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Bayesian Filtering and Smoothing

• Bayesian inference - Uncertainties are modeled as probability

distributions

• Generic state space model

yk ∼ p(yk |xk)

xk ∼ p(xk |xk−1)

x0 ∼ p(x0)

• Where vector xk is the state and vector yk is the measurement
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Bayesian Filtering and Smoothing

• The ultimate goal of a filter is to compute (filtered) posterior

distribution of the current state, which is conditioned to

measurements up to the current time step k:

p(xk | y1, . . . , yk)

• The ultimate goal of a smoother is to compute (smoothed)

posterior distributions of all the states, which are conditioned to all

measurements up to a time step T > k:

p(xk | y1, . . . , yT )
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Kalman Filter and Smoother

• Kalman filter computes exactly the filtered posteriors of linear

Gaussian models in form

p(yk |xk) = N (yk |Hkxk,Rk)

p(xk |xk−1) = N (xk |Ak−1xk−1,Qk−1)

p(x0) = N (x0|m0,P0)

• Where vector xk is the state and vector yk is the measurement

• Kalman smoother computes the smoothed posteriors for the

same linear Gaussian model
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Long Term Model

• The selected continuous dynamic linear model for long term

prediction is

ẍ(t) = w(t)
• Equivalent discrete representation
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• Measurement model is

yk = xk + r x
k , r x

k ∼ N (0, σ 2
x )
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Long Term Model
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Gray line is the long term prediction, black line is the final prediction

and dots are the known data points.
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Long Term Model
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Short Term Model

• Time Varying AR-model for residual:

wk = wk−1 + vark

ek =
∑

i

wi,kek−i + rark .

• The weight vector wk is to be estimated from the known part of

residual time series with Kalman filter and smoother

• The weight vector is predicted over the missing parts -

measurements are modeled as missing
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Short Term Model
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Short Term Model

• Estimated short term residual is obtained from

dk =
∑

i

wi,kdk−i + vpk

ek = dk + r p
k , r p

k ∼ N (0, σ 2
p ),

• Given the weight sequence, can be solved by Kalman filter and

smoother

• The final result is the sum of long and short term estimates

ŷk = x̂k + d̂k
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Prediction Method in Practice

1. Long term prediction: Run Kalman filter over the data sequence

and store the estimated means and covariances. Run Kalman

smoother over the Kalman filter estimation result

2. AR-weight estimation: Run Kalman filter and then Kalman

smoother over the residual sequence to estimate the weights

3. Short term residual estimation: Run Kalman filter and Kalman

smoother over the residual sequence to get the estimated short

term residual signal
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Cross-Validation of Noise Variances

• Kalman filter and smoother have the noise parameters that need to

be selected some way

• Measurement noises can be selected “by guessing”, because they

depend on process noises

• Process noises were selected by cross-validation using the cost

criterion of the competition

• The final prediction process noise was selected to have a suitably

low value
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Final results: 981–1000

950 1000 1050
0

20

40

60

80

100

120

140

160

Gray line is the long term prediction, black line is the final prediction

and dots are the known data points.
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Final results: 1981–2000
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Gray line is the long term prediction, black line is the final prediction

and dots are the known data points.
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Final results: 2981–3000
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Gray line is the long term prediction, black line is the final prediction

and dots are the known data points.
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Final results: 3981–4000
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Gray line is the long term prediction, black line is the final prediction

and dots are the known data points.
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Final results: 4981–5000
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Gray line is the long term prediction, black line is the final prediction

and dots are the known data points.
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Summary of Method

• Long term prediction is based on Gaussian linear state space

model

• Short term prediction was performed by a time varying AR-process

model

• The noise parameters of Kalman filters and smoothers were

selected by cross-validation

• The final prediction was done using the estimated noise

parameters as if they were known in advance
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Why Does it Work?

• The long term stochastic differential equation model

ẍ(t) = w(t)
is equivalent to Tikhonov regularization

• The class of functions is that of Gaussian processes, which are

often used in Bayesian machine learning

• The short term model is also a Gaussian process model

• Cross-validation explicitly maximized the generalization ability for

the cost function used in the competition
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