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Abstract This article is concerned with Bayesian estima-
tion of parameters in non-linear multivariate stochastic dif-
ferential equation (SDE) models occurring, for example, in
physics, engineering, and financial applications. In particu-
lar, we study the use of adaptive Markov chain Monte Carlo
(AMCMC) based numerical integration methods with non-
linear Kalman-type approximate Gaussian filters for param-
eter estimation in non-linear SDEs. We study the accuracy
and computational efficiency of gradient-free sigma-point
approximations (Gaussian quadratures) in the context of pa-
rameter estimation, and compare them with Taylor series
and particle MCMC approximations. The results indicate
that the sigma-point based Gaussian approximations lead to
better approximations of the parameter posterior distribution
than the Taylor series, and the accuracy of the approxima-
tions is comparable to that of the computationally signifi-
cantly heavier particle MCMC approximations.

Keywords Stochastic differential equation · Parameter
estimation · Gaussian approximation · non-linear Kalman
filter · Adaptive Markov chain Monte Carlo

1 Introduction

This article is concerned with the use of non-linear Kalman-
type approximate Bayesian filters in adaptive Markov chain
Monte Carlo (AMCMC) estimation of the unknown param-
eters θ ∈ Rd in Itô stochastic differential equations (SDEs,
see, e.g. Øksendal, 2003) of the form

dx = f(x, t;θ)dt +L(x, t;θ)dW, (1)
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where x(t) ∈ Rn, and W(t) is an s-dimensional vector of
independent standard Wiener processes. Above, f(·) is the
non-linear drift function and L(·) is the dispersion matrix of
the SDE. The assumed model for the measurements yk ∈Rm

is linear Gaussian:

yk = H(θ)x(tk)+ rk, rk ∼ N(0,R(θ)), (2)

where the matrices H(θ) and R(θ) are deterministic func-
tions of the parameters and the measurement are sampled at
given time steps t1, . . . , tM . The generalization to non-linear
Gaussian measurement models is straightforward.

The central difficulty in the parameter estimation prob-
lem is that the transition density of the SDE in Equation
(1) cannot be evaluated in closed form. There exists a wide
range of methods for estimating parameters of SDE mod-
els, which circumvent this problem. These include simu-
lated maximum likelihood based methods (Pedersen, 1995;
Brandt and Santa-Clara, 2002; Hurn et al, 2003), MCMC
based methods (Jones, 1998; Elerian et al, 2001; Eraker,
2001; Golightly and Wilkinson, 2006, 2008; Stramer et al,
2010; Stramer and Bognar, 2011) as well as Exact Algo-
rithm based methods (Beskos et al, 2006, 2009). It is also
possible to directly approximate the solutions of the Fokker–
Planck–Kolmogorov (FPK) equation by using standard nu-
merical methods for solving PDEs (Hurn and Lindsay, 1999;
Jensen and Poulsen, 2002; Jeisman, 2005) such as Hermite
expansions (Aı̈t-Sahalia, 2002, 2008). An overview of other
methods can be found in Sørensen (2004).

In this article, we study another class of methods, which
is based on forming a Gaussian (process) approximation to
the parameter conditioned diffusion process. This approach
is connected to the Taylor series approximations used in the
extended Kalman filter (EKF, Jazwinski, 1970) which is a
widely used approach in guidance, control, target tracking,
and other applications (see, e.g., Bar-Shalom et al, 2001).
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Given the Gaussian approximation, it is possible to evalu-
ate the corresponding marginal likelihood of the parameters
and further the (approximate) unnormalized marginal pos-
terior density by using so-called prediction error decompo-
sition (Schweppe, 1965). Similar approximations have also
been proposed in the context of linear noise approximations
(LNA) of jump Markov processes and the related master
equations (Kurtz, 1970, 1971; Van Kampen, 2007; Ferm et al,
2008; Komorowski et al, 2009; Ross et al, 2009).

Although the idea of using Gaussian approximations of
diffusion processes is old (see, e.g., Kushner, 1967; Jazwin-
ski, 1970), in recent years, new filtering and smoothing algo-
rithms based on Gaussian quadrature integration and sigma-
point methods have been developed (Singer, 2008b; Särkkä,
2006, 2007, 2010; Arasaratnam et al, 2010; Archambeau
and Opper, 2011; Särkkä and Sarmavuori, 2013). These new
methods are more accurate than the classical Taylor series
based EKF methods.

Using Gaussian approximations in the context of maxi-
mum likelihood estimation of parameters in SDEs was stud-
ied by Singer (2002), who compared simulated maximum
likelihood, Itô–Taylor series, and Taylor series based EKF
approximations in maximum likelihood (ML) estimation of
parameters. Singer (2011) extended the results and proposed
the use of numerical integration and quadrature type of ap-
proximations instead of the Taylor series based EKF approx-
imation. The use of Markov chain Monte Carlo (MCMC)
methods instead of the ML estimates in the EKF based SDE
parameter estimation framework was recently investigated
by Mbalawata et al (2013). To improve the performance
of the basic Metropolis–Hastings based MCMC sampling,
Mbalawata et al (2013) proposed the use of Hamiltonian
Monte Carlo (HMC) method. Maximum likelihood estima-
tion in SDE models using Gauss–Hermite quadrature ap-
proximations of diffusions was also recently studied by Hurn
et al (2013).

In this article, the aim is to study the accuracy and com-
putational requirements of Gaussian approximation based
parameter estimation methods when they are combined with
MCMC methods, and in particular, with adaptive MCMC
methods. More specifically, we study the use of the recently
developed Gaussian quadrature (sigma-point) based Gaus-
sian approximations developed for continuous-discrete fil-
tering and smoothing in the SDE parameter estimation prob-
lem. We evaluate the effect of the Gaussian state approx-
imations on the parameter posterior distributions by com-
paring them to the grid based “exact” solutions, previously
proposed Taylor series (or LNA) based approximations, and
to particle MCMC approximations (Andrieu et al, 2010; Go-
lightly and Wilkinson, 2011).

2 Adaptive Markov Chain Monte Carlo Methods

Markov chain Monte Carlo (MCMC) methods (see, e.g.,
Liu, 2001) are powerful methods for approximate compu-
tation of expectation integrals of the form

E[g(θ) |YM] =
∫
Rd

g(θ) p(θ |YM)dθ, (3)

where the posterior distribution p(θ |YM) ∝ p(YM |θ) p(θ)
is known only up to a normalization constant. This kind of
integrals typically arises in the context of Bayesian com-
putations (Gelman et al, 2004; Bernardo and Smith, 1994).
Above, p(YM |θ) is the marginal likelihood of the measure-
ments YM = {y1, . . . ,yM} and p(θ) is the prior distribution
of the parameters θ ∈ Rd .

The sampling properties of MCMC heavily depend on
the choice of the proposal distribution and unfortunately,
choosing a suitable one is hard (see, e.g., Liu, 2001). In
the Metropolis algorithm, a Gaussian distribution is often
used, in which case the covariance matrix of the Gaussian
proposal distribution needs to be well tuned. If the covari-
ance is too small or too large, the Markov chains in MCMC
will be highly correlated and hence the estimators will have
a large variance (Andrieu and Thoms, 2008). To overcome
this problem we can use adaptive Markov chain Monte Carlo
(AMCMC) methods where the covariance of the Gaussian
proposal in the Metropolis algorithm is automatically adapted
during the MCMC run (Haario et al, 1999, 2001, 2006; Liang
et al, 2010; Andrieu and Thoms, 2008; Roberts and Rosen-
thal, 2007, 2009; Fort et al, 2011; Andrieu and Moulines,
2006; Atchade and Rosenthal, 2005; Vihola, 2012).

In this article, we use the robust adaptive Metropolis
(RAM) algorithm introduced by Vihola (2012), where the
adaptation method is an extension of the algorithm of Haario
et al (2001). The RAM algorithm of Vihola (2012) is similar
to the adaptive Metropolis algorithm of Haario et al (2001)
except that the adaptation of the covariance Σ i is done in a
slightly different way. RAM also has an additional mecha-
nism to reach a given target acceptance rate, for example,
the rate ᾱ∗ = 0.234, which can be shown to be optimal un-
der certain (ideal) conditions (Roberts and Rosenthal, 2001).
The RAM algorithm can be found in the supplementary ma-
terial of this article.

3 Posterior Inference via Bayesian Filtering and
Smoothing

To estimate the parameters with MCMC methods, we now
want to find a way to evaluate the marginal posterior proba-
bility density of the parameters p(θ |YM) ∝ p(YM |θ) p(θ)
up to a normalization constant. The prior is usually easy
to evaluate, but in the case of SDE parameter estimation
the difficult part is the evaluation of the marginal likelihood
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p(YM |θ), where the states have been integrated out. One
generally applicable approach is to approximate this likeli-
hood by using particle filtering, which leads to so-called par-
ticle Markov chain Monte Carlo (PMCMC) methods (An-
drieu et al, 2010). However, their disadvantage is that they
tend to require a high amount of computational resources as
we will see later in this article.

The marginal likelihood p(YM |θ) can be, in principle,
computed efficiently as follows. The classical filtering the-
ory (Jazwinski, 1970) states that we can compute the pre-
diction densities p(x(tk) |Yk−1,θ) and the filtering densities
p(x(tk) |Yk,θ) for k = 1, . . . ,T via the following recursive
algorithm:

– Start from the prior p(x(t0) |θ)≡ p(x(t0) |Y0,θ).
– For each measurement yk for k = 1, . . . ,M do:

1. Prediction step: Integrate the FPK equation from the
initial condition p(x(tk−1) |Yk−1,θ) to time tk, which
results in the predicted density p(x(tk) |Yk−1,θ).

2. Update step: Use Bayes’ rule for computing the fil-
tering density for step k:

p(x(tk) |Yk,θ) =
p(yk |x(tk),θ) p(x(tk) |Yk−1,θ)∫

p(yk |x(tk),θ) p(x(tk) |Yk−1,θ)dx(tk)
.

(4)

The filtering results can be used for constructing an expres-
sion for the marginal likelihood as follows. The marginal
likelihood can be factored as:

p(YM |θ) =
M

∏
k=1

p(yk |Yk−1,θ). (5)

Given the filtering solution, the terms in the product can be
computed recursively as

p(yk |Yk−1,θ) =
∫

p(yk |x(tk),θ) p(x(tk) |Yk−1,θ)dx(tk).

(6)

Once we have obtained the expression for the marginal like-
lihood, we can easily evaluate the posterior distribution up
to the normalization constant, which is all we need for the
implementation of MCMC sampling.

Sometimes we also want to generate samples from the
posterior distribution of the states. Due to the Markov prop-
erties of the state, the conditional distribution of the state
given all the measurements obeys the following backward-
simulation (smoothing) recursion (cf. Godsill et al, 2004):

p(x(tk) |x(tk+1),YM,θ)

=
p(x(tk+1) |x(tk),θ) p(x(tk) |Yk,θ)

p(x(tk+1) |Yk,θ)
,

(7)

where the right hand side only involves results from filtering.
Thus once we have computed the filtering distributions, we

can simulate posterior trajectories x(t0), . . . ,x(tM) using the
above recursion. Although we have formulated the above re-
cursion only for the states at the measurement times, we can
easily augment additional times to the trajectory and obtain
samples from them as well.

Multiplying the above equation with p(x(tk+1) |YM,θ)

and integrating over x(tk+1) gives the following backward
Bayesian optimal smoothing recursion (Kitagawa, 1987):

p(x(tk) |YM,θ) = p(x(tk) |Yk,θ)

×
∫ p(x(tk+1) |x(tk),θ) p(x(tk+1) |YM,θ)

p(x(tk+1) |Yk,θ)
dx(tk+1),

(8)

which can be used for computing the posterior marginals of
x(tk) (i.e., the smoothing distributions) for k = M−1, . . . ,0.

4 Gaussian Filtering and Smoothing Based
Approximation

In this section, we show how to form Gaussian approxima-
tions to the general recursion equations given in the previous
section using the recent numerical approximation methods
developed for state estimation (e.g., Särkkä and Solin, 2012;
Särkkä and Sarmavuori, 2013). We derive the approxima-
tions directly using results from Itô calculus which makes
the underlying approximations more explicit than the typ-
ical Euler–Maruyama discretization based derivation (e.g.,
Singer, 2011). We also derive equations for sampling trajec-
tories from the approximate full smoothing posterior.

Assume that after the step k− 1 at time tk−1 we have a
Gaussian approximation to the filtering distribution as fol-
lows:

p(x(tk−1) |Yk−1,θ)≈ N(x(tk−1) |m(tk−1),P(tk−1)), (9)

with some mean m(tk−1) and covariance P(tk−1). We are
now interested in what happens to this distribution in the
evolution from time tk−1 to time tk. Because we are inter-
ested in forming a Gaussian approximation, we are specifi-
cally interested in knowing the mean and covariance of the
resulting distribution. Note that the mean and covariance are
actually functions of the parameter θ as well, but we have
dropped that dependence for notational convenience.

By using the generator of the SDE (e.g. Øksendal, 2003)
we get the following identity of an arbitrary function g:

E

[
dg
dt

∣∣∣∣∣Yk−1,θ

]
= E

[
∑

j

∂g
∂x j

f j(x, t)

∣∣∣∣∣Yk−1,θ

]

+
1
2

E

[
∑
i j
[L(x, t;θ)LT (x, t;θ)]i j

∂ 2g
∂xi∂x j

∣∣∣∣∣Yk−1,θ

]
.

We are interested in the mean and covariance of the so-
lution and so we first set g(x) = xi, giving rise to a solu-
tion mi, and then set g(x) = (xi−mi)(x j−m j), which leads
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to the following ordinary differential equations (ODEs) for
the conditional mean m(t) = E[x(t) |Yk−1,θ] and covari-
ance P(t) = E[(x(t)−m(t))(x(t)−m(t))T |Yk−1,θ]:

dm(t)
dt

= E[f(x, t;θ) |Yk−1,θ]

dP(t)
dt

= E[(x−m(t)) fT (x, t;θ) |Yk−1,θ]

+E[f(x, t;θ)(x−m(t))T |Yk−1,θ]

+E[L(x, t;θ)LT (x, t;θ) |Yk−1,θ].

(10)

Note that the expectations above are taken with respect to the
conditional distribution of the state p(x(t) |Yk−1,θ). Thus
the equations are not true ODEs in the sense that they cannot
be solved without first solving the full FPK partial differen-
tial equation (Jazwinski, 1970).

We now employ a simple but widely used approximation
of x(t) as a Gaussian process such that at every time step
t ∈ [tk−1, tk) we have:

p(x(t) |Yk−1,θ)≈ N(x(t) |m(t),P(t)), (11)

where m(t) and P(t) are the mean and covariance of the
process x(t), respectively. That is, we replace the expected
values with respect to the true distribution of x(t) with ex-
pectations over the Gaussian approximation. The approxi-
mations to the mean and covariance integrals can then be
evaluated numerically. One way is to use Taylor expansions
as in extended Kalman filter (EKF) (Jazwinski, 1970):

f(x, t;θ)≈ f(m, t;θ)+Fx(m, t;θ)(x−m)

L(x, t;θ)≈ L(m, t;θ),
(12)

where Fx is the Jacobian matrix of the mapping x 7→ f(x, t;θ),
which gives the Taylor series or LNA approximations (e.g.,
Mbalawata et al, 2013; Singer, 2002; Ferm et al, 2008):

dm
dt

= f(m, t;θ)

dP
dt

= PFT
x (m, t;θ)+Fx(m, t;θ)P+L(m, t;θ)LT (m, t;θ).

One particularly useful class of methods are Gaussian quadra-
ture methods, also called sigma-point methods, which ap-
proximate the Gaussian integrals in the following way:

∫
g(x)N(x |m,P)dx≈

Nξ

∑
i=1

W (i) g(m+
√

Pξ
(i)), (13)

where ξ (i) are a suitable set of method specific unit sigma
points and W (i) are some deterministic weights. The matrix
square root is any matrix, which satisfies

√
P
√

PT
=P. With

this approximation the mean and covariance equations be-
come (Särkkä and Sarmavuori, 2013):

dm
dt

= ∑
i

W (i) f(m+
√

Pξi, t;θ)

dP
dt

= ∑
i

W (i) f(m+
√

Pξi, t;θ)ξ
T
i

√
P

T

+∑
i

W (i)
√

Pξi fT (m+
√

Pξi, t;θ)

+∑
i

W (i) L(m+
√

Pξ
(i), t;θ)LT (m+

√
Pξ

(i), t;θ).

One useful sigma-point method is the 3rd order spherical cu-
bature rule (“cubature” is just another term for multidimen-
sional quadrature) used in the cubature Kalman filter (CKF)
of Arasaratnam et al (2010), which uses Nξ = 2n unit sigma
points defined as

ξi =

{√
nei , i = 1, . . . ,n
−
√

nei−n , i = n+1, . . . ,2n,
(14)

where ei denotes the unit vector to the direction of coordi-
nate axis i, and the weights are defined as W (i) = 1/(2n) for
i = 1, . . . ,2n. The 3rd order spherical cubature rule can be
seen as a special case of the unscented transform used in the
unscented Kalman filter (UKF) (Julier et al, 2000; Särkkä,
2007). The third order here means that it integrates correctly
any linear combination of up to third order monomials (e.g.,
x1 x2 x3, x2

1 x2, x3
1).

One may also form the rule (13) as a Cartesian prod-
uct of Gauss–Hermite quadratures as is done in the Gauss–
Hermite filters (Ito and Xiong, 2000; Singer, 2008b). This
leads to methods which are able to integrate linear combina-
tions of higher order polynomials correctly.

By integrating the mean and covariance equations from
the initial conditions m(tk−1) and P(tk−1) to time tk, we get
the following Gaussian approximation to the solution of the
FPK equation:

p(x(tk) |Yk−1,θ)≈ N(x(tk) |m(t−k ),P(t−k )). (15)

Above, the results of prediction are denoted as m(t−k ), P(t−k ),
where the minus at superscript means “infinitesimally before
the time tk”. We use this notation to distinguish these from
m(tk), P(tk), which denote the mean and covariance of the
Gaussian approximation to p(x(tk) |Yk,θ).

Because of the Gaussianity of the above distribution and
the measurement model, Bayes’ rule in Equation (4) gives

p(x(tk) |Yk,θ)≈ N(x(tk) |m(tk),P(tk)), (16)

where the mean m(tk) and covariance P(tk) are given by the
standard Kalman filter update equations (see the supplemen-
tary material).
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The conditional marginal likelihood in Equation (6) is
also Gaussian and can be evaluated simply as:

p(yk |Yk−1,θ)≈ N(yk |H(θ)m(t−k ),Sk), (17)

where Sk = H(θ)P(t−k )HT (θ)+R(θ). The prediction error
decomposition (5) then gives:

p(YM |θ)≈
M

∏
k=1

N(yk |H(θ)m(t−k ),Sk). (18)

For the smoothing recursions, we can utilize the results de-
rived by Särkkä and Sarmavuori (2013), who give the equa-
tions for the approximate means ms(tk) and covariances Ps(tk)
of the (marginal) smoothing distributions in Equation (8).
The equations can be found in the supplementary material.
Thus we approximately have

p(x(tk) |YM,θ)≈ N(x(tk) |ms(tk),Ps(tk)). (19)

The backward-simulation recursion in Equation (7) can be
obtained by formally setting m(tk+1)← x(tk+1) and P(tk+1)←
0 in the smoothing recursions, which gives:

p(x(tk) |x(tk+1),YM,θ)

≈ N
(
x(tk) |m(tk)+Gk+1 [x(tk+1)−m(t−k+1)],

P(tk)−Gk+1 P(t−k+1)GT
k+1
)
.

(20)

5 Experimental Evaluation

5.1 Ginzburg–Landau Double Well Potential

As the first numerical example we consider a diffusion pro-
cess in a double well potential, described by the Ginzburg–
Landau equation, which is a popular benchmark model for
comparing different approximation schemes (e.g., Singer,
2002). The Ginzburg–Landau equation reads

dx =−(α x+β x3)dt +σ dW, (21)

where θ= (α,β ,σ) are the parameters to be estimated from
data. The Ginzburg–Landau model corresponds to a diffu-
sion at the double-well potential Φ(x,θ) = α

2 x2 + β

4 x4, with
minima at ±

√
−α/β when α is negative. We measure the

equation with a sampling period ∆ t from the model

yk = x(tk)+ rk, rk ∼ N(0,R). (22)

We aim to compare the performance of Taylor series,
3rd order spherical cubature rule, Gauss–Hermite quadra-
ture in forming the Gaussian state approximation, and com-
bine them with the the adaptive MCMC method (RAM) of
(Vihola, 2012). As the particle MCMC method we use the
particle marginal Metropolis–Hastings (PMMH) (Andrieu
et al, 2010) with 5000 particles, which we also combine with
the RAM adaptation method. This number of particles was

chosen on the basis that the method of Doucet et al (2012)
(with the parameters fixed to true ones) suggests that 500
particles should be enough for this model – we chose still to
multiply this number by ten. In the particle filter of PMMH
we use the dynamic model as the importance distribution,
which has the advantage that this way the evaluation of the
transition density is not needed (Golightly and Wilkinson,
2011). The trajectories of the SDE were simulated using the
stochastic Runge–Kutta method (Kloeden and Platen, 1999;
Rößler, 2006).

For comparison, we also implemented a benchmark fil-
tering and smoothing solution, where the transition density
is numerically solved from the FPK by using finite differ-
ences method on a relatively dense grid (the range [−7,7]
with ∆x = 1/10), and the Bayesian filtering and smoothing
equations were approximated on the same grid via direct nu-
merical integration. This provides a quite accurate “ground
truth” solution.

We simulated a state trajectory with this model using
the parameters θ = (−1,0.1,2) on time interval t ∈ [0,40]
and generated observations every ∆ t = 2 with variance R =

0.12. With these parameter settings the potential has minima
at ±
√

10, which are also the modes of the stationary (bi-
modal) state distribution.

To evaluate the accuracies of different approximations in
estimating the posterior distributions of the parameters we
calculated the conditional posterior distribution of each pa-
rameter in a one-dimensional grid while keeping the other
parameters fixed to true values. These are plotted in Fig-
ure 1, where we have also plotted the estimate provided
by the particle MCMC method. As can be seen in the fig-
ure, the conditional distribution approximations provided by
the Taylor series approach are quite far away from the true
posteriors. The approximations are somewhat sensitive to
particular realization of the state trajectory and measure-
ments, but a similar phenomenon is observed each time.
With the other methods the distribution approximations are
much closer to the true ones although they also differ slightly
from the true distribution. From the figure one can also see
the stochasticity of the particle MCMC estimate, which is
on average the same as the one provided by the numerical
FPK solution.

We ran MCMC sampling with RAM algorithm on the
unknown parameters while using the spherical cubature, Tay-
lor series and particle MCMC based approximations. Esti-
mates of the parameters are visualized in Figure 2 as pair-
wise marginal distributions. The FPK method was not used,
because its computational requirements are far too huge to
be used in MCMC sampling. As was the case with con-
ditional distributions above, Taylor series-based method is
not able to approximate the parameter posterior distribution
correctly. Even though the parameter posteriors are heav-
ily non-Gaussian, the cubature based method approximates
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Fig. 1 Ginzburg–Landau: conditional posteriors of each parameter. Here, light gray shade denotes the true distribution (FP-based solution),
black line the particle MCMC estimate, light gray line the Taylor series-based estimate, dotted line Gauss–Hermite quadrature and dashed line
spherical cubature. As can be seen, Taylor series-based method is clearly inconsistent with the true posterior, while the other methods are slightly
off, but still much closer to the truth.

−4 −2 0

−8

−6

−4

−2

0

α

lo
g
(β

)

(a) p(α, log(β )|y) with spherical cuba-
ture

−4 −2 0

0

0.5

1

1.5

α

lo
g
(σ

)

(b) p(α, log(σ)|y) with spherical cuba-
ture

−8 −6 −4 −2 0

0

0.5

1

1.5

log(β)
lo

g
(σ

)

(c) p(log(β ), log(σ)|y) with spherical
cubature

−4 −2 0

−8

−6

−4

−2

0

α

lo
g
(β

)

(d) p(α, log(β )|y) with Taylor series

−4 −2 0

0

0.5

1

1.5

α

lo
g
(σ

)

(e) p(α, log(σ)|y) with Taylor series

−8 −6 −4 −2 0

0

0.5

1

1.5

log(β)

lo
g
(σ

)

(f) p(log(β ), log(σ)|y) with Taylor se-
ries

−4 −2 0

−8

−6

−4

−2

0

α

lo
g
(β

)

(g) p(α, log(β )|y) with PMCMC

−4 −2 0

0

0.5

1

1.5

α

lo
g
(σ

)

(h) p(α, log(σ)|y) with PMCMC

−8 −6 −4 −2 0

0

0.5

1

1.5

log(β)

lo
g
(σ

)

(i) p(log(β ), log(σ)|y) with PMCMC

Fig. 2 Ginzburg–Landau: MCMC estimates of parameters. The panels show the pair-wise marginal distributions of α,β and σ . The results
for β and σ are shown in log-space since that was used in sampling. Crosses (x) in the panels denote the MAP-estimates obtained from PMCMC
(which should be close to the true MAP-estimates) while pluses (+) denote the MAP estimates of each of the methods.

the shape of true posterior distribution surprisingly well (as-
suming that PMCMC is close to the truth). The figure also
shows the maximum a posteriori (MAP) estimates of param-

eters obtained with each of the methods separately, as well
as the PMCMC-based MAP estimate, which can assumed to
be close to the exact MAP estimate.
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5.2 Van der Pol Oscillator

As a higher dimensional non-linear example we consider pa-
rameter estimation in the Van der Pol oscillator model (see,
e.g., Kandepu et al, 2008), which is described by the second
order non-linear ODE

d2x(t)
dt2 −µ(1− ε x2(t))

dx(t)
dt

+ω
2 x(t) = f (t), (23)

where the coefficients µ and ε as well as the angular velocity
ω are unknown parameters. Above, we have also included
an additional unknown forcing term f (t).

We model the forcing term f (t) as a sum of white noise
and a stochastic resonator c(t), which is formed as a sum of
N harmonic components cn(t),n = 1, . . . ,N:

d2cn(t)
dt2 =−(nωc)

2 cn(t)+σn εn(t), (24)

where ωc is the angular velocity of the force process, σn
the strength of the noise process driving the nth harmonic,
and εn(t) is a white noise process. For simplicity, we assume
here that σn = σc for all n = 1, . . . ,N. Thus, the parameter
vector θ = (ε,µ,ω,σ ,ωc,σc) is six dimensional, and the
state variable x = (x, ẋ,c1, ċ1, . . . ,cN , ċN) has 2+2N compo-
nents. The full SDE model is of the form

dx(t) = ẋ(t)dt

dẋ(t) = µ (1− ε x2(t)) ẋ(t)dt−ω
2 x(t)dt

+(c1(t)+ · · ·+ cN(t))dt

dcn(t) = ċn(t)dt

dċn(t) =−(ωc)
2 cn(t)dt +σc dWn(t), n = 1, . . . ,N.

(25)

The measurement is the state of the Van der Pol oscillator
plus noise:

yk = x(tk)+ rk, rk ∼ N(0,R), (26)

which corresponds to H =
(
1 0 · · · 0

)
in the Equation (2).

We simulated the system with parameters

θ= (1,1/2,1,1/100,π/5,1/100)

on the time interval t ∈ [0,40] and generated observations
with sampling period ∆ t = 1 and variance R = 1/102. We
used N = 2 harmonic components in the resonator c(t). Given
the simulated measurements, we ran MCMC sampling with
the RAM algorithm on the parameters with spherical cuba-
ture, Taylor series, and particle filter (particle MCMC) with
5000 particles approximating the marginal likelihood. This
number of particles was chosen using the criterion proposed
by Doucet et al (2012). We did not test the Gauss–Hermite
quadrature based method, because of its high computational
requirements due to the exponential scaling of the number
of computations in the state dimensionality (i.e., 7th order
method would need 76 = 117649 sigma-points). The FPK

method is not feasible either, because it scales exponentially
in the state dimensions and as stated in the previous section,
it is too expensive for MCMC even in one dimension.

Figure 3 shows the pair-wise marginals of each of the
parameters. It can be seen that the parameters ε and µ are
highly correlated with each other. The parameters ω and
ωc seem to be quite well identified with all the methods,
while the parameters σ and σc do not identify as well. The
posterior approximation of the latter parameters also shows
the MCMC method has difficulties in sampling of these pa-
rameters under the Gaussian approximations. However, the
shapes of all the parameter posteriors are still well captured
by all the methods.

5.3 Computational Requirements

In this section, we evaluate the computational requirements
of the methods used in the Van der Pol example with varying
number of oscillator components N. The computational re-
quirements of the different methods in parameter estimation
heavily depend on the underlying algorithm used for eval-
uation of the marginal likelihood. They in turn depend on
the number of evaluation points (i.e., the number of sigma-
points in the cubature method and particles in the particle
filter), which in turn depends on the dimensionality of the
state. The scaling of all the methods with the state dimen-
sionality is roughly quadratic and they scale roughly linearly
in the number of evaluation points. However, the overhead
and the proportionality constants are quite different in each
of the methods.

We start by investigating the number of evaluation points
needed in each of the methods. We used the criterion of
Doucet et al (2012) for determining the number of particles
for PMCMC (the likelihood were evaluated at the true pa-
rameter values). These and the number of evaluation points
for the cubature method are shown in Table 1. The corre-
sponding number of evaluations for the Taylor series is one
although the proportionality constant is quite high. This re-
veals one challenge in PMCMC – the required number of
particles seems to grow exponentially with the state dimen-
sion, which indeed is a well-known problem in the context of
particle filtering (Snyder et al, 2008). In contrast, the number
of evaluations need by the cubature method grows linearly
with the number of dimensions.

The numbers of evaluation points in Table 1 do not di-
rectly give the computation time needed by the methods. To
evaluate the practical speed we measured the times need for
a single evaluation of the likelihood function with each of
the methods. It is worth noting that as the evaluation time
was measured using MATLAB, due to implementation de-
tails, the results slightly favor the particle filter. This would
change if, for example, a C++ implementation were used.
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Fig. 3 Van der Pol Oscillator: MCMC estimates of parameters. The panels show the pair-wise marginal distributions of the parameters provided
by the spherical cubature, Taylor series, and PMCMC methods. Crosses (x) in the panels denote the MAP-estimates obtained from PMCMC
(assumed to be close to the true MAP-estimates) and pluses (+) denote the MAP estimates of each of the methods.
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Fig. 4 Computation times as function of the number of oscillator com-
ponents in the Van der Pol model. The computational requirements
of the particle approximation (PMCMC) are significantly higher than
those of cubature and Taylor series approximations.

Table 1 The number of evaluation points needed in the Van der Pol
oscillator model as function of oscillator components N.

N PMCMC particles Cubature sigma-points

0 500 4
1 2000 8
2 5000 12
3 50000 16
4 100000 20

The measured times of the likelihood evaluations are
shown in Figure 4. It can be seen that the computation time
required by the particle-based method in PMCMC is much
higher than the computation times of the cubature and Tay-
lor based methods – despite the fact that the implementation
favors the particle-based method. The steep scaling of the
computational requirements in the particle approximation is
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mainly due to the almost exponential growth of the required
number of particles (given in Table 1). However, without
increasing the number of particles with the state dimension-
ality the PMCMC would not give a reasonable result at all.

6 Conclusion and Discussion

In this article, we have studied the use of quadrature or sigma-
point based non-linear Kalman-type Gaussian filters with
adaptive Markov chain Monte Carlo (AMCMC) methods in
approximate full Bayesian estimation of parameters in par-
tially observed non-linear stochastic differential equations
(SDEs). In particular, we have tested the accuracy and com-
putational requirements of sigma-point based approxima-
tion methods against Taylor series, grid, and particle MCMC
based methods. The results indicate that sigma-point based
Gaussian approximations provide a surprisingly accurate ap-
proximation of the parameter posterior distribution, while
the methods are computationally light-weight.

The advantage of the Gaussian approximation based meth-
ods over many other methods is that although the model
family is quite general, due to the utilization of the Gaus-
sian state approximations, the required computations remain
light. The computations are order of magnitude lighter when
compared to, for example, the particle MCMC method. The
use of sigma-point methods makes the method black-box in
the sense that to implement the method, we do not need to
compute derivatives, closed form expectations or any other
such quantities – being able to evaluate the drift, diffusion
and measurement model functions is sufficient. Furthermore,
the sigma-point approximations are more accurate than Tay-
lor series approximations, and the use of AMCMC makes
the manual tuning of proposal distributions unnecessary.

The main weakness of the methods is that they use a
Gaussian approximation for the state and thus might not
produce accurate results when the state posterior is strongly
non-Gaussian. However, as the our experiments show, the
results can be accurate even when the SDE is strongly non-
linear. The non-Gaussianity of the parameter posterior is not
a problem as such (cf. Figure 2), because it is approximated
using the MCMC method. The method also works well with
the multivariate non-linear Van Der Pol SDE model. The
results are also in good agreement with PMCMC method
which produces an asymptotically exact Monte Carlo ap-
proximation of the parameter posterior, but often requires
a large number of particles.

An important point to note is that the analysis of compu-
tational requirements in Section 5.3 is based on the implicit
assumption that the accuracy of the spherical cubature rule
remains the same regardless of the state dimensionality, pro-
vided that we add sigma-points with the linear rule. It is pos-
sible (and likely) that this is not strictly true. Although Gaus-
sian approximations tend to be robust to the state dimension-

ality, it is possible that in some cases the exponential scaling
of the space causes the integration rule to become inaccu-
rate. However, theoretical analysis of this phenomenon is
hard and heavily depends on the problem at hand.

Another thing affecting the computational requirements
in practice is also the speed of mixing of the MCMC sam-
pling. This is turn also depends on the target acceptance rate
which is used in the AMCMC algorithm. For (A)PMCMC
it is likely that the choice ᾱ∗ = 0.234 which we used is not
optimal. However, this choice does not affect the efficiency
comparisons here.

The Gaussian approximation based methods presented
in this article could be easily extended to non-linear mea-
surement models simply by replacing the update step with
the non-linear Gaussian filter update step (Ito and Xiong,
2000; Wu et al, 2006; Särkkä and Sarmavuori, 2013). In-
stead of the first order Taylor series (or LNA) it would also
be possible to use higher order expansions (see, e.g., Jazwin-
ski, 1970; Maybeck, 1982; Ferm et al, 2008), which might
sometimes work better than the first order expansion. How-
ever, unlike the sigma-point methods, they require closed
form evaluation of the derivatives of the functions and thus
are not black-box in that sense. It would also be possible to
use more than the first two moments in the SDE approxi-
mation (cf. Jazwinski, 1970; Maybeck, 1982; Socha, 2008;
Singer, 2008a).

7 Supplementary materials

Supplementary materials are available. Appendix A contains
the full RAM algorithm, and the Kalman filter update and
non-linear continuous-discrete Gaussian smoothing equations
are given in Appendix B.
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