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Problem Formulation

Continuous-Discrete Filtering Problem

@ Estimate the unobserved continuous-time signal from noisy
discrete-time measurements
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Problem Formulation

Mathematical Problem Formulation

@ The dynamics of state x(f) modeled as a stochastic differential
equation (Ité diffusion)

dx = f(x, t) dt + Ldg(t).
@ Measurements y are obtained at discrete times

Yk ~ P(Yk | X(&))-

@ Formal solution: Compute the posterior distribution(s)

p(x(t)‘y'lv"'vyk)v TZtk
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Problem Formulation

Formal solution

Optimal filter

@ Prediction step: Solve the Kolmogorov-forward (Fokker-Planck)
partial differential equation.

—Z%(ﬁ(x Hp zzaxﬁxj (iLaL;p)

@ Update step: Apply the Bayes’ rule.

_ (Y« [ X(t)) P(X(tk) | Y1:k—1)
POX( Y1) = 50y, Tx(te)) POK(te) | Yrkr) OXC)
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Problem Formulation

Probability Density Approximations

@ Common types of probability density approximations:
o Gaussian approximations: Taylor series, statistical linearization,
unscented transform (UT).
@ Parametric PDF models: assumed density, mixture models,
variational approximations.
@ Monte Carlo approximations: perfect Monte Carlo sampling,
importance sampling, Markov chain Monte Carlo (MCMC).

@ Here we shall concentrate on the following methods:

o Continuous-discrete extended Kalman filter (EKF), which is a
Taylor/Gaussian approximation based method.

@ Continuous-discrete unscented Kalman filter (UKF), which is a
UT/Gaussian approximation based method.

o Continuous-discrete sequential importance resampling (SIR), which
is an importance sampling based Monte Carlo method.
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Continuous-Discrete EKF and UKF

Taylor Series Approximations of Transformations

@ Consider transformation of Gaussian random variable by
non-linear function g(-):

X ~ N(m,P)
y =g(x)
@ The function can be approximated by Taylor series:
g(m+ Ax) = g(m) + G(m) Ax + ...

where G(-) is the Jacobian of g(-).
@ We get the following Gaussian approximation to the distribution of
the random variable y:

y ~N (g(m),G(m)PG’(m))
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Continuous-Discrete EKF and UKF

Extended Kalman Filter (EKF)

o EKF applies the Taylor series approximation to the filtering model
Xk = f(Xk—1) +q, q~N(0,Q)
Yk =h(xq) +r, r~N(0,R)

@ The resulting EKF equations are of the form:
o Prediction:

m, = f(my_4)
P, = F(my_1)Px_1 F'(my_1) + Q.
o Update:
Sk =H(m, )P, H'(m,) +R
K¢ =P, H'(m,)S,"
my = m, + Kg [yx — h(my)]
P« = P, — Kk SkK/.
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Continuous-Discrete EKF and UKF

Continuous-Discrete EKF [1/2]

@ In continuous-discrete filtering the dynamic model is a stochastic
differential equation (SDE):

dx =f(x)dt + Ld3

@ Taking first order discrete-time approximation we get (note that the
SDE can be interpreted as a Stratonovich equation)

Xk = Xk_1 +f(Xk_1) 0t +9,  q~N(0,LQL" 5t

@ Continuous solution on interval [0, T] (between measurements)
can be approximated by iterating the discrete approximation over
the interval in steps of ét.
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Continuous-Discrete EKF and UKF

Continuous-Discrete EKF [2/2]

@ The EKF prediction equations up to first order in 4t:

my = my_ + f(my_q) ot
Pk = Px_1 + F(my_1)Px_1 6t + Px_1FT(my_¢) ot + LQLT 6t

@ Dividing by §t and by taking limit 6t — 0, we get

adm
ar ~ T
dpP T T

@ These differential equations are satisfied between measurements.
@ At measurements we use discrete-time EKF update equations.
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Continuous-Discrete EKF and UKF

Unscented Transform (UT) [1/2]

@ The unscented transform also considers transformations as
X ~N(m,P)
y=9d(x)

@ Instead of the Taylor series, a set of sigma points are computed as
the columns of the Cholesky factorization of P:

x©® =m
xD=m+c [\/5} . i=1,...,n

A [\/ﬂ/’ i=n+1,....2n
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Continuous-Discrete EKF and UKF

Unscented Transform (UT) [2/2]

@ The sigma points are then propagated through the function g(-):
yO =g(x), i=0,...,2n

@ The mean and covariance of y are approximated as linear
combinations of the resulting points:

2n
IS Z WI.('”) y®
i=0
2n
S~ Z VVi(C) (y(i) — ) (y(i) _ H)T~
i=0
@ The sigma points are chosen deterministically and the weights are
fixed and thus this is not a Monte Carlo approach.
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Continuous-Discrete EKF and UKF

Unscented Kalman Filter

@ The unscented Kalman filter (UKF) is almost like an EKF, but uses
unscented transforms instead of Taylor series expansions.

@ The prediction and update equations are messy, but the idea is
the following:

@ Prediction step:
@ Form sigma points of the state Xx_+
© Propagate them through the dynamic model function
Q Compute the resulting mean and covariance
@ Add the process noise covariance to state covariance
o Update step:
@ Form sigma points of the predicted state
Q Form UT approximation of the joint distribution of predicted state and
measurement
© Use computation rules of Gaussian distributions for conditioning the
joint distribution to the measurement yy

Simo Sarkka (ssarkka@nalco.com) Sigma Point and Particle Approximations of SDEs



Continuous-Discrete EKF and UKF

Matrix Form of Unscented Transform

@ Define matrices of sigma points as

X = [x(o) R x(2n)]
@ Propagation of sigma points can be written as matrix operation
Y =g(X)

@ The mean and covariance computation equations can be written
as matrix expressions

S~YWY’

where w,, and W are constant vector and matrix.
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Continuous-Discrete EKF and UKF

Matrix Form of Unscented Kalman Filter

@ Unscented Kalman filter can be written in matrix form:
@ Prediction:

X1 =My -+ my_q]+c[0 Pi1 —/Pr_i1]
m, = f(Xk_1)Wm
P = f(Xk_1) WE (Xc_1) + Q.

o Update:
Xc=[m - mJiclo /o - \/p]
Sk =h(X,)Wh'™(X,) +R
Ki =X, Wh'(X,)S,"
my = m, + K [yx — h(X,)) wp)]
P« = P, — Kk SkK/.
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Continuous-Discrete EKF and UKF

Continuous-Discrete UKF [1/2]

@ Taking the continuous-time limit of the prediction step leads to the
equations:

X=[m - ml+c0 VP —VP]

% =XWF (X) +fX)WX" +LQL’

@ In continuous-discrete UKF the above differential equations are
used between the measurements.

@ The discrete-time UKF update equations are used at
measurements times.

@ The matrix UT computations can be replaced with corresponding
summation formulas, which are computationally lighter.
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Continuous-Discrete EKF and UKF

Continuous-Discrete UKF [2/2]

@ The continuous UKF prediction equations can be written in terms
of sigma points as

M=ATXWI(X)+fX)WX" +LQL’]A T
dX;

W:f(x,t)wm+c[o A¢(M) —A¢(M)]

@ The matrix A is the Cholesky factor of P, which can be found by
collecting suitable terms from X and by subtracting the mean.

@ &(-) is a function returning the lower diagonal part of the argument

]

as follows:
My | ifi>]
oy(M) ={ tmy , ifi=j
0, ifi<]
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Continuous-Discrete SIR

Sequential Importance Resampling

Sequential Importance Resampling
@ Draw a random sample from the importance distribution

xO(te) ~ q(xO(te) [ XD (1))
Q Evaluate the importance weight

w0 o Pk | xO(1)) p(xO (1) | XD (t_1))
“ q(xO(t) | XD (1))

©Q Do resampling if needed.
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Continuous-Discrete SIR

The Problem of SIR Weight Evaluation

@ The weight evaluation of SIR is of the form

iy . POk XD (1)) p(x(t) [ X (tc+))
Wi M (1) [x0)
q(x () [ x\(tc—1))
@ But p(x(fx) | X(tk—1)) is the solution of an arbitrary second order
partial differential equation and cannot be solved.
@ Actually we only need the likelihood ratio

px(t) | X(t—1))
q(x(t) [ X(tk—1))

@ This can be computed with the Girsanov theorem without solving
the PDE.
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Continuous-Discrete SIR

Girsanov Theorem

@ Let 6(t) be a stochastic process, which is driven by (“adapted to0”)
a Brownian motion 3(t).

@ The likelihood ratio between 6(t) and 3(t) is:

t t
Z—ZZ = exp (/0 o7 (t)dB(t) — %/0 16(8)|[? dt> .

@ The likelihood ratio can be exactly computed by above stochastic
integral.

o Efficient simulation based numerical solutions possible.
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Continuous-Discrete SIR

Evaluating the Likelihood Ratio

@ With Girsanov theorem, we can derive expression for likelihood
ratio for two SDE’s:

dx =f(x,t)dt +Ldg
ds =9(s,t)dt + Bdg.

@ Process s(t) can be the importance process for estimated
process X(t).

@ ltis a stochastic integral: Well known numerical methods for
SDE’s can be used.

@ It is a Monte Carlo solution: Solution converges to the exact
solution.
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Continuous-Discrete SIR

Non-invertibility of Diffusion Matrix [1/3]

@ In mathematical analysis of SDEs it is often assumed that in the
model
dx=f(x,t)dt+Ldg3
matrix L is square, invertible or even scalar.

@ This assumption eases the mathematical analysis, and is a
feasible assumption, for example, in models of stock prices.

@ But in physics based models, L is almost never invertible.

@ In this case the noise term L d3 is singular in the sense that its
diffusion matrix LQLT is singular.
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Continuous-Discrete SIR

Non-invertibility of Diffusion Matrix [2/3]

@ For example, the Newton’s law with white noise force:

a?x
e ="

@ The model is equivalent to SDE
X1 [0 1] [xq 0
el =[o o] [u] o+ [§ o2
e

@ In this model L is not square and LL7 is not invertible.

@ The same problem always arises, when some state component is
continuously differentiable with respect to time (almost always in
physics).
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Continuous-Discrete SIR

Non-invertibility of Diffusion Matrix [3/3]

@ The non-invertibility of the diffusion matrix is not an issue to
continuous-discrete EKF or UKF.

@ But Girsanov theorem has a problem with this, because the
process is no longer absolutely continuous with respect to any
Brownian motion.

@ Fortunately, by directly computing the likelihood ratio between two
processes with similar singularities, this problem can be avoided.

@ This way likelihood ratio based particle filter approach can be
generalized to the singular types of diffusion models also.

Simo Sarkka (ssarkka@nalco.com) Sigma Point and Particle Approximations of SDEs



Continuous-Discrete SIR

Rao-Blackwellization [1/2]

@ Sometimes, the dynamic model is conditionally linear Gaussian as
follows:
dx=F(s)xdt+Ldg
ds =g(s)dt+Bdn

@ Given the process s the process x is a Gaussian process.
@ The Brownian motion in the first equation can be now

marginalized out (Rao-Blackwellized), which leads to the model
dm/dt =F(s)m
dP/dt = F(s)P+PF’(s)+LQL"
ds=9(s)dt +Bdn
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Continuous-Discrete SIR

Rao-Blackwellization [2/2]

o If the measurement model is also suitably conditionally linear
Gaussian, we may apply the Kalman filter update equations on the
measurement step.

@ This leads to a Rao-Blackwellized particle filtering algorithm,
where part of the state components are replaced with their
sufficient statistics.

@ Static parameters in dynamic or measurements models can be
sometimes handled in a similar manner.
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Continuous-Discrete SIR

Toy Example: Noisy Simple Pendulum Problem

@ Model of noisy simple pendulum:
d2
ar

@ In Brownian motion notation:

da
dat 2
dx, = —a° sin(xy) dt + dj3,

+ & sin(x) = w(t).

@ Measurements:

Vi ~ N(x1(t), o)
0% ~ |nV-X2(V0,O'g),
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Continuous-Discrete SIR

Toy Example: Simulation Results

Evolution of signal estimate (left) and variance estimate (right):
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Discussion and Summary

Applications of Methods [1/2]

@ Multiple target tracking (remote surveillance)

o Target dynamics are modeled with stochastic differential equations.
The measurements arrive at irregular intervals.

The number of targets in unknown.

Data association indicators are also unknown latent variables.
Rao-Blackwellization can be typically applied.

© ¢ ¢ ¢

@ Bus and bus stop tracking

@ Bus dynamics are modeled with stochastic differential equations.

o Measurements from GPS, odometer, gyroscope and acceleration
Sensors.

@ The index of the current bus stop is an unknown variable to be
estimated.

@ The known order of bus stops is used as additional information.

o Rao-Blackwellization can be typically applied.
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Discussion and Summary

Applications of Methods [2/2]

@ Online paper formation estimation

o Paper web dynamics are modeled with stochastic differential
equations.

@ The sensor is moving and thus only a small part of the sheet is
measured at a time.

o Rao-Blackwellization can be typically applied, and often the
process is even linear.

@ Monitoring of chemical processes

@ Reaction kinetics are modeled with stochastic differential equations.
@ The measurements can be highly non-linear functions of the state.
@ Processes typically contain unknown physical parameters.

Simo Sarkka (ssarkka@nalco.com) Sigma Point and Particle Approximations of SDEs



Discussion and Summary

Summary

@ Continuous-discrete EKF:
o Taylor series based Gaussian approximation to the SDE.
@ Mean and covariance differential equations on prediction step.
@ Continuous-discrete UKF:
@ Unscented transform instead of the Taylor series.
@ Mean and covariance differential equations on prediction step.
o Alternatively, differential equation for the sigma-points.
@ The Girsanov theorem:
@ Can be used for evaluating likelihood ratios of SDEs in sequential
importance sampling.
@ Non-invertible diffusion matrices need special care.
o Conditionally linear Gaussian processes can be marginalized out,
which leads to Rao-Blackwellized filters.
@ The methods have applications in many areas, for example, in
navigation, paper industry and chemical industry.
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