

Sigma Point and Particle Approximations of Stochastic Differential Equations in Optimal Filtering

Simo Särkkä

Helsinki University of Technology
Nalco Company

May, 2008

Contents

- 1 Problem Formulation
- 2 Continuous-Discrete EKF and UKF
- 3 Continuous-Discrete SIR
- 4 Discussion and Summary

Continuous-Discrete Filtering Problem

- Estimate the unobserved **continuous-time signal** from noisy **discrete-time measurements**

Mathematical Problem Formulation

- The dynamics of **state** $\mathbf{x}(t)$ modeled as a **stochastic differential equation** (Itô diffusion)

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t) dt + \mathbf{L} d\beta(t).$$

- **Measurements** \mathbf{y}_k are obtained at discrete times

$$\mathbf{y}_k \sim p(\mathbf{y}_k | \mathbf{x}(t_k)).$$

- **Formal solution:** Compute the posterior distribution(s)

$$p(\mathbf{x}(t) | \mathbf{y}_1, \dots, \mathbf{y}_k), \quad t \geq t_k.$$

Formal solution

Optimal filter

① **Prediction step:** Solve the Kolmogorov-forward (Fokker-Planck) partial differential equation.

$$\frac{\partial p}{\partial t} = - \sum_i \frac{\partial}{\partial x_i} (f_i(\mathbf{x}, t) p) + \frac{1}{2} \sum_{ij} \frac{\partial^2}{\partial x_i \partial x_j} ([\mathbf{L} \mathbf{Q} \mathbf{L}^T]_{ij} p)$$

② **Update step:** Apply the Bayes' rule.

$$p(\mathbf{x}(t_k) | \mathbf{y}_{1:k}) = \frac{p(\mathbf{y}_k | \mathbf{x}(t_k)) p(\mathbf{x}(t_k) | \mathbf{y}_{1:k-1})}{\int p(\mathbf{y}_k | \mathbf{x}(t_k)) p(\mathbf{x}(t_k) | \mathbf{y}_{1:k-1}) d\mathbf{x}(t_k)}$$

Probability Density Approximations

- Common types of probability density approximations:
 - **Gaussian approximations:** Taylor series, statistical linearization, unscented transform (UT).
 - **Parametric PDF models:** assumed density, mixture models, variational approximations.
 - **Monte Carlo approximations:** perfect Monte Carlo sampling, importance sampling, Markov chain Monte Carlo (MCMC).
- Here we shall concentrate on the following methods:
 - Continuous-discrete **extended Kalman filter (EKF)**, which is a Taylor/Gaussian approximation based method.
 - Continuous-discrete **unscented Kalman filter (UKF)**, which is a UT/Gaussian approximation based method.
 - Continuous-discrete **sequential importance resampling (SIR)**, which is an importance sampling based Monte Carlo method.

Taylor Series Approximations of Transformations

- Consider transformation of Gaussian random variable by non-linear function $\mathbf{g}(\cdot)$:

$$\mathbf{x} \sim \mathcal{N}(\mathbf{m}, \mathbf{P})$$
$$\mathbf{y} = \mathbf{g}(\mathbf{x})$$

- The function can be approximated by **Taylor series**:

$$\mathbf{g}(\mathbf{m} + \Delta \mathbf{x}) = \mathbf{g}(\mathbf{m}) + \mathbf{G}(\mathbf{m}) \Delta \mathbf{x} + \dots$$

where $\mathbf{G}(\cdot)$ is the Jacobian of $\mathbf{g}(\cdot)$.

- We get the following **Gaussian approximation** to the distribution of the random variable \mathbf{y} :

$$\mathbf{y} \sim \mathcal{N} \left(\mathbf{g}(\mathbf{m}), \mathbf{G}(\mathbf{m}) \mathbf{P} \mathbf{G}^T(\mathbf{m}) \right)$$

Extended Kalman Filter (EKF)

- EKF applies the Taylor series approximation to the **filtering model**

$$\mathbf{x}_k = \mathbf{f}(\mathbf{x}_{k-1}) + \mathbf{q}, \quad \mathbf{q} \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$$

$$\mathbf{y}_k = \mathbf{h}(\mathbf{x}_k) + \mathbf{r}, \quad \mathbf{r} \sim \mathcal{N}(\mathbf{0}, \mathbf{R})$$

- The resulting **EKF equations** are of the form:

- *Prediction:*

$$\mathbf{m}_k^- = \mathbf{f}(\mathbf{m}_{k-1})$$

$$\mathbf{P}_k^- = \mathbf{F}(\mathbf{m}_{k-1}) \mathbf{P}_{k-1} \mathbf{F}^T(\mathbf{m}_{k-1}) + \mathbf{Q}.$$

- *Update:*

$$\mathbf{S}_k = \mathbf{H}(\mathbf{m}_k^-) \mathbf{P}_k^- \mathbf{H}^T(\mathbf{m}_k^-) + \mathbf{R}$$

$$\mathbf{K}_k = \mathbf{P}_k^- \mathbf{H}^T(\mathbf{m}_k^-) \mathbf{S}_k^{-1}$$

$$\mathbf{m}_k = \mathbf{m}_k^- + \mathbf{K}_k [\mathbf{y}_k - \mathbf{h}(\mathbf{m}_k^-)]$$

$$\mathbf{P}_k = \mathbf{P}_k^- - \mathbf{K}_k \mathbf{S}_k \mathbf{K}_k^T.$$

Continuous-Discrete EKF [1/2]

- In **continuous-discrete filtering** the dynamic model is a **stochastic differential equation** (SDE):

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}) dt + \mathbf{L} d\beta$$

- Taking first order **discrete-time approximation** we get (note that the SDE can be interpreted as a Stratonovich equation)

$$\mathbf{x}_k = \mathbf{x}_{k-1} + \mathbf{f}(\mathbf{x}_{k-1}) \delta t + \mathbf{q}, \quad \mathbf{q} \sim \mathcal{N}(\mathbf{0}, \mathbf{L} \mathbf{Q} \mathbf{L}^T \delta t)$$

- Continuous solution on interval $[0, T]$ (between measurements) can be approximated by **iterating the discrete approximation** over the interval in steps of δt .

Continuous-Discrete EKF [2/2]

- The EKF prediction equations up to first order in δt :

$$\mathbf{m}_k = \mathbf{m}_{k-1} + \mathbf{f}(\mathbf{m}_{k-1}) \delta t$$

$$\mathbf{P}_k = \mathbf{P}_{k-1} + \mathbf{F}(\mathbf{m}_{k-1}) \mathbf{P}_{k-1} \delta t + \mathbf{P}_{k-1} \mathbf{F}^T(\mathbf{m}_{k-1}) \delta t + \mathbf{L} \mathbf{Q} \mathbf{L}^T \delta t$$

- Dividing by δt and by taking limit $\delta t \rightarrow 0$, we get

$$\frac{d\mathbf{m}}{dt} = \mathbf{f}(\mathbf{m})$$

$$\frac{d\mathbf{P}}{dt} = \mathbf{F}(\mathbf{m}) \mathbf{P} + \mathbf{P} \mathbf{F}^T(\mathbf{m}) + \mathbf{L} \mathbf{Q} \mathbf{L}^T$$

- These differential equations are satisfied between measurements.
- At measurements we use discrete-time EKF update equations.

Unscented Transform (UT) [1/2]

- The **unscented transform** also considers transformations as

$$\mathbf{x} \sim N(\mathbf{m}, \mathbf{P})$$

$$\mathbf{y} = \mathbf{g}(\mathbf{x})$$

- Instead of the Taylor series, a set of **sigma points** are computed as the columns of the **Cholesky factorization** of \mathbf{P} :

$$\mathbf{x}^{(0)} = \mathbf{m}$$

$$\mathbf{x}^{(i)} = \mathbf{m} + c \left[\sqrt{\mathbf{P}} \right]_i, \quad i = 1, \dots, n$$

$$\mathbf{x}^{(i)} = \mathbf{m} - c \left[\sqrt{\mathbf{P}} \right]_i, \quad i = n + 1, \dots, 2n$$

Unscented Transform (UT) [2/2]

- The **sigma points** are then propagated **through the function $\mathbf{g}(\cdot)$** :

$$\mathbf{y}^{(i)} = \mathbf{g}(\mathbf{x}^{(i)}), \quad i = 0, \dots, 2n.$$

- The **mean and covariance** of \mathbf{y} are approximated as **linear combinations** of the resulting points:

$$\mu \approx \sum_{i=0}^{2n} W_i^{(m)} \mathbf{y}^{(i)}$$

$$\mathbf{S} \approx \sum_{i=0}^{2n} W_i^{(c)} (\mathbf{y}^{(i)} - \mu) (\mathbf{y}^{(i)} - \mu)^T.$$

- The sigma points are chosen deterministically and the **weights are fixed** and thus this is **not a Monte Carlo approach**.

Unscented Kalman Filter

- The **unscented Kalman filter** (UKF) is almost like an EKF, but uses **unscented transforms instead of Taylor series** expansions.
- The prediction and update equations are messy, but the idea is the following:
 - *Prediction step:*
 - 1 Form sigma points of the state \mathbf{x}_{k-1}
 - 2 Propagate them through the dynamic model function
 - 3 Compute the resulting mean and covariance
 - 4 Add the process noise covariance to state covariance
 - *Update step:*
 - 1 Form sigma points of the predicted state
 - 2 Form UT approximation of the joint distribution of predicted state and measurement
 - 3 Use computation rules of Gaussian distributions for conditioning the joint distribution to the measurement \mathbf{y}_k

Matrix Form of Unscented Transform

- Define **matrices of sigma points** as

$$\mathbf{X} = [\mathbf{x}^{(0)} \ \dots \ \mathbf{x}^{(2n)}]$$

$$\mathbf{Y} = [\mathbf{y}^{(0)} \ \dots \ \mathbf{y}^{(2n)}]$$

- Propagation of sigma points can be written as **matrix operation**

$$\mathbf{Y} = \mathbf{g}(\mathbf{X})$$

- The mean and covariance computation equations can be written as **matrix expressions**

$$\boldsymbol{\mu} \approx \mathbf{Y} \mathbf{w}_m$$

$$\mathbf{S} \approx \mathbf{Y} \mathbf{W} \mathbf{Y}^T$$

where \mathbf{w}_m and \mathbf{W} are constant vector and matrix.

Matrix Form of Unscented Kalman Filter

- Unscented Kalman filter can be written in **matrix form**:

- Prediction:*

$$\mathbf{X}_{k-1} = [\mathbf{m}_{k-1} \ \cdots \ \mathbf{m}_{k-1}] + c [\mathbf{0} \ \ \sqrt{\mathbf{P}_{k-1}} \ \ -\sqrt{\mathbf{P}_{k-1}}]$$

$$\mathbf{m}_k^- = \mathbf{f}(\mathbf{X}_{k-1}) \mathbf{w}_m$$

$$\mathbf{P}_k^- = \mathbf{f}(\mathbf{X}_{k-1}) \mathbf{W} \mathbf{f}^T(\mathbf{X}_{k-1}) + \mathbf{Q}.$$

- Update:*

$$\mathbf{X}_k^- = [\mathbf{m}_k^- \ \cdots \ \mathbf{m}_k^-] + c [\mathbf{0} \ \ \sqrt{\mathbf{P}_k^-} \ \ -\sqrt{\mathbf{P}_k^-}]$$

$$\mathbf{S}_k = \mathbf{h}(\mathbf{X}_k^-) \mathbf{W} \mathbf{h}^T(\mathbf{X}_k^-) + \mathbf{R}$$

$$\mathbf{K}_k = \mathbf{X}_k^- \mathbf{W} \mathbf{h}^T(\mathbf{X}_k^-) \mathbf{S}_k^{-1}$$

$$\mathbf{m}_k = \mathbf{m}_k^- + \mathbf{K}_k [\mathbf{y}_k - \mathbf{h}(\mathbf{X}_k^-) \mathbf{w}_m]$$

$$\mathbf{P}_k = \mathbf{P}_k^- - \mathbf{K}_k \mathbf{S}_k \mathbf{K}_k^T.$$

Continuous-Discrete UKF [1/2]

- Taking the **continuous-time limit** of the prediction step leads to the equations:

$$\begin{aligned}\mathbf{X} &= [\mathbf{m} \quad \cdots \quad \mathbf{m}] + c \begin{bmatrix} \mathbf{0} & \sqrt{\mathbf{P}} & -\sqrt{\mathbf{P}} \end{bmatrix} \\ \frac{d\mathbf{m}}{dt} &= \mathbf{f}(\mathbf{X}) \mathbf{w}_m \\ \frac{d\mathbf{P}}{dt} &= \mathbf{X} \mathbf{W} \mathbf{f}^T(\mathbf{X}) + \mathbf{f}(\mathbf{X}) \mathbf{W} \mathbf{X}^T + \mathbf{L} \mathbf{Q} \mathbf{L}^T\end{aligned}$$

- In continuous-discrete UKF the above differential equations are used **between the measurements**.
- The **discrete-time UKF update equations** are used at measurements times.
- The matrix UT computations can be replaced with corresponding summation formulas, which are computationally lighter.

Continuous-Discrete UKF [2/2]

- The continuous UKF prediction equations can be written **in terms of sigma points** as

$$\mathbf{M} = \mathbf{A}^{-1} [\mathbf{X} \mathbf{W} \mathbf{f}^T(\mathbf{X}) + \mathbf{f}(\mathbf{X}) \mathbf{W} \mathbf{X}^T + \mathbf{L} \mathbf{Q} \mathbf{L}^T] \mathbf{A}^{-T}$$

$$\frac{d\mathbf{X}_i}{dt} = \mathbf{f}(\mathbf{X}, t) \mathbf{w}_m + c \begin{bmatrix} \mathbf{0} & \mathbf{A} \Phi(\mathbf{M}) & -\mathbf{A} \Phi(\mathbf{M}) \end{bmatrix}_i$$

- The matrix \mathbf{A} is the **Cholesky factor** of \mathbf{P} , which can be found by collecting suitable terms from \mathbf{X} and by subtracting the mean.
- $\Phi(\cdot)$ is a function returning the **lower diagonal part** of the argument as follows:

$$\Phi_{ij}(\mathbf{M}) = \begin{cases} M_{ij} & , \text{ if } i > j \\ \frac{1}{2}M_{ij} & , \text{ if } i = j \\ 0 & , \text{ if } i < j. \end{cases}$$

Sequential Importance Resampling

Sequential Importance Resampling

- 1 Draw a random sample from the **importance distribution**

$$\mathbf{x}^{(i)}(t_k) \sim q(\mathbf{x}^{(i)}(t_k) | \mathbf{x}^{(i)}(t_{k-1}))$$

- 2 Evaluate the **importance weight**

$$w_k^{(i)} \propto \frac{p(\mathbf{y}_k | \mathbf{x}^{(i)}(t_k)) p(\mathbf{x}^{(i)}(t_k) | \mathbf{x}^{(i)}(t_{k-1}))}{q(\mathbf{x}^{(i)}(t_k) | \mathbf{x}^{(i)}(t_{k-1}))}$$

- 3 Do **resampling** if needed.

The Problem of SIR Weight Evaluation

- The weight evaluation of SIR is of the form

$$w_k^{(i)} \propto \frac{p(\mathbf{y}_k | \mathbf{x}^{(i)}(t_k)) p(\mathbf{x}^{(i)}(t_k) | \mathbf{x}^{(i)}(t_{k-1}))}{q(\mathbf{x}^{(i)}(t_k) | \mathbf{x}^{(i)}(t_{k-1}))}$$

- But $p(\mathbf{x}(t_k) | \mathbf{x}(t_{k-1}))$ is the solution of an **arbitrary second order partial differential equation** and cannot be solved.
- Actually we only need the **likelihood ratio**

$$\frac{p(\mathbf{x}(t_k) | \mathbf{x}(t_{k-1}))}{q(\mathbf{x}(t_k) | \mathbf{x}(t_{k-1}))}$$

- This can be computed with the **Girsanov theorem** without solving the PDE.

Girsanov Theorem

- Let $\theta(t)$ be a **stochastic process**, which is driven by (“adapted to”) a Brownian motion $\beta(t)$.
- The **likelihood ratio** between $\theta(t)$ and $\beta(t)$ is:

$$\frac{dP_\theta}{dP_\beta} = \exp \left(\int_0^t \theta^T(t) d\beta(t) - \frac{1}{2} \int_0^t \|\theta(t)\|^2 dt \right).$$

- The likelihood ratio can be exactly computed by above **stochastic integral**.
- Efficient **simulation based** numerical solutions possible.

Evaluating the Likelihood Ratio

- With Girsanov theorem, we can derive expression for **likelihood ratio** for two SDE's:

$$\begin{aligned} d\mathbf{x} &= \mathbf{f}(\mathbf{x}, t) dt + \mathbf{L} d\beta \\ d\mathbf{s} &= \mathbf{g}(\mathbf{s}, t) dt + \mathbf{B} d\beta. \end{aligned}$$

- Process $\mathbf{s}(t)$ can be the **importance process** for estimated process $\mathbf{x}(t)$.
- It is a *stochastic integral*: Well known numerical methods for SDE's can be used.
- It is a *Monte Carlo solution*: Solution converges to the exact solution.

Non-invertibility of Diffusion Matrix [1/3]

- In **mathematical analysis of SDEs** it is often assumed that in the model

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t) dt + \mathbf{L} d\beta$$

matrix \mathbf{L} is **square, invertible or even scalar**.

- This assumption **eases the mathematical analysis**, and is a feasible assumption, for example, in models of stock prices.
- But in **physics** based models, \mathbf{L} is almost **never invertible**.
- In this case the noise term $\mathbf{L} d\beta$ is singular in the sense that its diffusion matrix $\mathbf{L} \mathbf{Q} \mathbf{L}^T$ is **singular**.

Non-invertibility of Diffusion Matrix [2/3]

- For example, the **Newton's law** with white noise force:

$$\frac{d^2x}{dt^2} = w(t)$$

- The model is equivalent to SDE

$$d \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} dt + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{\mathbf{L}} d\beta$$

- In this model \mathbf{L} is **not square** and $\mathbf{L}\mathbf{L}^T$ is **not invertible**.
- The same problem always arises, when some state component is **continuously differentiable** with respect to time (almost always in physics).

Non-invertibility of Diffusion Matrix [3/3]

- The non-invertibility of the diffusion matrix is **not an issue** to continuous-discrete EKF or UKF.
- But **Girsanov theorem has a problem** with this, because the process is no longer absolutely continuous with respect to any Brownian motion.
- Fortunately, by directly computing the likelihood ratio between two processes with **similar singularities**, this problem can be avoided.
- This way likelihood ratio based particle filter approach can be generalized to the **singular types of diffusion models also**.

Rao-Blackwellization [1/2]

- Sometimes, the dynamic model is **conditionally linear Gaussian** as follows:

$$\begin{aligned} d\mathbf{x} &= \mathbf{F}(\mathbf{s}) \mathbf{x} dt + \mathbf{L} d\beta \\ d\mathbf{s} &= \mathbf{g}(\mathbf{s}) dt + \mathbf{B} d\eta \end{aligned}$$

- Given the process \mathbf{s} the process \mathbf{x} is a **Gaussian process**.
- The Brownian motion in the first equation can be now **marginalized out** (Rao-Blackwellized), which leads to the model

$$\begin{aligned} d\mathbf{m}/dt &= \mathbf{F}(\mathbf{s}) \mathbf{m} \\ d\mathbf{P}/dt &= \mathbf{F}(\mathbf{s}) \mathbf{P} + \mathbf{P} \mathbf{F}^T(\mathbf{s}) + \mathbf{L} \mathbf{Q} \mathbf{L}^T \\ d\mathbf{s} &= \mathbf{g}(\mathbf{s}) dt + \mathbf{B} d\eta \end{aligned}$$

Rao-Blackwellization [2/2]

- If the **measurement model** is also suitably conditionally linear Gaussian, we may apply the **Kalman filter update** equations on the measurement step.
- This leads to a **Rao-Blackwellized particle filtering algorithm**, where part of the state components are replaced with their sufficient statistics.
- **Static parameters** in dynamic or measurements models can be sometimes handled in a similar manner.

Toy Example: Noisy Simple Pendulum Problem

- Model of noisy simple pendulum:

$$\frac{d^2 x}{dt^2} + a^2 \sin(x) = w(t).$$

- In Brownian motion notation:

$$\begin{aligned}\frac{dx_1}{dt} &= x_2 \\ dx_2 &= -a^2 \sin(x_1) dt + d\beta,\end{aligned}$$

- Measurements:

$$\begin{aligned}y_k &\sim \mathcal{N}(x_1(t_k), \sigma^2) \\ \sigma^2 &\sim \text{Inv-}\chi^2(\nu_0, \sigma_0^2),\end{aligned}$$

Toy Example: Simulation Results

Evolution of **signal estimate** (left) and **variance estimate** (right):

Applications of Methods [1/2]

- Multiple target tracking (remote surveillance)
 - Target dynamics are modeled with stochastic differential equations.
 - The measurements arrive at irregular intervals.
 - The number of targets is unknown.
 - Data association indicators are also unknown latent variables.
 - Rao-Blackwellization can be typically applied.
- Bus and bus stop tracking
 - Bus dynamics are modeled with stochastic differential equations.
 - Measurements from GPS, odometer, gyroscope and acceleration sensors.
 - The index of the current bus stop is an unknown variable to be estimated.
 - The known order of bus stops is used as additional information.
 - Rao-Blackwellization can be typically applied.

Applications of Methods [2/2]

- Online paper formation estimation
 - Paper web dynamics are modeled with stochastic differential equations.
 - The sensor is moving and thus only a small part of the sheet is measured at a time.
 - Rao-Blackwellization can be typically applied, and often the process is even linear.
- Monitoring of chemical processes
 - Reaction kinetics are modeled with stochastic differential equations.
 - The measurements can be highly non-linear functions of the state.
 - Processes typically contain unknown physical parameters.

Summary

- *Continuous-discrete EKF:*
 - Taylor series based Gaussian approximation to the SDE.
 - Mean and covariance differential equations on prediction step.
- *Continuous-discrete UKF:*
 - Unscented transform instead of the Taylor series.
 - Mean and covariance differential equations on prediction step.
 - Alternatively, differential equation for the sigma-points.
- *The Girsanov theorem:*
 - Can be used for evaluating likelihood ratios of SDEs in sequential importance sampling.
 - Non-invertible diffusion matrices need special care.
 - Conditionally linear Gaussian processes can be marginalized out, which leads to Rao-Blackwellized filters.
- The methods have applications in many areas, for example, in navigation, paper industry and chemical industry.