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Continuous-Discrete Filtering Problem

Estimate the unobserved continuous-time signal from noisy

discrete-time measurements
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Mathematical Problem Formulation

The dynamics of state x(t) modeled as a stochastic differential

equation (Itô diffusion)

dx = f(x, t) dt + L dβ(t).

Measurements yk are obtained at discrete times

yk ∼ p(yk |x(tk )).

Formal solution: Compute the posterior distribution(s)

p(x(t) |y1, . . . , yk ), t ≥ tk .
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Formal solution

Optimal filter

1 Prediction step: Solve the Kolmogorov-forward (Fokker-Planck)

partial differential equation.

∂p

∂t
= −

∑

i

∂

∂xi
(fi(x, t) p) +

1

2

∑

ij

∂2

∂xi∂xj

(

[L Q LT ]ij p
)

2 Update step: Apply the Bayes’ rule.

p(x(tk ) |y1:k ) =
p(yk |x(tk )) p(x(tk ) |y1:k−1)

∫
p(yk |x(tk )) p(x(tk ) |y1:k−1) dx(tk )
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Probability Density Approximations

Common types of probability density approximations:

Gaussian approximations: Taylor series, statistical linearization,

unscented transform (UT).

Parametric PDF models: assumed density, mixture models,
variational approximations.

Monte Carlo approximations: perfect Monte Carlo sampling,
importance sampling, Markov chain Monte Carlo (MCMC).

Here we shall concentrate on the following methods:

Continuous-discrete extended Kalman filter (EKF), which is a

Taylor/Gaussian approximation based method.
Continuous-discrete unscented Kalman filter (UKF), which is a

UT/Gaussian approximation based method.

Continuous-discrete sequential importance resampling (SIR), which
is an importance sampling based Monte Carlo method.

Simo Särkkä (ssarkka@nalco.com) Sigma Point and Particle Approximations of SDEs



Problem Formulation

Continuous-Discrete EKF and UKF

Continuous-Discrete SIR

Discussion and Summary

Taylor Series Approximations of Transformations

Consider transformation of Gaussian random variable by

non-linear function g(·):
x ∼ N(m, P)

y = g(x)

The function can be approximated by Taylor series:

g(m + ∆x) = g(m) + G(m)∆x + . . .

where G(·) is the Jacobian of g(·).
We get the following Gaussian approximation to the distribution of

the random variable y:

y ∼ N
(

g(m), G(m) P GT (m)
)
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Extended Kalman Filter (EKF)

EKF applies the Taylor series approximation to the filtering model

xk = f(xk−1) + q, q ∼ N(0, Q)

yk = h(xk) + r, r ∼ N(0, R)

The resulting EKF equations are of the form:
Prediction:

m−

k = f(mk−1)

P−

k = F(mk−1) Pk−1 FT (mk−1) + Q.

Update:

Sk = H(m−

k ) P−

k HT (m−

k ) + R

Kk = P−

k HT (m−

k ) S−1
k

mk = m−

k + Kk [yk − h(m−

k )]

Pk = P−

k − Kk Sk KT
k .
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Continuous-Discrete EKF [1/2]

In continuous-discrete filtering the dynamic model is a stochastic

differential equation (SDE):

dx = f(x) dt + L dβ

Taking first order discrete-time approximation we get (note that the

SDE can be interpreted as a Stratonovich equation)

xk = xk−1 + f(xk−1) δt + q, q ∼ N(0, L Q LT δt)

Continuous solution on interval [0, T ] (between measurements)

can be approximated by iterating the discrete approximation over

the interval in steps of δt .
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Continuous-Discrete EKF [2/2]

The EKF prediction equations up to first order in δt :

mk = mk−1 + f(mk−1) δt

Pk = Pk−1 + F(mk−1) Pk−1 δt + Pk−1 FT (mk−1) δt + L Q LT δt

Dividing by δt and by taking limit δt → 0, we get

dm

dt
= f(m)

dP

dt
= F(m) P + P FT (m) + L Q LT

These differential equations are satisfied between measurements.

At measurements we use discrete-time EKF update equations.
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Unscented Transform (UT) [1/2]

The unscented transform also considers transformations as

x ∼ N(m, P)

y = g(x)

Instead of the Taylor series, a set of sigma points are computed as

the columns of the Cholesky factorization of P:

x(0) = m

x(i) = m + c
[√

P
]

i
, i = 1, . . . , n

x(i) = m − c
[√

P
]

i
, i = n + 1, . . . , 2n
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Unscented Transform (UT) [2/2]

The sigma points are then propagated through the function g(·):

y(i) = g(x(i)), i = 0, . . . , 2n.

The mean and covariance of y are approximated as linear

combinations of the resulting points:

µ ≈
2n∑

i=0

W
(m)
i y(i)

S ≈
2n∑

i=0

W
(c)
i (y(i) − µ) (y(i) − µ)T .

The sigma points are chosen deterministically and the weights are

fixed and thus this is not a Monte Carlo approach.
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Unscented Kalman Filter

The unscented Kalman filter (UKF) is almost like an EKF, but uses

unscented transforms instead of Taylor series expansions.

The prediction and update equations are messy, but the idea is

the following:

Prediction step:
1 Form sigma points of the state xk−1

2 Propagate them through the dynamic model function
3 Compute the resulting mean and covariance
4 Add the process noise covariance to state covariance

Update step:
1 Form sigma points of the predicted state
2 Form UT approximation of the joint distribution of predicted state and

measurement
3 Use computation rules of Gaussian distributions for conditioning the

joint distribution to the measurement yk
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Matrix Form of Unscented Transform

Define matrices of sigma points as

X =
[

x(0) · · · x(2n)
]

Y =
[

y(0) · · · y(2n)
]

Propagation of sigma points can be written as matrix operation

Y = g(X)

The mean and covariance computation equations can be written

as matrix expressions

µ ≈ Y wm

S ≈ Y W YT

where wm and W are constant vector and matrix.
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Matrix Form of Unscented Kalman Filter

Unscented Kalman filter can be written in matrix form:
Prediction:

Xk−1 =
[
mk−1 · · · mk−1

]
+ c

[

0
√

Pk−1 −
√

Pk−1

]

m−

k = f(Xk−1) wm

P−

k = f(Xk−1) W fT (Xk−1) + Q.

Update:

X−

k =
[
m−

k · · · m−

k

]
+ c

[

0
√

P−

k −
√

P−

k

]

Sk = h(X−

k ) W hT (X−

k ) + R

Kk = X−

k W hT (X−

k ) S−1
k

mk = m−

k + Kk

[
yk − h(X−

k ) wm

]

Pk = P−

k − Kk Sk KT
k .
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Continuous-Discrete UKF [1/2]

Taking the continuous-time limit of the prediction step leads to the

equations:

X =
[
m · · · m

]
+ c

[

0
√

P −
√

P
]

dm

dt
= f(X) wm

dP

dt
= X W fT (X) + f(X) W XT + L Q LT

In continuous-discrete UKF the above differential equations are

used between the measurements.

The discrete-time UKF update equations are used at

measurements times.

The matrix UT computations can be replaced with corresponding

summation formulas, which are computationally lighter.
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Continuous-Discrete UKF [2/2]

The continuous UKF prediction equations can be written in terms

of sigma points as

M = A−1 [X W fT (X) + f(X) W XT + L Q LT ] A−T

dXi

dt
= f(X, t) wm + c

[

0 A Φ
(

M
)

−A Φ
(

M
)]

i

The matrix A is the Cholesky factor of P, which can be found by

collecting suitable terms from X and by subtracting the mean.

Φ(·) is a function returning the lower diagonal part of the argument

as follows:

Φij

(

M
)

=







Mij , if i > j
1
2Mij , if i = j

0 , if i < j .
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Sequential Importance Resampling

Sequential Importance Resampling

1 Draw a random sample from the importance distribution

x(i)(tk ) ∼ q(x(i)(tk ) |x(i)(tk−1))

2 Evaluate the importance weight

w
(i)
k ∝ p(yk |x(i)(tk )) p(x(i)(tk ) |x(i)(tk−1))

q(x(i)(tk ) |x(i)(tk−1))

3 Do resampling if needed.
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The Problem of SIR Weight Evaluation

The weight evaluation of SIR is of the form

w
(i)
k ∝ p(yk |x(i)(tk )) p(x(i)(tk ) |x(i)(tk−1))

q(x(i)(tk ) |x(i)(tk−1))

But p(x(tk ) |x(tk−1)) is the solution of an arbitrary second order

partial differential equation and cannot be solved.

Actually we only need the likelihood ratio

p(x(tk) |x(tk−1))

q(x(tk ) |x(tk−1))

This can be computed with the Girsanov theorem without solving

the PDE.
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Girsanov Theorem

Let θ(t) be a stochastic process, which is driven by (“adapted to”)

a Brownian motion β(t).

The likelihood ratio between θ(t) and β(t) is:

dPθ

dPβ

= exp

(∫ t

0

θT (t) dβ(t) − 1

2

∫ t

0

||θ(t)||2 dt

)

.

The likelihood ratio can be exactly computed by above stochastic

integral.

Efficient simulation based numerical solutions possible.
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Evaluating the Likelihood Ratio

With Girsanov theorem, we can derive expression for likelihood

ratio for two SDE’s:

dx = f(x, t) dt + L dβ

ds = g(s, t) dt + B dβ.

Process s(t) can be the importance process for estimated

process x(t).

It is a stochastic integral: Well known numerical methods for

SDE’s can be used.

It is a Monte Carlo solution: Solution converges to the exact

solution.
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Non-invertibility of Diffusion Matrix [1/3]

In mathematical analysis of SDEs it is often assumed that in the

model

dx = f(x, t) dt + L dβ

matrix L is square, invertible or even scalar.

This assumption eases the mathematical analysis, and is a

feasible assumption, for example, in models of stock prices.

But in physics based models, L is almost never invertible.

In this case the noise term L dβ is singular in the sense that its

diffusion matrix L Q LT is singular.
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Non-invertibility of Diffusion Matrix [2/3]

For example, the Newton’s law with white noise force:

d2x

dt2
= w(t)

The model is equivalent to SDE

d

[
x1

x2

]

=

[
0 1

0 0

] [
x1

x2

]

dt +

[
0

1

]

︸︷︷︸

L

dβ

In this model L is not square and L LT is not invertible.

The same problem always arises, when some state component is

continuously differentiable with respect to time (almost always in

physics).
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Non-invertibility of Diffusion Matrix [3/3]

The non-invertibility of the diffusion matrix is not an issue to

continuous-discrete EKF or UKF.

But Girsanov theorem has a problem with this, because the

process is no longer absolutely continuous with respect to any

Brownian motion.

Fortunately, by directly computing the likelihood ratio between two

processes with similar singularities, this problem can be avoided.

This way likelihood ratio based particle filter approach can be

generalized to the singular types of diffusion models also.
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Rao-Blackwellization [1/2]

Sometimes, the dynamic model is conditionally linear Gaussian as

follows:

dx = F(s) x dt + L dβ

ds = g(s) dt + B dη

Given the process s the process x is a Gaussian process.

The Brownian motion in the first equation can be now

marginalized out (Rao-Blackwellized), which leads to the model

dm/dt = F(s) m

dP/dt = F(s) P + P FT (s) + L Q LT

ds = g(s) dt + B dη
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Rao-Blackwellization [2/2]

If the measurement model is also suitably conditionally linear

Gaussian, we may apply the Kalman filter update equations on the

measurement step.

This leads to a Rao-Blackwellized particle filtering algorithm,

where part of the state components are replaced with their

sufficient statistics.

Static parameters in dynamic or measurements models can be

sometimes handled in a similar manner.
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Toy Example: Noisy Simple Pendulum Problem

Model of noisy simple pendulum:

d2x

dt2
+ a2 sin(x) = w(t).

In Brownian motion notation:

dx1

dt
= x2

dx2 = −a2 sin(x1) dt + dβ,

Measurements:

yk ∼ N(x1(tk ), σ2)

σ2 ∼ Inv-χ2(ν0, σ
2
0),
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Toy Example: Simulation Results

Evolution of signal estimate (left) and variance estimate (right):
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Applications of Methods [1/2]

Multiple target tracking (remote surveillance)

Target dynamics are modeled with stochastic differential equations.
The measurements arrive at irregular intervals.

The number of targets in unknown.

Data association indicators are also unknown latent variables.
Rao-Blackwellization can be typically applied.

Bus and bus stop tracking

Bus dynamics are modeled with stochastic differential equations.

Measurements from GPS, odometer, gyroscope and acceleration

sensors.
The index of the current bus stop is an unknown variable to be

estimated.

The known order of bus stops is used as additional information.
Rao-Blackwellization can be typically applied.
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Applications of Methods [2/2]

Online paper formation estimation

Paper web dynamics are modeled with stochastic differential

equations.
The sensor is moving and thus only a small part of the sheet is

measured at a time.

Rao-Blackwellization can be typically applied, and often the
process is even linear.

Monitoring of chemical processes

Reaction kinetics are modeled with stochastic differential equations.

The measurements can be highly non-linear functions of the state.
Processes typically contain unknown physical parameters.
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Summary

Continuous-discrete EKF:
Taylor series based Gaussian approximation to the SDE.
Mean and covariance differential equations on prediction step.

Continuous-discrete UKF:
Unscented transform instead of the Taylor series.
Mean and covariance differential equations on prediction step.

Alternatively, differential equation for the sigma-points.

The Girsanov theorem:
Can be used for evaluating likelihood ratios of SDEs in sequential

importance sampling.
Non-invertible diffusion matrices need special care.

Conditionally linear Gaussian processes can be marginalized out,
which leads to Rao-Blackwellized filters.

The methods have applications in many areas, for example, in

navigation, paper industry and chemical industry.
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