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Abstract— This article presents a classical type of solution to
the time series prediction competition, the CATS benchmark,
which is organized as a special session of the IJCNN 2004
conference. The solution is based on sequential application of
the Kalman smoother, which is a classical statistical tool for
estimation and prediction of time series. The Kalman smoother
belongs to the class of linear methods, because the underlying
filtering model is linear and the distributions are assumed
Gaussian. Because the time series model of the Kalman smoother
assumes that the densities of noise terms are known, these are
determined by cross-validation.

I. INTRODUCTION

A. Overview of the Approach

The purpose of this article is to present a solution to the
CATS time series prediction competition, which is organized
as a special session of the IJCNN 2004 conference. The ap-
proach is selected to be a simple one, such that all the models
are linear Gaussian and methods are based on application of
classical statistical linear filtering theory.

The proposed method uses linear models for long and short
term behavior of the signal. The computation is based on the
Kalman smoother, where the noise densities are estimated
by cross-validation. In time series prediction the Kalman
smoother is applied three times in different stages of the
method.

B. Optimal Linear Filtering and Smoothing

The success of optimal linear filtering is mostly due to
the journal paper of Kalman [1], which describes a recursive
solution to the discrete linear filtering problem. Although
the original derivation of Kalman filter was based on least
squares approach, the same equations can be derived from
pure probabilistic Bayesian analysis. The Bayesian analysis
of Kalman filtering is well covered in the classic book of
Jazwinski [2] and more recently in the book of Bar-Shalom et
al. [3].

Kalman filtering, mostly because of its least squares inter-
pretation, has been widely used in stochastic optimal control.
A practical reason to this is that the inventor of Kalman filter,
Rudolph E. Kalman, has also made several contributions to the
theory of linear quadratic Gaussian (LQG) regulators, which
are fundamental tools of stochastic optimal control.

As discussed in the book of West and Harrison [4], in
the sixties, Kalman filter type recursive estimators were also
used in Bayesian community and it is not clear if theory of
Kalman filtering or theory of dynamic linear models (DLM)
was the first. Although these theories were originally derived
from slightly different starting points, they are equivalent. This
article approaches the Bayesian filtering problem in Kalman
filtering point of view, because of its useful connection to the
theory and history of stochastic optimal control.

C. Kalman Filter

The Kalman filter (see, e.g. [2], [3]), which originally
appeared in [1], considers a discrete filtering model, where
the dynamic and measurements models are linear Gaussian

xk = Ak−1xk−1 + qk−1

yk = Hkxk + rk,
(1)

where qk−1 ∼ N(0,Qk−1) and rk ∼ N(0,Rk). If the prior
distribution is Gaussian, x0 ∼ N(m0,P0), then the optimal
filtering equations can be evaluated in closed form and the
resulting distributions are Gaussian

p(xk | y1:k−1) = N(xk | m−k ,P−k )

p(xk | y1:k) = N(xk | mk,Pk)

p(yk | y1:k−1) = N(yk | Hkm
−
k ,Sk).

The parameters of the distributions above can be calculated
by Kalman filter prediction and update steps:

• Prediction step is

m−k = Ak−1mk−1

P−k = Ak−1Pk−1A
T
k−1 + Qk−1.

• Update step is

vk = yk −Hkm
−
k

Sk = HkP
−
k HT

k + Rk

Kk = P−k HT
k S−1

k

mk = m−k + Kkvk

Pk = P−k −KkSkK
T
k .



D. Kalman Smoother

The Kalman smoother (see, e.g., [2], [3]) calculates recur-
sively the state posterior distributions

p(xk | y1:T ) = N(xk | ms
k,P

s
k),

for the linear filtering model (1). The difference to the pos-
terior distributions calculated by the Kalman filter is that the
smoothed distributions are conditioned to all the measurement
data y1:T , while the filtered distributions are conditional only
to the measurements obtained before and at the time step k,
that is, to measurements y1:k.

The smoothed distributions can be calculated from the
Kalman filter results by recursions

P−k+1 = AkPkA
T
k + Qk

Ck = PkA
T
k [P−k+1]−1

ms
k = mk + Ck[ms

k+1 −Akmk]

Ps
k = Pk + Ck[Ps

k+1 −P−k+1]CT
k ,

starting from last time step T , with ms
T = mT and Ps

T = PT .

II. DESCRIPTION OF THE MODEL

A. Long Term Model

For long term prediction, a linear dynamic model is likely
to be a good approximate model because if we ignore the
short term periodicity of the data, the data could be well
generated by a locally linear Gaussian process with Gaussian
measurement noise. The data seems to consist of lines with
suddenly changing derivatives. Thus, it would be reasonable to
model the derivative as Brownian noise process, which leads
to white noise model for second derivative.

There is no evidence of benefit for using higher derivatives,
because the curve consists of set of lines rather than set of
parabolas or other higher order curves. The dynamic model is
formulated as a continuous time model, and then discretized
to allow varying sampling rate, that is, the prediction over the
missing measurements.

The selected dynamic linear model for long term prediction
is (

xk
ẋk

)
=

(
1 ∆t
0 1

)(
xk−1

ẋk−1

)
+

(
qx1,k−1

qx2,k−1

)
,

where the process noise, qxk = (qx1,k−1 qx2,k−1)T , has zero
mean and covariance

Qk−1 =

(
∆t3/3 ∆t2/2
∆t2/2 ∆t

)
qx,

where ∆t is the time period between samples and qx defines
the strength (spectral density) of the process noise. Suitable
measurement model is

yk = xk + rxk , rxk ∼ N(0, σ2
x).

A quick testing of the long term model produces a smooth
curve as shown in Fig. 1. It can be seen that the locally linear
dynamic model may be a bit too simple, because there still
seems to be noticeable periodicity in the residual signal. This
periodicity can be best seen from the residual autocorrelation
in Fig. 2.
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Fig. 1. Data 400–500 (black) and the result of prediction with the long term
model (gray).
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Fig. 2. Autocorrelation in residual of long term prediction model.

B. Short Term Model

The short term periodicity of the residual time series {ek :
k = 1, ..., N} can be modeled by a linear prediction or AR-
model (see, e.g., [5]), where as an extension to typical models,
we allow the weight to vary according to a Gaussian random
walk model

wk = wk−1 + var
k

ek =
∑

i

wi,kek−i + rark .
(2)

The process noise var
k has zero mean and covariance Q =

qarI. The weight vector wk is to be estimated from the
known part of residual time series. The measurement noise
has Gaussian distribution rark ∼ N(0, σ2

ar).



After the AR-model has been estimated from the residual
time series data, the final estimation solution is obtained from

dk =
∑

i

wi,kdk−i + vpk

ek = dk + rpk, rpk ∼ N(0, σ2
p),

(3)

where the process noise vpk has variance qp. The final signal
estimate is then given as ŷk = x̂k + d̂k, where x̂k is the
estimate produced by applying Kalman smoother to the long
term model, and d̂k is produced by the short term model.

In practice, only the distributions of weight vectors wk

are known, not their actual values, and in order to use the
model (3) we would have to integrate over these distribution
on every step. In this article we have used a common approach,
where this integration is approximated by using the most likely
estimate of weights vectors and this value is regarded as being
known in advance. In classical statistical signal processing this
estimate is calculated by linear least squares (see, e.g., [5]).
Because our weight vector is allowed to vary in time, the
corresponding estimate in this case is produced by applying
Kalman smoother to model (2).

In this article we chose to use a second order AR-model
such that the weight vector was two dimensional,

wk =

(
w1,k

w2,k

)
. (4)

C. The Prediction Method

The long term prediction is then done in two steps:

1) Run Kalman filter over the data sequence and store the
estimated means and covariances. Predict the missing
measurement such that the filtering result contains esti-
mates also for the missing steps.

2) Run Kalman smoother over the Kalman filter estimation
result, which results in smoothed (MAP) estimate of the
time series including the missing parts.

The short term prediction consists of four steps:

1) Run Kalman filter over the residual sequence with model
(2) in order to produce the filtering estimate of AR
weight vectors. Predict the weights over the missing
parts.

2) Run Kalman smoother over the Kalman filter estimation
result above, which results in smoothed (MAP) estimate
of the weight time series including the missing parts.

3) Run Kalman filter over the residual sequence with model
(3) in order to produce filtering estimate of the short
term periodicity. The periodicity is also predicted over
the missing parts.

4) Run Kalman smoother over the Kalman filter estimation
result above, which results in smoothed (MAP) estimate
of the periodicity time series including the missing parts.

Due to Gaussian random walk model of weights the short
term model has potentially a large effective number of param-
eters. Simple error minimization procedure with respect to to
noise parameters (e.g., Maximum Likelihood) would lead to a

badly over-fitted estimation solution. By application of cross-
validation we can maximize the predictive performance and
avoid over-fitting.

III. RESULTS

A. Selection of Measurement Noises

Long term measurement noise strength can be approximated
by looking at a short time period of the curve. If we assume
that we would approximate it by a dynamic linear model,
we can approximate the standard deviation of the model’s
measurement noise by looking at the strengths of residuals.
The selected variance of noise was σ2

x = 102, which quite
well fits to the observed residual as can be seen in the Fig. 1.

The choice of measurement noises both in long term and
short term models can be done, for example, by visual
inspection, because the exact choice of noise strength is not
crucial. In fact, the choice does not matter at all when the
cost function of the CATS competition is considered, because
in this case the selection is dependent on the selection of
process noise strength in all the models. The process noise
strength is selected based on cross-validation, which implicitly
corrects also the choice of measurement noise strength. By
visual inspection a suitable measurement noise for the AR-
estimation model (2) was σ2

ar = 12.
Because we are only interested in the missing parts of data

in prediction with model (3), the best way to do this is to
follow the measurements exactly whenever there are measure-
ments and use AR-model for prediction only when there are
no measurements. This happens when the measurement noise
level is set to as low as possible and the process noise is set
to a moderate value. Our choice for noise level in model (3)
was σ2

p = 10−9.

B. Cross-Validation of Process Noises

Process noise parameters qx and qar were selected using
a decision theoretic approach by minimizing the expected
cost where cost function is the target error criterion. Ex-
pected cost can easily be computed by cross-validation, which
approximates the formal Bayes procedure of computing the
expected costs (see, e.g., [6]). Based on cross-validation, the
best process noises were

qx = 0.14

qar = 0.0005.
(5)

As discussed in the previous Section, the only requirement for
selection of process noise qp is that it should be high enough.
Because the measurement noise was selected to be very low,
our choice was qp = 1.

C. Prediction Results

Fig. 3 shows the estimated AR-coefficients for each time
instance. It can be seen that the weights vary a bit over time,
but the periodic short term process seems to be quite stationary.

Figs. 4, 5, 6, 7 and 8 show the results of predicting over the
missing intervals. It can be seen that on the missing intervals
the short term model differs from long term model only near
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Fig. 3. Estimated filter coefficients for the AR-model.

the measurements and the combined estimate is closest to the
long term prediction in the middle of prediction period. The
result is intuitively sensible, because when going away from
the measurement we have less information on the phase of
local periodicity and it is best to just guess the mean given by
the long term model.
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Fig. 4. Prediction over missing data at 981 – 1000. The gray line is the long
term prediction result and black line is the combined long and short term
prediction result.

IV. CONCLUSIONS

A. Summary of the Results

In this article we applied the classical Kalman smoother
method for estimating the long term and short term statistical
models for the CATS benchmark time series. The results
indicate that the long term prediction gives a very good overall
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Fig. 5. Prediction over missing data at 1981 – 2000. The gray line is the
long term prediction result and black line is the combined long and short term
prediction result.
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Fig. 6. Prediction over missing data at 2981 – 3000. The gray line is the
long term prediction result and black line is the combined long and short term
prediction result.

approximation of the signal and the short term prediction
catches the local periodicity ignored by the long term model.

Although all the used models were linear (and dynamic) in
nature they seem to model well this non-linear time series. It
is likely that by using non-linear state space models (filtering
models) the prediction results would be better, but it is very
hard to judge what kind of model is really the best. This
judgment naturally also depends on the criterion used.
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Fig. 7. Prediction over missing data at 3981 – 4000. The gray line is the
long term prediction result and black line is the combined long and short term
prediction result.
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Fig. 8. Prediction over missing data at 4981 – 5000. The gray line is the
long term prediction result and black line is the combined long and short term
prediction result.
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