, . . . , yn) at input positions x1:n = (x1, . . . ,xn)
the posterior mean and covariance functions of f are given as [1, 2]:

m(n)(x) = C(x,x1:n) [C(x1:n,x1:n) + s2 I]−1 y

C(n)(x,x′) = C(x,x′)− C(x,x1:n) [C(x1:n,x1:n) + s2 I]−1 CT (x′,x1:n).
(2)

For the purposes of estimating the learning curves, we shall assume that the
input positions in the training set xk are random, and form an IID process
x1, . . . ,xn such that xk ∼ p(x). If we assume that the test inputs have the
distribution x ∼ p∗(x), we obtain the following well known expression for the
average generalization error of the Gaussian process:

ǫ(n) =
〈

C(x,x)− C(x,x1:n) [C(x1:n,x1:n) + s2 I]−1 CT (x,x1:n)
〉

, (3)

where the expectation is taken over both the training and test input positions
x1, . . . ,xn ∼ p(·) and x ∼ p∗(·), respectively. Note that the error is no longer
function of the measurements y1, . . . , yn, nor the input positions.

This Gaussian process regression solution (2) can also be equivalently written
in the following recursive form:

– Initialization: At initial step we have

m(0)(x) = 0

C(0)(x,x′) = C(x,x′).
(4)
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– Update: At each measurement we perform the following update step:

m(k+1)(x) = m(k)(x) +
C(k)(x,xk)

C(k)(xk,xk) + s2
(yk −m(k)(x))

C(k+1)(x,x′) = C(k)(x,x′)− C(k)(x,xk)C
(k)(x′,xk)

C(k)(xk,xk) + s2
.

(5)

The result at step k = n will then be exactly the same as given by the equations
(2). This recursion can be seen as a special case of the update step of infinite-
dimensional distributed parameter Kalman filter (see, e.g., [19, 20]) with a trivial
dynamic model.

Using these recursions equations, we can now write down the formal recursion
formula for the covariance function, which is averaged over n training inputs as
follows:

Ĉ(k+1)(x,x′) = C(k)(x,x′)−
∫

Rd

C(k)(x,xk)C
(k)(x′,xk)

C(k)(xk,xk) + s2
p(xk) dxk. (6)

In this article, we shall follow [8] and ignore the dependence from the inputs
before the previous step and approximate this as

Ĉ(k+1)(x,x′) = Ĉ(k)(x,x′)−
∫

Rd

Ĉ(k)(x,xk) Ĉ
(k)(x′,xk)

Ĉ(k)(xk,xk) + s2
p(xk) dxk. (7)

The approximation to the average generalization error is then given as

ǫ(n) =

∫

Rd

Ĉ(n)(x,x) p∗(x) dx. (8)

3 Eigenfunction Expansion Approximation of Recursion

As done in [8], we can use the eigenfunction expansion method for solving the
approximate average generalization error as follows. By Mercer’s theorem the
input averaged kernel Ĉ(k)(x,x′) has the eigenfunction expansion

Ĉ(k)(x,x′) =

∞
∑

i=1

λ
(k)
i φi(x)φi(x

′), (9)

where φi(x) and λ
(k)
i are the orthonormal set of eigenfunctions and eigenvalues

of the kernel such that

λ
(k)
i φi(x) =

∫

Rd

Ĉ(k)(x,x′)φi(x
′) p(x′) dx′. (10)

Substituting the series into the recursion (7) now gives

Ĉ(k+1)(x,x′) =
∑

i

λ
(k)
i φi(x)φi(x

′)

−
∫

Rd







[

∑

i λ
(k)
i φi(x)φi(xk)

] [

∑

j λ
(k)
j φj(x

′)φj(xk)
]

[

∑

i λ
(k)
i φi(xk)φi(xk)

]

+ s2







p(xk) dxk.

(11)
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If we approximate the latter integral by taking expectations separately in de-
nominator and numerator, then by the orthonormality properties of the eigen-
functions this reduces to:

Ĉ(k+1)(x,x′) =
∑

i






λ
(k)
i −

[

λ
(k)
i

]2

∑

j λ
(k)
j + s2






φi(x)φi(x

′), (12)

which implies that Ĉ(k+1)(x,x′) also has an eigenfunction expansions in terms

of the same eigenfunctions. If we denote the coefficients as λ
(k+1)
i , then the

approximate recursion equation for the coefficients is given as

λ
(k+1)
i = λ

(k)
i −

[

λ
(k)
i

]2

∑

j λ
(k)
j + s2

(13)

If we have p∗(x) = p(x), then the approximation (8) to the average generalization
error now reduces to [8]

ǫD(n) =
∑

i






λ
(n)
i −

[

λ
(n)
i

]2

∑

j λ
(n)
j + s2






. (14)

We could then proceed to use further approximations by considering n as con-
tinuous, which would lead to UC and LC approximations [8]:

– The upper continuous (UC) approximation has the form

ǫUC(n) = s2
∑

i

λi

n′ λi + s2
, (15)

where λi are the eigenvalues of the prior covariance function, and the effec-
tive number of training examples n′ is the solution to the self-consistency
equation

n′ +
∑

i

ln
(

1 + s−2 n′λi

)

= n. (16)

– The lower continuous (LC) approximation is the solution to the self-consist-
ency equation

ǫLC(n) = s2
∑

i

λi

n′ λi + s2
, (17)

where n′ = s2 n/[s2 + ǫLC(n)].
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4 Numerical Cubature Approximation of Recursion

Cubature integration refers to methods for approximate computation of integrals
of the form

E[g(x)] =

∫

Rd

g(x) p(x) dx, (18)

where p(x) is some fixed weight function. In particular, cubature integration
methods here primarily refer to multidimensional generalizations of Gaussian
quadratures, that is, to approximations of the form

E[g(x)] ≈
∑

i

W (i) g(x(i)), (19)

where the weights W (i) and the evaluation points x(i) are (known) functionals of
the weight function p(x). In particular, when p(x) is a multidimensional Gaus-
sian distribution, we can use multidimensional Gauss-Hermite cubatures or more
efficient spherical cubature rules (see, e.g., [21, 16, 17]). However, because here
we need quite high order rules and construction of such efficient higher order
spherical rules is quite complicated task, here we have used simpler Cartesian
product based Gauss-Hermite cubature rules.

We can now use a multidimensional cubature approximation to the integral
in Equation (7) which leads to the following:

Ĉ(k+1)(x,x′) = Ĉ(k)(x,x′)−
∑

i

W (i) Ĉ
(k)(x,x(i)) Ĉ(k)(x′,x(i))

Ĉ(k)(x(i),x(i)) + s2
, (20)

where the weights W (i) and sigma points x(i) correspond to integration over
the training set distribution p(x). For arbitrary x and x′ we thus may now
run the recursion (7), apply the above approximation on each step and get an
approximation to Ĉ(n)(x,x′). Analogously, we can now form approximation to
the average generalization error in Equation (8) as follows:

∫

Rd

Ĉ(n)(x,x) p∗(x) dx ≈
∑

j

W ∗(j) Ĉ(n)(x∗(j),x∗(j)), (21)

where the weights W ∗(i) and sigma points x∗(i) correspond to integration over
the test set distribution p∗(x). The computation of the latter integral can now
be done by evaluating the former quadrature based approximation (20) at the
quadrature points of the latter integral, that is, at x = x′ = x∗(j). Note that
this procedure might underestimate the generalization error slightly, because
the sigma points for the train and test sets are in the same positions. It would
be possible to use different sigma points for train and test sets, but then the
computation would be slightly more complicated.

We can now compute simple approximation to the learning curve by assuming
that p∗(x) = p(x) and by using the same cubature rule for train and test sets.
This leads to a single set of sigma points x(i) = x∗(i) and weights W (i) = W ∗(i).
The algorithm can be implemented as follows:
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– Initialize the elements of matrix P(0) as follows:

P
(0)
ii′ = C(x(i),x(i′)). (22)

– for n = 1, . . . , N do

P(n) = P(n−1) −
∑

i

W (i)P
(n−1)
∗i P

(n−1)
i∗

P
(n−1)
ii + s2

, (23)

where P∗i denotes the ith column of P and Pi∗ denotes the ith row.
– The approximate learning curve is given as

ǫC(n) =
∑

i

W (i)P
(n)
ii . (24)

5 Numerical Comparison

We tested the error bounds presented in this article using 1d and 2d squared
exponential (SE) covariance functions exp(−|x − x′|2/(2l2)) and with Matérn
covariance function (1+

√
3|x−x′|/l) exp(−

√
3|x−x′|/l)). For SE covariance we

used the parameters values l = 1, σ2 = 10−3. The parameters for the Matérn
covariance were selected to be l = 1, σ2 = 0.1. The input and test sets were
assumed to have a zero mean unit Gaussian distribution, for which the weights
W (i) and evaluation points x(i) can be obtained by using existing methods.

In addition to the bounds ǫD(n) defined in Equation (14), ǫUC(n) in (15),
ǫLC(n) in (17),and the proposed bound ǫC(n) in (24), we also compared to the
following well known Opper-Vivarelli (OV) bound [5]:

ǫOV (n) = s2
∑

i

λi

nλi + s2
. (25)

For the SE covariance functions we used the known closed form formulas for the
eigenvalues, in the 1d Matérn case we computed the eigenvalues numerically. In
the 2d Matérn case the eigenvalues were not available, because the eigenvalue
problem became too big to be solved with the required numerical accuracy. We
used 60th order Gauss-Hermite quadrature for the 1d ǫC(n) calculations and
20th order Gauss-Hermite product-rule cubature for the 2d ǫC(n) calculations.
For all the cases, we also computed approximation to the ’true’ generalization
error curve ǫMC(n) using Monte Carlo method with 100 independent training
sets for each training set size 1–100, and the generalization error was estimated
with test sets of size 100, which were drawn independently for each MC sample.

The learning curves computed using different approximations are shown in
Figure 1. As can be seen in the figures, in the 1d and 2d SE cases the proposed ap-
proximation ǫC(n) overestimates the error, but is still much better than ǫOV (n)
and its relative accuracy is close to the other methods. In the 1d and 2d Matérn
cases the proposed approximation is very accurate. The overall performance of
the proposed method is very good given that it does not need the eigenvalues of
the covariance function at all.
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Fig. 1. Learning curves for squared exponential (SE) and Matérn covariance functions
with input dimensions 1 and 2.

6 Conclusion

In this article we have presented a new cubature integration based method for
approximate computation of learning curves in Gaussian process regression. The
advantage of the method is that it does not require availability of eigenvalues
of the covariance function unlike most of the alternative methods. The accu-
racy of the method was numerically compared to previously proposed eigenfunc-
tion expansion based methods and the propoposed approach seems to give good
approximations to learning curves especially in the case of Matérn covariance
function.
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