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Introduction
•Rao-Blackwellized particle filtering based algorithm for tracking an unknown number of targets.

• The algorithm is based on formulating probabilistic stochastic process models for target states,
data associations, and birth and death processes.

• The tracking of these stochastic processes is implemented using sequential Monte Carlo sam-
pling, and the efficiency of the sampling is improved by using Rao-Blackwellization.

Multiple target tracking considers problems where the purpose is to estimate the dynamic states
(positions, velocities, accelerations) of multiple targets based on indirect sensor measurements.
The problem can be roughly divided into the following sub-problems, which should be solved
jointly:

• Single target tracking: The classical problem of tracking single target with multiple sensors.

•Data association: Given a measurement, which target produced it, if any?

•Unknown number of targets: How many targets are there at the scene?

Rao-Blackwellization
The estimation problem is solved using a Rao-Blackwellized particle filter:

•We approximate the posterior distribution of the measurement conditional state process by a
particle filter, where the distribution is approximated by a weighted set of particles.

•We use Rao-Blackwellization or marginalization, where we integrate out the single target track-
ing sub-problem, which improves the particle filter efficiency because less Monte Carlo samples
(i.e., particles) are needed.

• In practice, the marginalization is performed such that we solve the single target tracking sub-
problems in each particle conditional to the data association history in the particle.

• In the single target tracking subproblem we can use any classical single target tracking algo-
rithms such as Kalman filter, extended Kalman filter (EKF), unscented Kalman filter (UKF) or
interacting multiple models (IMM).

• The classical methods tend work very well (even better than particle filters) in the single target
tracking problems, and in our approach we use the particle filter only to the non-linear part
(data associations / number of targets) and classical Gaussian approximation based filters to
the almost linear part (single target tracking).

Target Dynamics
Because the sensor measurements arrive at irregular intervals it is necessary to use continuous-
discrete filtering, where the target dynamics are modeled as stochastic differential equations (i.e.,
Itô processes)

dx(t)
dt
= f(x, t)+ L(t)w(t). (1)

where x(t) ∈ Rn is the state. We approximate the non-linear Itô process by a Gaussian process
using the extended Kalman filter (EKF) or the unscented Kalman filter (UKF). The interacting
multiple models (IMM) algorithm could be also applied for generating a mixture of Gaussians
approximation.

Sensor Measurements
The sensor measurements zk ∈ Rs, given the data associations, are modeled as

zk = h(x(tk), t)+ rk, (2)

where rk is a Gaussian random variable. In our approach non-linear models are approximated
by EKF or UKF, which produce Gaussian approximation to the single target (data association
conditional) posterior.

Note that due to the continuous-discrete approach several time steps k may occur at the same
time instance tk = tk+1 = . . . = tk+m and thus we may always assume at most one measurement
at a time step.

Data Associations and Clutter
Data associations are modeled with contact variable ck, which holds the index of the target, which
is associated with the measurement zk. The contacts are modeled as m’th order Markov chain

p(ck | ck−1, . . . , ck−m). (3)

With this, we are able to model the following:

• The targets may have a certain known detection probability pd.

• Some of the measurements are false alarms and the number of these clutter measurements per
time step is Poisson distributed.

•Maximum of one measurement per target per time instance is possible due to physical (sensor)
constraints.

These can be modeled by first constructing the joint model p(ck, ck−1, . . . , ck−m) and then comput-
ing analytically the conditional distributions.

Unknown Number of Targets
The unknown number of targets is handled by the following model:

• At time of a measurement, target birth may happen with probability pb.

• Target birth may only happen jointly with a data association with the newborn target.

• After associating a measurement with a target, the life time td (or time to death) of the target has
the probability density

td ∼ p(td), (4)

which can be, for example, an exponential or gamma distribution.

Example: Bearings Only Tracking in Presence of Clutter
•Dynamic model is a Wiener velocity model.

•Measurement model for target j is:

θ̂k = arctan

(
yj,k − sy

x j,k − sx

)
+ rk, (5)

where rk is a Gaussian random variable and (sx, sy) is the position of the sensor.

• Target detection probability pd = 80%.

•Number of clutter measurements per time step is Poisson with mean 5.
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Figure 1: (a) Measurement data. (b) The sensor locations and prior distributions.
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Figure 2: (a) Filter estimates for each time step. (b) Smoother estimates for each time step.

Example: Unknown Number of 1D Signals
•Dynamic model is a Wiener velocity model.

•Measurement model for target j is:

yk, j = x ( j)(tk)+ rk. (6)

• Every measurement has 1% change of being a corrupted measurement uniformly distributed
on the area [−5, 5].
• The prior probability of birth pb = 1/100.

• A priori time to death td has the gamma distribution td ∼ Gamma(td | 2, 1).
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Figure 3: (a) Filtering result. (b) Estimated number of signals.


