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Abstract

This article considers the application of the unscented transformation to approxi-
mate fixed-interval optimal smoothing of continuous-time non-linear stochastic sys-
tems. The proposed methodology can be applied to systems, where the dynamics
can be modeled with non-linear stochastic differential equations and the noise cor-
rupted measurements are obtained continuously or at discrete times. The smoothing
algorithm is based on computing the continuous-time limit of the recently proposed
unscented Rauch-Tung-Striebel smoother, which is an approximate optimal smooth-
ing algorithm for discrete-time stochastic systems.
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1 Introduction

In this article, we present a new approximation algorithm to continuous-time
fixed-interval optimal smoothing of non-linear stochastic state space models.
Optimal smoothing in the context of state space models refers to statistical
methodology that can be used for computing estimates of the past state history
of a time varying system based on the history of noisy measurements obtained
from it. By continuous-time we mean that the dynamics of the system are
modeled with continuous-time state space models, that is, with stochastic
differential equations. The derived continuous-time smoothers can be equally
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applied to models, where the measurements are obtained continuously or to
models where the measurements are obtained at discrete time instants.

1.1 Optimal Smoothing in Continuous-Time

Optimal smoothing problems are classically divided into fixed-point, fixed-lag
and fixed-interval smoothing problems:

e [ized-point smoothing refers to methodology, which can be used for effi-
ciently computing the optimal estimate of the initial state or some other
fixed-time state of a state space model, given an increasing number of mea-
surements after it. This kind of estimation problem arises, for example, in
estimation of the state of a space craft at a given point of time in the past
[1] or in alignment and calibration of inertial navigation systems [2].

e [Fized-lag smoothing is methodology for computing delayed estimates of state
space models given measurements up to the current time plus up to a con-
stant horizon in the future. Fixed-lag smoothing can be considered as opti-
mal filtering, where a constant delay is tolerated in the estimates. Potential
applications of fixed-lag smoothing are all the problems where optimal filters
are typically applied, and where the small delay is tolerated. An example of
such application is digital demodulation [3].

e Fized-interval smoothing can be used for computing estimates of a fixed
time interval of states given the measurements on the same interval. These
kind of batch estimates of the whole history of a state trajectory are often
useful, for example, in target tracking, navigation, audio signal processing,
machine learning, time series analysis and time series prediction [4-8].

In this article, we shall specifically concentrate on fixed-interval smoothing
problems associated to continuous-time models. The corresponding fixed-point
and fixed-lag algorithms could be derived from the fixed-interval smoothers in
a quite straight-forward manner (cf., [1,9]), but they are not considered here.

Although, at the first glance continuous-time algorithms would not seem to
be very useful in the current world of digital computers, in modeling point of
view continuous-time systems are often more appropriate models of physical
systems than discrete-time models. The Nature is — when the current physical
theories are considered — still a continuous-time system. And when the models
are in continuous time, the algorithms are also most naturally formulated in
continuous time.

Another reason for studying continuous-time models is that digital computers
are not the only possible devices for implementing estimation algorithms. Al-
though, analog computers as such are not utilized in practical computations
anymore, signal processing and control systems are still often implemented



using analog electrical components or are based on mechanical and optical
phenomena. In such implementations, continuous-time algorithms are much
more suitable than discrete-time algorithms.

1.2  Problem Formulation

In this article, we shall consider the application of the unscented transforma-
tion [10,11] to optimal smoothing of state space models with continuous-time
dynamics. Discrete-time unscented transformation based (two-filter) smoothers
have already been discussed in [12] and the discrete-time unscented Rauch-
Tung-Striebel smoother (URTSS) has been presented in [13]. In this article we
shall derive continuous-time versions of the URTSS using similar procedure as
was used for deriving the continuous-time and continuous-discrete unscented
Kalman filters in the article [14].

The considered models can be pure continuous-time models, where both the
dynamics and measurements are modeled in continuous time such as

dx(t)
dt = f(i(](t), t) + L(t) G(t) (1)
y(t) = h(x(t),t) +v(D),

or continuous-discrete state space models, where the dynamics are modeled
in continuous time, but the measurements are obtained at discrete instants of
time:

dx(t)
d

f(@(t),8) + L(t) () (2)

t
Yk

In the models above t € [0,00) denotes the continuous time variable and
k€ {0,1,2,...} is the discrete time step number occurring at the time instant
t.. The various terms are defined as follows:

o x(t) = (z1(t),...,x,(t)) € R™ is the continuous-time state process.

e f(-) is the non-linear drift function.

e ¢(t) is the process noise, which is a zero mean Gaussian white noise process
with spectral density matrix Q.(t) € R***. The noise process is assumed to
be independent of states and measurement noise.

o L(t) € R™** is the noise-feedback matrix, independent of states, measure-
ments and noises.

e v(t) is the continuous-time measurement noise, which is a zero mean Gaus-
sian white noise process with spectral density matrix R.(t) € R%9. The
noise process is assumed to be independent of states and process noise.

o y(t) = (yi(t),...,ya(t)) € R?is the continuous-time measurement process.



o Y = (Yk1s.--,Yak,) € R? is the discrete-time measurement obtained at the
time instant t.

e h(-) is the non-linear measurement model function,

e 71} is the discrete-time measurement noise at the time instant ¢y, and it is
a zero mean Gaussian white noise sequence with covariance matrix Ry €

Rme

In statistical estimation sense then purpose of the fixed-interval optimal smoother
is to efficiently compute the marginal posterior distributions of the states at
all times on the considered interval. That is, if the time interval is [0, 7] and
the measurements are modeled in continuous time, we want to compute the
distributions

p(x()[{y(r) : 0 <7 <T}),
for each ¢ € [0,7]. If the measurements are modeled in discrete time, the
corresponding posterior distribution is

p(l’(t) | Y- - 7yT)7

which we want to compute for each ¢ € [0,¢7|. In practical computations
we often compute the point estimate of the state as the posterior mean of
the distribution, which is the minimum mean squared estimate (MMSE) of
the state. Furthermore, the uncertainty of the mean can be estimated by
computing the posterior covariance of the state.

The continuous-time filtering model (1) and the dynamic model (2) fall into the
class of models called stochastic differential equations. The theory of stochastic
differential equations is well known, and it is commonly formulated in terms of
Ito calculus, which is the theory of differential calculus of stochastic processes
(see, e.g., [15,16]). In rigorous mathematical sense, for example, the dynamic
model (2) should be actually interpreted as a stochastic integral equation of
the form

o(t) = a(s) = [ Sate) de+ [ D)), g

which can be written more compactly as

dx(t) = f(x(t),t)dt + L(t) dp(t), (5)

where (3(t) is a Brownian motion with diffusion matrix Q.(t). If we define
the white noise €(t) as the formal derivative of the Brownian motion €(t) =
dp(t)/dt, the equation (5) can be formally written in form (2).

In this article, we shall interpret the stochastic differential equations in the
sense of Stratonovich [17], because in that interpretation the mathematical
treatment of white noise can be done as if it was a non-random function. This
does not affect the interpretation of the models (1) and (2) as such, because
noises in these models are purely additive. However, the derived continuous-



time mean, covariance and sigma point differential equations, when they con-
tain stochastic terms, should be interpreted in Stratonovich sense.

The difference between Ito and Stratonovich equations actually arises from
how the stochastic integral of the form

[ pato).0 o), )

where z(t) is a [f-adapted stochastic process, is defined. In the It6 interpre-
tation the definition is chosen such that the integral becomes a martingale.
The disadvantage of this is that the conventional chain rule of calculus no
longer applies and the It6 formula has to be used instead. In Stratonovich in-
terpretation the integral is defined such that the normal chain rule as well as
other normal calculus rules apply, but the integral ceases to be a martingale.
These properties make formal manipulation of Stratonovich stochastic differ-
ential equations easier than of It6 stochastic differential equations, but direct
theoretical analysis of Stratonovich equations is more complicated than that
of Itd6 equations. For discussion about the applicability and physical signifi-
cance of the Stratonovich integral the reader is referred to [16,17]. Stratonovich
stochastic differential equations can always be converted into equivalent 1to
equations by using simple transformation formulas [16,17].

Because in the stochastic differential equation (4) the noise-feedback matrix
does not depend on the state, that is, we have L(x(t),t) = L(t), the definitions
coincide. In this sense it does not matter whether the Ito6 or Stratonovich
interpretation of the model equation is used. However, in the derivation of
the continuous-time smoother equations the formulas do contain more general
stochastic integral terms, where the different interpretations potentially do
matter, and because the derivation is based on normal rules of calculus, the
resulting equations should be interpreted in Stratonovich sense.

1.8 Approaches to Approzimate Optimal Smoothing

Kalman filtering [18,19] and more general optimal filtering [20-24] are closely
related to optimal smoothing, and for this reason most of the existing ap-
proximate non-linear optimal smoothing methods are based on similar ap-
proximations as is used in optimal filters. These kind of approximations are,
for example, Taylor series approximations of extended Kalman filters [22],
sigma-point approximations used in unscented Kalman filters [11,12,25,26]
and Monte Carlo approximations used in particle filters [27,28].

The solution to the fixed-interval linear Gaussian smoothing problem in both
continuous and discrete time settings is given by the Rauch-Tung-Striebel



smoother [29,30]. Alternatively the solution can be represented as a combina-
tion of two Kalman filters, one running forwards and another backwards in
time [31]. All the solutions to linear Gaussian smoothing problems are well
known and well documented in many text books [1,9,24,32,33|. Taylor series
based approximations the more general formalism is also well documented in
the literature [9,23,32,34-36].

Unscented transformation based two-filter type optimal smoothing in discrete-
time model context has already been discussed in [12] and the discrete-time
unscented Rauch-Tung-Striebel smoother was presented in the recent article
[13]. Discrete-time Monte Carlo based particle smoothing methods are de-
scribed in the articles [5,7].

Continuous-time optimal smoothing has recently received less attention in
applied literature, and the continuous-time smoothing methods can be more
easily found in older books [1,23,32]. However, in the recent book [9] also the
continuous-time linear and non-linear smoothing is considered. In this article
we shall present a new continuous-time smoothing algorithm, which is based
on the unscented transformation, or more specifically, is the continuous-time
limit of the unscented Rauch-Tung-Striebel smoother [13].

1.4 Contributions and Organization of the Paper

The main contribution of the paper is to derive equations of the continuous-
time version of the unscented Rauch-Tung-Striebel smoother [13]. The deriva-
tion is based on the similar limiting procedure as was used for deriving the
continuous-time unscented Kalman filter from the discrete-time filter in [14].
Some of the results have already appeared in the doctoral thesis [37], but here
the results are significantly extended and more throughly analyzed.

The organization of the paper is the following:

e The unscented transformation, discrete-time unscented Kalman filter and
continuous-time unscented Kalman filter are reviewed in Sections 2.1, 2.2,
and 2.3, respectively.

e The additive form of the discrete-time unscented Rauch-Tung Striebel is
presented in Section 3.1. The derivation of the basic continuous-time un-
scented Rauch-Tung-Striebel smoother is presented in Section 3.2 and the
sigma-point form is derived in Section 3.3

e The computational complexity of the algorithms is analyzed in Section 4.

e In Section 5 a numerical example is presented, where the proposed algorithm
is applied to a simulated non-linear filtering and smoothing problem.



2 Unscented Kalman Filter

The unscented transformation (UT) [11] is a relatively recent method for ap-
proximating non-linear transformations of random variables. Instead of Tay-
lor series approximations, it is based on forming a set of sigma points, which
are propagated through the non-linearity. The unscented Kalman filter (UKF)
[11,12,14,26] is an alternative to the extended Kalman filter (EKF) [22], which
utilizes the unscented transformation in the filter computations. In this sec-
tion, we shall shortly review the unscented transformation, unscented Kalman
and the continuous-time unscented Kalman filter, that is, the unscented Kalman-
Bucy filter.

2.1 Unscented Transformation

The unscented transformation (UT) [10,11] is a numerical method that can
be used for forming a Gaussian approximation to the joint distribution of
random variables x and y, when the random variable y is obtained as a non-
linear transformation of the Gaussian random variable x as follows:
x ~ N(m, P)
y=9(z),

(7)

where x = (z1,...,7,) € R", y = (y1,...,54) € R% and g(-) is a general
non-linear function from R” to R The unscented transformation forms the
Gaussian approximation

T m P C
~ N

y ul | s

to the joint distribution of z € R™ and y € R™ by computing the parameters
1, C'and S with the following procedure:

(1) Form the matrix of sigma points X as

X=[m e m|+velo VP -V,

where ¢ = n + X and )\ is a scaling parameter, which is defined in terms
of algorithm parameters o and x as follows:

A=a’(n+ k) —n. (8)

The parameters o and « determine the spread of the sigma points around



T
the mean [12]. The matrix square root denotes a matrix such that VP vP =
P. The sigma points are the columns of the sigma point matrix.

(2) Propagate the sigma points through the non-linear function g(-):

Yi=9(X;), i=1...2n+1,

where X; and Y; denote the ith columns of matrices X and Y, respectively.
(3) Estimates of the mean p and covariance S of the transformed variable,
as well as estimate of the cross-covariance C' of the non-transformed and
transformed variables can be computed from the sigma points as follows:

p=> Wy,
S =YW (Yi—p) (Vi — )" (9)

C =W (X, —m) (V; — )T,

where the constant weights Wz-(m) and W are defined as follows:

(2

W™ = A/ (n+ )

Wi =A/(n+A) + (1 —a® + 8)
W™ =1/{2(n+ N}, i=1,...,2n
W =1/{2(n+ N}, i=1,...2n.

(10)

Here ( is an additional algorithm parameter, which can be used for in-
corporating prior information on the form of the distribution of z [12].

The mean, covariance and cross-covariance equations (9) of the unscented
transformation can also be written in convenient matriz form as follows [14]:

w=Y w,
S=ywy"” (11)
C=XWYT,

where the vector w,, and matrix W can be easily computed from the weights
W™ and W9 as follows:

(2 7

T
W = (W WA

W:(I—{wm"'wm]> (]_{wm,..meT.



The matrix form (11) is particularly convenient in mathematical treatment of
the unscented transformation and for this reason it is used in the derivation
of the continuous-time smoother in this article. However, from the computa-
tional point of view it is more efficient to use the summation form (9) of the
transformation [14].

2.2  Discrete-Time Unscented Kalman Filter

In Bayesian sense, optimal non-linear discrete-time filtering considers estima-
tion of the state in generic state space models of the form

T ~ p(ﬂfk \ 931:—1)

Ye ~ p(Yr | 1), (12)

where z, is the unknown hidden state and g, is the measurement on time
step k. The dynamic model p(zy | xp_1) defines a Markov model for state
transitions. The measurement model p(y, | xx) defines the distribution of
measurements for given state configurations. On the initial time step k = 0,
the state is assumed to have a predefined prior distribution p(x).

The purpose of the optimal filter is to compute the filtering distribution, which
is the posterior distribution of the current state z; given the history of mea-
surements up to the current time step k:

Pk | yis- - yw) = p(@k | yre)- (13)

The recursive equations for calculating the posterior state distribution above
are called the optimal filtering equations or the Bayesian filtering equations:

p(xk | Yrp-1) = /p(fﬂk | @r—1) p(Xp—1 | Y1:6—1) dxr—1 (14)

Py | o) p(@k | Yre—1)
(yr | &) p(xk | Yr—1) dog’

(k| yix) = I (15)

where Equation (14) is called the Chapman-Kolmogorov equation (or the pre-
diction step) and Equation (15) is the Bayes’ rule (or the update step).

The discrete-time unscented Kalman filter (UKF) [11,12,25,26] is an optimal
filtering algorithm that utilizes the unscented transformation and can be used
for approximating the filtering distributions of models, which have the follow-
ing state space form:

xp = f(ap_1,k — 1)+ qu1

16
Y = h(SCk, k’) + Tk, ( )



where z;, € R™ is the state, yp € R™ is the measurement, g1 ~ N(0, Q1)
is the Gaussian process noise, 1, ~ N(0, Ry) is the Gaussian measurement
noise, f(-) is the dynamic model function and h(-) is the measurement model
function. On the initial time step the state is assumed to have a Gaussian
prior distribution z¢ ~ N(mg, Fy) with a known mean mg and covariance F.

Clearly the model (16) can be seen to be a special case of the model (12).
Note that UKF can be applied to slightly more general models than (16), in
particular, the noises do not necessarily need to appear in additive manner
as they do here. However, the continuous-time UKF is based on this additive
form of the filter and for this reason it is used here.

The UKF forms a Gaussian approximation to the filtering distribution as
follows:

p(@e [ yr, - ye) = N(zg [ my, By), (17)
where my, and P are the mean and covariance computed by the algorithm.
In the unscented Kalman filter (UKF) algorithm, computations are started
from the prior mean my and covariance Fy, and the following operations are

performed on each measurement step £k =1,2,3,...:

(1) Prediction step:
(a) Form the matrix of sigma points:

Xe1= |my_y - mk_l] + /e [0 VP VP - (18)

(b) Propagate the sigma points through the dynamic model:
Xpi= (X1 k—1), i=1...2n+1. (19)
(¢) Compute the predicted mean m, and the predicted covariance P, :
my = Z W X,

_ © (% g e (20)
b= Z Wit (X —my,) (X —my)" + Qr1.

(2) Update step:
(a) Form the matrix of sigma points:

X,;z{mk~--mk]+\/5[0\/§—\/g}. (21)

(b) Propagate sigma points through the measurement model:

Yii=h(X; k), i=1...2n+1. (22)

10



(¢) Compute the predicted mean pu, the predicted covariance of the mea-
surement S, and the cross-covariance of the state and measurement
Bki

e =S Wi Vi
S = Z Wl(f)l (}A/kz — [) (Y/kz — )"+ Ry (23)

By, = Z Wz(f)l (Xk_z —my,) (}A/kz - Mk)T-

(d) Compute the filter gain K and the filtered state mean my and co-
variance Py, conditional to the measurement y.:

Ky, = B, S,
my, = my, + Ky [yr — pur] (24)
P, =P, — K Sy K.

In terms of the matrix form of unscented transformation, the steps 1b and
lc of the filter, that is, the Equations (19) and (20) can be written in the
following compact form [14]:

Xy = f(Xp_1,k—1)
my = X wp, (25)
Py =X, WXF + Q.

Similarly, the steps 2b and 2c or the Equations (22) and (23) can be written
as

pu }/} m
HE Akw . (26)
S, =YV WY! + R,
By = X; WYl

In the above equations we have used the shorthand notation introduced in
[14] such that the expression

Y = g(X), (27)

where X € R™? and ¢ : R” — R™ means that the ith column Y; of the matrix
Y € R™*4 is formed as follows:

11



2.3 Continuous and Continuous-Discrete Time UKF

In this section we shall present the unscented Kalman-Bucy filter and continuous-
discrete unscented Kalman filter, which can be derived from the discrete-time
unscented Kalman filter by a formal limiting procedure. The derivations of
these filters can be found in the article [14].

Theorem 1 (Unscented Kalman-Bucy filter) The stochastic differential
equations corresponding to the UKF in the continuous-time limit of the state
and measurement processes, that is, the unscented Kalman-Bucy filter (UKBF)
equations, are given as

K(t) = X(t) W hT(X(t),1) R (t)

dm(t) _ FX (1), t) wn + K (t) [y(t) — h(X(t), ) wy]

.
di) = X(OW fH(X(),8) + f(X(6), ) W X (1)

+ L(t) Qc(t) LT (t) — K (t) Re(t) K (1).

The sigma-point matriz X (t) is defined as

X(t) = [m(t) m(t)} +e [0 VP _m} : (29)

The computations are started from a known initial mean m(0) = mo and
covariance P(0) = F.

The equations above are conditioned on the measurement signal y(¢), but in
construction of the continuous-discrete time filter we need the optimal predic-
tion equations which give the optimal state estimate when no measurement
signal is available. These prediction equations are valid in both continuous-
time and continuous-discrete-time cases.

Theorem 2 (Mean and covariance prediction) The predicted mean m(t)
and covariance P(t) of the state for timest > to given the mean and covariance
at the time instant to, that is, m(ty) and P(ty) can be computed by integrating
the differential equations

0 = FO00), 0w

dgt(t) (30)

o = XOW X (), 1) + F(X(@), ) WXT(E) + L(t) Qe(t) LT (1),
from the initial conditions m(ty) and P(ty) to the time instant t. Here X (t) is
defined as in Equation (29).

The continuous-discrete UKF can be now implemented as follows:

12



(1) Prediction. Integrate the differential equations (30) from the initial con-
ditions m(tx_1) = my_1, P(ty_1) = Pi_1 to the time instant ¢;. The pre-
dicted mean and covariance are given as m, = m(t;) and P, = P(ty),
respectively.

(2) Update. The update step is the same as the discrete-time unscented
Kalman filter update step (21) - (24) in Section 2.2.

The continuous-time unscented Kalman-Bucy filter and the continuous-discrete
unscented Kalman filter [14] compute the means m(t) and covariances P(t) of
Gaussian approximations to the filtering distributions of the continuous-time
(1) and continuous-discrete models (2) - (3), respectively. The resulting pos-
terior (filtering) distribution approximations can be then interpreted to be

p(x(t) [{y(r) : 0 <7 < t}) = N(z(t) | m(t), P(t)).
px(te) [yr, - y) = N(x(te) | m(tx), P(t))-

The continuous-discrete filtering distribution can be generalized to all ¢ €
[0,00) by defining that between the measurements, the filtering distribution
is the optimal prediction from previous measurement to that time instant.
The continuous-discrete Kalman filter can be then interpreted to form the
following approximation to the generalized filtering distribution:

p((t) [y, - ue) = N(z(t) [m(t), P(t)), (31)

where k and ¢ are related by ¢ € [ty, tx11), where t and 5,1 are the times of
the measurements vy, and yi.1, respectively.

In the article [14], the sigma point versions of the filter equations are also
presented, but they are not repeated in this article, because here we only need
the mean and covariance form of the filter.

3 Unscented Rauch-Tung-Striebel Smoother

In this section, we shall first review the basic Bayesian theory behind Rauch-
Tung-Striebel smoothing and then review the discrete-time unscented Rauch-
Tung-Striebel smoother algorithm presented in [13]. After that the mean/covariance
and sigma-point forms of the continuous-time unscented Rauch-Tung-Striebel
smoothers are derived.

13



3.1 Discrete-Time Unscented RTS Smoother

In Bayesian estimation perspective, the purpose of (fixed-interval) optimal
smoothing is to compute the posterior distribution of the state x; at a time
step k after receiving the measurements up to a time step 7', where 7" > k

p(ﬂck | Yiy- et ,?JT) = p(ﬁk | ylzT)-

The difference between filters and smoothers is that a filter computes its es-
timates using only the measurements obtained before and at the time step
k, but a smoother uses also the future measurements for computing its esti-
mates. After obtaining the filtered posterior state distributions, the following
Bayesian optimal smoothing equations can be used for calculating the poste-
rior distribution for each time step conditionally to all measurements up to
the time step T"

P(Trtr | yik) = /p Tpt1 | k) p(Tk | Y1) dxg (32)
p(zrer | zx) plak | y1.
p(xk | y11) et | 2e) plax | o1 k>P(5Ck+1 | yr.7) ATy (33)
Ik+1 ’ Y1 k)

As the noises in the state space model (16) appear in additive manner, it is
possible to write the general URTSS equations [13] in a bit simpler additive
form in an analogous manner as in the filter case [12]. The resulting additive
form unscented RTS smoother algorithm is the following:

(1) Form the matrix of sigma points:

Xy = {mk mk] +\/E[0 \/E—\/H}
(2) Propagate the sigma points through the dynamic model:
Xprri = f(Xpik), i=1...2n+1.

(3) Compute the predicted mean m,_,, predicted covariance P, ; and cross-
covariance Cq:

My = Z M/i(ﬁ) Xk—l—l,i
Py = Z W Xk+1 i = M) (X — ml;rl)T + Qk (34)

Cro1 = Z Wi (X = ) (K — i)

(4) Compute the smoother gain Dy, smoothed mean mj and smoothed co-

14



variance P as follows:

Dy, = Ciya [Pya] ™
my = my + Dy {mZH - ml;+1} (35)

P = Py + Dy {PIS+I_P1€_+1} Dy,.

The computations above are started from the filtering result of the last time
step m% = mp, P; = Pr and the recursion runs backwards for k = 7'—1, ..., 0.
Using the matrix form of UT in Equation (11) and with the shorthand notation
in Equation (27) the steps 2 and 3 can be written as:

Xip1 = f(Xi, k)

My = XkJrl Wy

Py = Xt W X7 + Qi
Chp1 = X, W XE, .

(36)

The optimal smoothing algorithm discussed above is a discrete-time algorithm
in the sense that the state evolves in discrete time steps and measurements
are obtained on these steps. However, as shown in next section, by using a
formal limiting procedure it is possible derive the corresponding smoothing
equations for continuous-time and continuous-discrete state space models.

3.2 Continuous-Time Unscented Rauch-Tung-Striebel Smoother

In this section the continuous-time unscented Rauch-Tung-Striebel smoother
is derived by taking the formal continuous-time limit of the discrete-time un-
scented Rauch-Tung-Striebel smoother equations presented in Section 3.1.

In the continuous-time fixed-interval smoothing we are searching for approxi-
mations to the following smoothing distributions, which can be computed for
all times ¢ € [0, 7] if the measurement process up to the time instant 7" has
been observed:

plx(t) {y(r) : 0<7<T}), 0<t<T (37)

In this article, the approximation is chosen to be Gaussian with mean m?*(t)
and covariance P*(t):

p(x(t) [{y(r) : 0 <7 <T}) = N(x(t) [m*(t), P*(1)). (38)

In the continuous-discrete-time case, we are looking for approximations to
the smoothing distributions, which are conditioned to all the discrete-time

15



measurements obtained at a given time interval [0, ¢7], and these distributions
are again approximated with Gaussian distributions:

Pa®) [y oyr) ~ N(e(t) [ m*(0), P'(0),  0<t<tr.  (39)

Although the filters for the continuous-time and continuous-discrete cases are
different, the Rauch-Tung-Striebel form optimal smoother is the same in both
the cases. This is because we can define the continuous-discrete filtering dis-
tributions as in Equation (31) and thus the mean and covariance are available
for all time instants continuously also in the continuous-discrete case. We may
then apply the smoother as if the mean and covariance were obtained from a
continuous-time filter.

Theorem 3 (continuous-time unscented RTS smoother (CURTSS))
In the continuous-time limit the discrete-time unscented Rauch-Tung-Striebel
smoother equations approach the following differential equations:

D )t + [FCCO W XT(0) + L0) Qule) LI (1) [ (0) — (o)
W) (X)W XT(0) + L) Qult) L7 ()] P 8) ()

+ P () PTH) [X ()W F1(X, 1) + L) Qe(t) LT (1)] — L(t) Qe(t) LT (1),
(40)

where the vector w,, and matrix W are the weights of the matriz form of
unscented transformation (11). The sigma points X (t) are the sigma points
of the continuous-time or continuous-discrete unscented Kalman filter, such
that P(t) = X)W XT(t) and m(t) = X(t)w,,, where P(t)and m(t) are
the covariance and mean of the UKF. The integration is performed backwards
starting from the terminal conditions m*(T) = m(T'), P*(T) = P(T).

PROOF. The stochastic differential equation 2

dx

o = F(al). 1) + L (),

can be approximated up to first order in ¢ by a discretized dynamic model
z(t + 6t) = z(t) + f(x(t), 1) 6t + q(t) + o(6t),

where q(t) ~ N(0, L(t) Q.(t) LT(t) 6t). Applying the matrix forms of steps 2
and 3 of URTSS, which are given in Equation (36), we get expressions for the

2 Strictly speaking, we must consider the stochastic differential equations as
Stratonovich equations [16], because the derivation is based on the rules of ordi-
nary calculus.
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approximate mean, covariance and cross-covariance as follows:

m~(t +6t) = m(t) + f(X(2),t) wy, 6t + o(t)
P (t+6t) = [X(£) + f(X(1),8) 5t + o(6t)] W [X(t) + F(X(£), 1) 6t + o(58)]"
+ L(t) Qc(t) L*(t) 6t + o(5t)
= P(t) + 0P~ (t) 6t + o(5t)
C™(t+6t) = X)W [X () + f(X(t),t) 6t + o(6t)]"

P(t) + 0 () 6t + o(6t),

where the expressions for the differentials of covariance and cross-covariance
are

OP~(t) = f(X (), ) W XT(t) + X(t) W f1(X (),1) + L(t) Qe(t) L" (t)

o0~ (t) = X)W fL(X(t),1). (41)

The equation for the smoother gain (35) is given as

D(t +6t) = C(t +6t) [P(t +61)]

By the standard differentiation rules for matrices, the differential of the gain
can be written as

3D() C=(t) P7H(t) = P(t) P71 OP~ (1) P1(t)
f(X() LW XT(t) PTHE) = L) Q(t) L(1) PT(1).

and hence we have
D(t + dt) = 1 + 0D(t) 6t + o(dt).

If we substitute the gain expression into the mean expression in (35) and
collect the terms up to order dt, we get

m?(t) = m(t) + D(t + ot) [m®(t + dt) — m™ (t + dt)]
—m(t+5t) FIX(E), ) wy, 6t
T+ FX(@),0) W XT () P () mi() 8t + L(t) Qu(t) L () P~ (1) (1) 6t
— SO0, )W XT(OP7(0) (e +81) 1
L(t) Qult) L™ (t) P (t) m*(t + 6¢) 5t + o(5t).
(42)
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For the covariance we similarly get

P5(t) = P(t) + D(t + 6t) (P*(t + 6t) — P~ (t + 6t)) DT (t + 6t)
—Ps(t+5t) FX@), )W XT(t) P7H(t) P5(t + 6t) 6t
L(t) Q.(t) LT (t) P(t) P*(t + 6t) 6t
—Ps(t+5t)P YO X)W fE(X(t),t) 0t
— Pt +0t) P (t) L(t) Q () T(t)ot
L(t) Qc(t) L (t) 5t + o(5t).

If we now solve for (m®(t+ o0t) —m?*(t))/ot and (P*(t + dt) — P*(t))/dt in (42)
and (43), respectively, and take the limit 6t — 0, the result follows.

3.8 Sigma Point Form of Continuous-Time URTSS

In this section the differential equations for the smoothed sigma points are
derived. The procedure is the same as was used in [38] for deriving the square
root version of the extended Kalman-Bucy filter and in [14] for deriving the
sigma point form of the unscented Kalman-Bucy filter.

Theorem 4 (Sigma point CURTSS) The continuous-time unscented Rauch-
Tung-Striebel smoother equations (40) can be expressed in terms of sigma
points as follows:

D(t) = [f(X HW XT (1) + L(t) Qu(t) LV ()| P~ (2)
M*(t) = [A(t)] () S(8) + [A ()] DT (1) [A ()T
- () u@@ﬂwww* )
dxjt“) — FX (), t) wm + D(t) | X°(¢ t)]

e o ame(arm) —awe (<0b
where the matriz of smoothed sigma-points is defined as
X0 = [me(t) -+ me(0)] + Ve |0 2%(t) ~4%(0)

and A5(t) is the lower triangular Cholesky factor of P*(t). Note that in prac-
tical computations the terms A®(t) in Equations (44) are obtained by “extract-
ing” them from the sigma point matriz above (subtract the mean and divide by
\V/¢) and for this reason there is no explicit update rule for A*(t). In Equations
(44) ®(-) is a function returning the lower diagonal part of the argument as
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follows:
mi;(t) , if i >3
@y (M) = dmiy(t) L ifi = (15)
0,if1<y.
The backward integration should be started from the set of sigma points X*(T') =
X(T) formed from the terminal mean m(T') and covariance P(T) of the UKF.

PROOF. The mean and covariance differential equations of the continuous-
time unscented Kalman smoother are of the form

diZ@)zzfﬂyi)wm4‘D@)V”%w'_”Kﬂ]
(46)

dpdst<t) = D(t) P*(t) + P*(t) DT(t) — L(t) Q.(t) L™ (¢),

where

D(t) = [f(X, ) W XT(t) + L(t) Qc(t) L" (1) P7H(t).
Let A%(t) be the lower triangular Cholesky factor of P*(t), that is, P°(t) =
As(t) [A3(t)]T. The differential of the covariance can be expanded as

dPs(t)  dA*(t)
dt dt

o)+ o) |50

If we substitute this into the covariance equation in (46) and multiply from
left and right by [A*(¢)]~! and [A*(¢)]7, respectively, we get

[A8<t)}71 dAS(t) 4 [dAS(

dt dt
= [A*()] 7' D(t) A*(t) + [A*()]" D" (t) [A*(1)] "
— [AT (O] L(1) Qelt) LT (8) [A*(1)]

Because the left hand side is a sum of lower and upper triangular matrices,
we must have

) o0 — (1) Do a0 + (40 DY (0 [40)])

dt
— [0 L) Qu(t) L0 [4*(0) 7).

“]T A%

where ®(-) is the function defined in (45). If we multiply from left by A®(?)
and substitute the equations for dm?®(t)/dt and dA*(t)/dt into the equation

dXs

dt

= |dm?/dt - -- de/dt} +4/e [0 dA® /dt —dAS/dt],

the result follows.
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4 Computational Complexity

In this section we shall compare the computational complexity of the proposed
smoothing algorithms to the classical linearization based extended Rauch-
Tung-Striebel smoother. The equations of the continuous-time extended Rauch-
Tung-Striebel smoother can be written in the following form (see, e.g., [9,37]):

o = (), 6) + [F(m(t), 6) P(t) + L(t) Qe(t) L ()] P () [m* (1) — m(1)]

o = [F(m(1),1) P(£) + L(t) Qe(t) LT (1)) P (1) P*(1)

+ P (t) P [P(6) T (m,t) + L(t) Qe(t) LT (8)] — L() Qc(t) LT (1),
(47)

where m(t) and P(t) are the mean and covariance of the filtering solution
computed by the extended Kalman filter. The integration is performed back-
wards starting from the terminal conditions m*(T) = m(T"), P*(T) = P(T).
The matrix F'(-) is the Jacobian matrix of the function f(-) with the elements

af;
&cj'

Fj = (48)
By comparing the Equations (47) to (40) it is easy to see that the relationship
between the approximations is

FOX(O)1) w = Fm(2) 1) "

FX(@), ) W XT(t) <= F(m(t),t) P(t).
The differences between the computational complexities arise from these terms
only. The left hand side terms can also be written in terms of the summation
form of the unscented transformation (see, Section 2.1) as follows:

FXW) Owm = 50 W FX(0).8) 2 u(t)
2;11 (50)
FXODWXT0) = 32 WS (0.0 = ) (50 =m0

which are computationally lighter than the matrix forms. The actual number
of computations depends on the model, but roughly we have the following;:

e The linearization based smoother requires single evaluation of the function
f (n scalar evaluations) and single evaluation of the Jacobian F' (n? scalar
evaluations).

e The unscented transformation based smoother requires 2n + 1 evaluations
of the function f (total of 2n? + n scalar evaluations).
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e In the linearization based smoother the mean and covariance computations
require one product of two n x n matrices, which takes roughly n® additions
and multiplications.

e In the unscented smoother the mean and covariance computations require
computation of weighted sum of 2n + 1 length n-vectors (2n? + n opera-
tions), computation of weighted sum of 2n + 1 size n X n matrices (2n® + n?
operations) and a single Cholesky factorization of n x n matrix (roughly
n?/2 operations).

That is, as with the corresponding filters [14], it is quite safe to say that the
computational requirements of the unscented transformation based smoother
are roughly 2-3 times the requirements of the linearization based filter.

The analysis above only applies to the mean/covariance form of the URTSS
and the computational requirements of the sigma point form (44) are a bit
higher. The computational requirements depend much on the way that the al-
gorithm is actually implemented. The extra computations are due to the 6 ad-
ditional matrix products with the lower triangular A*(¢) and its inverse, which
require roughly n?® operations each. That is, the complexity of the sigma point
form of URTSS can be even 3-4 times the complexity of the mean/covariance
form. But of course, the complexity of the square root version of the lineariza-
tion based smoother is quite high also.

5 Numerical Example

In this section, the performance of the continuous-time unscented Rauch-
Tung-Striebel smoother is tested in the continuous-time version of the non-
linear filtering problem presented as an example in [23], which was also used
for demonstrating the performance of UKBF in [14]. Both the state z(t) and
the measurements y(¢) are one-dimensional continuous-time processes and the
state space model is:

dz(t)/dt = —sinx(t) + e(t)
1 (51)
y(t) = 5 sina(t) +n(?),

where e(t) and n(t) are continuous-time white noise processes with spectral
densities ¢. = 0.01 and r. = 0.004, respectively. The simulation was performed
over time period of 5 seconds using the Euler-Maruyama scheme [39] and with
time steps of At = 0.01. In the simulation, the initial states of trajectories
were drawn from zero mean Gaussian distribution with unity variance and
the initial conditions for filters (and smoothers) were mo =0, Py = 1.

A typical initial period behavior of the filters and smoothers is illustrated in
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Fig. 1. Hlustration of initial period error behavior in continuous-time non-linear
filtering and smoothing problem.

Algorithm | RMSE | RMSE(t =0) | RMSE(t > 2)
EKBF 0.26 0.80 0.17
UKBF 0.22 0.80 0.12
ERTSS 0.20 0.29 0.10
URTSS 0.15 0.24 0.10

Table 1

RMSE values of the signal for the whole simulation period 0 < ¢t < 5, for the initial
state ¢ = 0 and for the stabilized period 2 < t < 5 averaged over 1000 Monte Carlo
runs.

Figure 1. It can be seen that initially errors of the filters are large, because
of the uncertain initial conditions. After approximately 0.6 seconds the filter
errors decrease closer to the level of smoothers. In the smoother results the
initial uncertainty has been resolved by the later observations and there is
only slight initial error transient, which is most likely due to the Gaussian
approximations used in the algorithms.

The root mean squared error (RMSE) results of 1000 Monte Carlo runs with
extended Kalman-Bucy filter (EKBF), unscented Kalman-Bucy filter (UKBF),
extended Rauch-Tung-Striebel smoother (ERTSS) and unscented Rauch-Tung-
Striebel smoother (URTSS) are shown in Table 1. The following errors are
given in the table:

e RMSE is the overall root mean squared error of the algorithm averaged over
the whole simulation period 0 <t < 5.
e RMSE(t =0) is the error in the initial state estimate. Note that the initial
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state estimate of all the filters is just the a priori mean my = 0 and thus
the theoretical mean RMSE of filters is \/2/7

e RMSE(t > 2) is the error average over the time period 2 < ¢ < 5. During
this period the filters can be assumed to have already converged and thus
this measures the RMSE errors after the initial transient is over.

As expected, all the errors of smoothers are significantly lower than of the
filters. The difference is the largest at the initial time step, because at that
time step the filter estimates are just the prior means whereas the smoother
estimates are based on the whole interval of measurements. In the steady
state period t > 2 the errors between filters and smoothers are smaller, but
still significant. With this particular model, the errors of UKBF and URTS
are lower than those of EKBF and ERTS, respectively, which indicates that in
this case the unscented transformation seems to provide better approximation
to the non-linearities in the model.

In this small dimensional simulation, the computational requirements of the
linearization and unscented transformation based methods are almost the
same. The amount of computations needed by UT based method might be
a bit higher, but not more than 1.5 times the computations needed by the
linearization based method.

6 Conclusion

In this article we have derived a new unscented transformation based approx-
imation method to fixed-interval optimal smoothing of continuous-time state
space models. The method has been derived by taking the formal continuous-
time limit of the unscented Rauch-Tung-Striebel smoother. Both mean-covariance
form and sigma-point form of the equations have been presented. The perfor-
mance of the new smoother has been demonstrated in a simulated continuous-
time filtering and smoothing problem.
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