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ABSTRACT

This paper proposes a linear stochastic state space model for electro-
cardiogram signal processing and analysis. The model is obtained
as a discretized version of Wiener process acceleration model. The
model is combined with a fixed-lag Rauch-Tung-Striebel smoother
to perform on-line signal denoising, feature extraction, and beat clas-
sification. The results indicate that the proposed approach outper-
forms a conventional FIR filter in terms of improved signal-to-noise
ratio, and that the approach can be used for highly accurate on-
line classification of normal beats and premature ventricular con-
tractions. The benefits of the model include the possibility to use
closed-form solutions to the optimal filtering and smoothing prob-
lems, quick adaptation to sudden changes in beat morphology and
heart rate, simple and fast initialization, preprocessing-free opera-
tion, intuitive interpretation of the system state, and more.

Index Terms— Electrocardiography, state space model, Bayesian
smoothing, signal denoising, feature extraction, beat classification.

1. INTRODUCTION

Stochastic state space models (SSMs) and Bayesian filtering have
been used successfully in many applications to electrocardiogram
(ECG) signal processing and analysis. A particularly popular group
of SSMs is based on the dynamical model introduced in [1], origi-
nally designed for synthetic ECG generation. This dynamical model
has found use in noise removal [2–7], lossy compression [8], ECG
contaminant filtration [9], premature ventricular contraction (PVC)
detection [10, 11], atrial fibrillation modeling [12], beat segmenta-
tion [13, 14], and more. The dynamical model uses five Gaussian
functions to represent the P, Q, R, S, and T waves that can usually be
seen in the ECG during a single heartbeat.

Despite the many advantages of the dynamical model [1], there
are a number of drawbacks in using it for ECG signal processing and
analysis. Firstly, the model is highly non-linear, necessitating the use
of approximative solutions to the optimal filtering equations. Sec-
ondly, the model cannot adapt itself to sudden changes in beat mor-
phology that may occur due to PVCs, bundle branch block (BBB)
beats, or paced beats. Thirdly, the model requires careful initializa-
tion of the model parameters, typically by combining a priori infor-
mation with non-linear optimization.

In [15], an adaptive Kalman filter is used with a linear SSM
to allow changes in beat morphology. This approach relies on beat
averaging and assumes the beats to be normally distributed around
their mean. A particular issue with this approach is that it requires
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Fig. 1. An example ECG segment, extracted from record 221 in the
MITDB. This segment features atrial fibrillation and a short episode
of ventricular tachycardia. Note the large variations in beat morphol-
ogy and the heart rate.

extensive preprocessing, involving low-pass filtering, high-pass fil-
tering, notch filtering, QRS detection, beat separation, and principal
component analysis.

The shortcomings mentioned in the previous paragraphs have
been addressed in [16, 17]. In these papers, the authors propose to
use interacting multiple models (IMMs), each of which is a poly-
nomial of order 1, 2, or 3. However, the system state in [16, 17]
is defined as a set of polynomial coefficients whose interpretation
with respect to the signal is rather complicated. Also, the initial
mode probabilities and transition probabilities for the IMMs need to
be specified. Despite the complex structure of the IMMs, only one
polynomial coefficient is used for beat classification.

In this paper we propose to use a linear stochastic state space
model, based on Wiener process acceleration model, to avoid the
challenges related to the previous approaches. The use of the pro-
posed model is demonstrated in ECG denoising, feature extraction,
and beat classification, all of which are performed on-line. The ad-
vantages of the proposed model include: (1) the possibility to use
closed-form solutions to the optimal filtering and smoothing prob-
lems; (2) quick adaptation to sudden changes in beat morphology
and heart rate; (3) simple and fast initialization; (4) preprocessing-
free operation; (5) intuitive interpretation of the system state; (6)
avoidance of defining mode transition probabilities; (7) ease of on-
line implementation; and (8) versatility.

The structure of this paper is as follows. The remainder of this
section describes the proposed state space model and its advantages.
The second section presents the materials and methods, the third sec-
tion illustrates the results, and the fourth and fifth section comprise
a discussion and a conclusion, respectively.
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1.1. The proposed state space model

We propose to use a disretized version of the continuous Wiener pro-
cess acceleration (CWPA) model [18] to ECG signal processing and
analysis. The CWPA model provides a natural representation of a
moving object’s trajectory. However, it can also be used to repre-
sent the dynamics of a continuous ECG signal, as will be described
within this subsection.

In the CWPA model, the system state is defined as x(t) =
[s(t) ṡ(t) s̈(t)]> where s(t) ∈ R is the displacement of the object
or signal at time t ∈ R. The derivatives ṡ and s̈ represent the ve-
locity and the acceleration, respectively. The dynamics of the model
are determined by the differential equation

dx(t)

dt
= Fx(t) + Lw(t) (1)

where

F =




0 1 0
0 0 1
0 0 0


 , L =




0
0
1


 , (2)

and w(t) is zero-mean white noise with power spectral density q.
Eqns. (1) and (2) imply that the derivative of the acceleration,

...
s , is

driven by white noise. Hence, the acceleration, which is the integral
of

...
s , is a Wiener process.
The CWPA model defines a continous-time linear time-invariant

system. Thus, given a time step ∆t, the discretized versions of F and
Q are obtained [18, 19] as

Fk = exp(F∆t)

and

Qk =

∫ ∆t

0

exp (F(∆t− τ))LQL> exp (F(∆t− τ))> dτ,

respectively. The definitions of F and L in (2) allow Fk and Qk to
be evaluated in closed form, yielding

Fk =




1 ∆t (∆t)2

2

0 1 ∆t

0 0 1


 (3)

and

Qk =




1
20

(∆t)5 1
8
(∆t)4 1

6
(∆t)3

1
8
(∆t)4 1

3
(∆t)3 1

2
(∆t)2

1
6
(∆t)3 1

2
(∆t)2 ∆t


 q. (4)

The discretized version of Eqn. (1) then reads as

xk = Fk−1xk−1 + qk−1, (5)

where xk = [sk ṡk s̈k]> and qk−1 is a process noise term with
covariance Qk.

Interestingly, one can also arrive at the matrix Fk by considering
the Taylor series representation of the continous-time signal. If s is
an analytic function, then

s(t) =

∞∑

n=0

s(n)(t0)

n!
(t− t0)n.

By taking only a finite number of terms from the series, one can
obtain arbitrarily accurate approximations to s(t); in that case only

a finite number of derivatives need to exist. In particular, using only
two terms yields the linear approximation

s(t) ≈ s(t0) + ṡ(t0)(t− t0),

and using three terms yields the quadratic approximation

s(t) ≈ s(t0) + ṡ(t0)(t− t0) +
s̈(t0)

2
(t− t0)2.

These approximations can be found in the product Fk−1xk−1 by
noting that ∆t = t− t0.

The state space model (3)–(5) allows optimal filtering and
smoothing [20]. In order to enable closed-form solution, we as-
sume that qk−1 is normally distributed, and define the measurement
model as

yk = Hkxk + rk,

where yk is the measurement, H = [1 0 0], and rk ∼ N(0,Rk)
with some covariance Rk. Note that although the model (3)–(5) is
non-linear with respect to the time, it is linear with respect to the
system state. We refer to (3)–(5) as the discretized Wiener process
acceleration (DWPA) model.

The DWPA model has been considered, for example, in [18]
and [19], but to our best knowledge there are no publications so far
on its use in ECG signal processing and analysis. Although the SSM
in [15] is also linear, it differs from (3)–(5) by two important factors:
firstly, the time step k in [15] corresponds to an entire heartbeat, as
opposed to an individual sample; secondly, the signal dynamics in
[15] follow a random walk, whereas the DWPA model uses a double-
integrated Wiener process.

1.2. Advantages of the proposed model

The formulation of the DWPA model provides many advantages over
the non-linear models (NLMs) in [2]– [14], the linear random walk
(LRW) model in [15], and the IMMs in [16, 17].

In comparison to the NLMs, the DWPA model allows the use of
closed-form solutions to the optimal filtering and smoothing prob-
lems. More specifically, the structure of the dynamic and measure-
ment equations combined with the assumption about the process
and measurement noises enable the use of the ordinary Kalman fil-
ter (KF), which is the optimal solution in the linear Gaussian case.
Similarly, the proposed model enables the use of the Rauch-Tung-
Striebel smoother (RTSS), which is the optimal solution to the linear-
Gaussian smoothing problem. Both the KF and the RTSS algorithm
can be expressed in closed form without the need for linear approx-
imations as when using the extended Kalman filter (EKF), or for
computationally expensive sampling as when using particle filters
(PFs). Also, the proposed model eliminates the need to compute any
derivatives as with the EKF, which may be cumbersome and error-
prone, or to specify any sampling distributions as with the PFs.

Another advantage of the DWPA model over the NLMs, as well
as the LRW, is its ability to adapt itself quickly to sudden changes
in beat morphology. Since the NLMs and the LRW model are based
on normal beat templates, they are unlikely to perform well in the
presence of single PVCs, BBB beats, paced beats, or false QRS de-
tections [5]. In contrast, the proposed model makes no assumptions
about the expected beat morphology, making the model much more
flexible and robust. The model is also insensitive to fluctuations in
the heart rate due to atrial fibrillation or other arrhythmias. An ex-
ample of highly varying beat morphology and heart rate is shown in
Fig. 1.



The third benefit of the DWPA model is simple and fast initial-
ization: the only parameters to be tuned are the noise variances q
and Rk. By contrast, the NLMs also require the estimation of the
angular rate ω as well as the Gaussian functions’ locations θi, am-
plitudes αi, and widths βi. Typically, i ∈ {P,Q,R, S, T}, and the
estimation involves non-linear optimization where the initial values
are again to be specified.

The fourth advantage of the proposed model is preprocessing-
free operation. Whereas the LRW model requires low-pass filtering,
high-pass filtering, notch filtering, QRS detection, beat separation,
and principal component analysis, the DWPA model can be used
directly on raw ECG data.

The fifth and sixth benefit of the DWPA model are the ease of
interpretation of the system state and the fact that there is no need
for manual definition of probabilities, respectively. In [16, 17], the
system state consists of polynomial coefficients and the user has to
define the mode transition probabilities a priori. However, in the
proposed approach the system state simply consists of the filtered
signal and its derivatives, providing a much more intuitive interpreta-
tion; also, since there is no IMM structure, no transition probabilities
need to be defined either.

The seventh asset of the proposed model is its ease of on-line
implementation. As opposed to the NLMs and the LRW model, the
DWPA model can be used for signal denoising without any knowl-
edge of the QRS complex locations or the beat boundaries, whose
estimation is typically done in off-line mode. In fact, the DWPA
model can be used to detect the QRS complexes and the beat bound-
aries as a side-product of denoising the raw ECG signal in an on-line
manner. This versatility is the eighth benefit; the model also lends
itself to beat classification and clustering, since the signal derivatives
can be used as features to distinguish between different beat types.
Section 2 provides examples of using the model for signal denoising,
feature extraction, and beat classification.

2. MATERIALS AND METHODS

In order to assess the usability of the DWPA model, a number of
experiments was conducted on a publicly available dataset. In each
experiment, artificial Gaussian white noise was added to the signal,
yielding a signal-to-noise ratio (SNR) of 20, 15, 10, or 5 dB. The
original signal, although not completely noise-free, was used as the
golden truth.

The noisy signal was fed into a Rauch-Tung-Striebel (RTS)
smoother that utilized the DWPA model. The smoother was imple-
mented with a fixed lag to enable on-line processing. The output
of the smoother was used to estimate the original signal and the
derivatives, thereby enabling signal denoising, feature extraction,
and on-line beat classification. In addition, two conventional de-
noising methods were implemented for comparison. The MATLAB
software was used in all experiments.

2.1. The dataset

The experiments were made on the MIT-BIH Arrhythmia Database
(MITDB) [21, 22]. The MITDB is a benchmark dataset for design-
ing arrhythmia detection algorithms. However, it also lends itself to
other purposes due to the many examples of normal and abnormal
beats and rhythms. The dataset contains a total of 48 records, each
of which has two channels and is about 30 minutes in duration. The
records have been annotated for beats and rhythm by two cardiol-
ogists. The records contain examples of normal beats, BBB beats,
PVCs, paced beats, and more.

2.2. The Rauch-Tung-Striebel smoother

The RTS smoother [23] is the closed-form solution of the optimal
smoothing problem [20] when the state-space and measurement
models are linear and the process and measurement noises are nor-
mally distributed: in probabilistic notation,

p(xk | xk−1) = N(xk | Fk−1xk−1,Qk−1),

p(yk | xk) = N(yk | Hkxk,Rk),

where xk,Fk−1,Qk−1,yk,Hk and Rk are defined as in subsection
1.1. The smoother computes the distibution

p(xk | y1:T ) = N(xk |ms
k,P

s
k),

thereby giving an estimate of the system state (the mean ms
k) and

its uncertainty (the covariance Ps
k). Above, T > k, implying that

future observations are used to estimate the current state. In practice,
a number of observations 1 : T is first obtained, followed by the
estimation of a past state xk.

The RTSS algorithm can be summarized as follows [20]:

m−k+1 = Fkmk,

P−k+1 = FkPkF
>
k + Qk,

Gk = PkF
>
k

(
P−k+1

)−1
,

ms
k = mk + Gk

(
ms

k+1 −m−k+1

)
,

Ps
k = Pk + Gk

(
Ps

k+1 −P−k+1

)
G>k .

Above, m−k+1 and P−k+1 are the predicted mean and covariance, re-
spectively; they can be obtained by ordinary Kalman filtering [20].
Once the predictions are available, the RTSS algorithm is run back-
wards in time, from k = T to k = 1.

2.3. Fixed-lag smoothing

In order to facilitate on-line processing, the RTSS can be imple-
mented with a fixed lag. That is, the predicted mean and covariance
are computed at time step k using a Kalman filter, after which the
RTSS is run from k to k − L + 1 where L is the lag length of the
smoother. This way the number of computations remains constant
even though the number of observations grows without a bound. At
each k, the fixed-lag smoother produces a sequence of state esti-
mates, but only the one related to k − L+ 1 is used.

2.4. Signal denoising

The denoising capability of the proposed approach was investigated
in a two-phase experiment. The first phase was qualitative and aimed
at assessing the denoising results visually. The second phase was
quantitative with the results measured as improvements in signal-to-
noise ratio (ISNR), defined as

ISNR = SNRout − SNRin.

In both phases, the input signals were chosen from the MITDB so
that they contained only a small amount of noise.

In the quantitative phase, the signal segments were chosen to
represent different rhythms and beat types, such as normal sinus
rhythm, single PVCs, ventricular bigeminy, atrial fibrillation, and
ventricular tachycardia. The length of each segment was 60 sec-
onds. The DWPA approach was compared to two conventional de-
noising methods: a band-pass finite impulse response (FIR) filter



0 1 2 3 4 5 6 7
t (s)

-2

-1

0

1

2

V
 (m

V
)

N N N N N N NV V V V

noisy
original
denoised

N = normal beat
V = PVC

Fig. 2. An example of ECG denoising with the proposed state space model and an RTS smoother. The noisy signal was obtained by adding
artificial Gaussian white noise to record 221 from the MITDB. The input SNR is 5 dB. Note the ability of the model to adapt itself to the
abnormal morphology of the PVCs.

Table 1. Denoising results on six records from the MITDB

Record Time
segment (s)

20 dB 15 dB 10 dB 5 dB

FIR WD DWPA FIR WD DWPA FIR WD DWPA FIR WD DWPA

115 0-60 -8.97 6.57 5.76 -3.98 7.91 6.42 0.30 8.79 7.02 3.73 9.55 7.76

116 240-300 -1.61 6.29 5.79 2.44 7.70 6.68 5.21 8.87 7.64 6.44 9.78 8.63

119 0-60 -1.77 6.84 6.48 2.18 8.44 7.32 5.09 9.69 8.17 6.54 10.61 9.01

201 480-540 -3.55 4.71 4.50 0.72 7.11 5.43 3.96 8.78 6.39 6.09 9.80 7.28

203 180-240 -10.66 4.58 5.08 -5.78 7.19 6.18 -1.17 9.13 7.27 2.73 10.34 8.19

205 270-330 -3.89 3.43 5.42 0.39 5.86 6.23 3.89 7.59 6.99 5.76 8.87 7.77

Average -5.08 5.40 5.51 -0.67 7.37 6.38 2.88 8.81 7.25 5.22 9.83 8.11

The dB columns (20 dB to 5 dB) refer to input SNRs; the results are given in dBs of SNR improvement.

and wavelet denoising (WD). The FIR filter was of first-order But-
terworth type, and had a passband of 0.4–40 Hz as in [5]. The WD
method utilized the Symlet 4 wavelet, decomposition level 4, soft
thresholding, and threshold rescaling.

2.5. Feature extraction and classification

The feature extraction capabilities of the proposed approach were in-
vestigated in a beat classification framework. Motivated by the find-
ings in [16,17], we hypothesized that the second state component of
the DWPA model (that is, the signal derivative), is a feasible feature
for distinguishing between different beat types. In [16, 17] the in-
vestigated beat types were the normal sinus beat, the left BBB beat,
the right BBB beat, the ventricular escape beat, and the junctional
escape beat. In our experiment, we decided to address the problem
of distinguishing between normal beats and PVCs.

The feature extraction was performed in an on-line manner to-
gether with the signal denoising. Five records from the MITDB,
selected because they only contain normal beats and PVCs, were
used in this experiment. Artificial Gaussian white noise was added
to the signals, yielding an initial SNR of 20 dB. Only the first chan-
nel (modified lead II) was used.

To perform beat classification, we again chose an on-line ap-
proach. The idea in the approach is to use the derivative of the first

beat as a template and to compare the derivatives of the subsequent
beats to this template. If the mean squared error (MSE) between
the two exceeds a given threshold, the subsequent beat is classified
as a PVC; otherwise, it is classified as a normal. The beat annota-
tions in the MITDB were used for defining the locations of the QRS
complexes, but this step could be replaced by extending the DWPA
model as described in Section 4. The time windows for feature ex-
traction were set from QRS - 75 ms to QRS + 425 ms after some
experimenting.

The chosen classification approach required the use of an addi-
tional beat template for records 106 and 230. The reason for this is
that the normal beats in these records undergo substantial changes in
their morphology. It would, of course, be possible to utilize a more
sophisticated approach with a proper classifier and a training set of
hundreds of beats, but at this point the aim was just to demonstrate
the usability of the DWPA model for on-line feature extraction and
classification with a minimal amount of training.

3. RESULTS

The results of the signal denoising experiment are presented in Table
1. The results indicate that the DWPA approach outperforms the FIR
filter in all test cases. The best overall performance is given by WD,
but the DWPA still yields the highest average ISNR for an input SNR
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Fig. 3. An example of feature extraction with the proposed state space model. The noisy signal was obtained by adding artificial Gaussian
white noise to record 119 from the MITDB, giving an input SNR of 20 dB. The signal exhibits ventricular bigeminy starting at about 1.8 s:
the 3rd, 5th, and 7th beat are PVCs. The rectangles represent time windows from QRS - 75 ms to QRS + 425 ms. Note the difference in the
derivatives between the normal beats and the PVCs, the smoothness of the estimates, and the fact that the features are unaffected by the signal
baseline being non-zero. The estimates have been scaled for clarity.

of 20 dB.
Fig. 2 shows an example of signal denoising with the DWPA

model. As can be seen, the model is able to adapt itself to sudden
changes is signal morphology, in this case due to PVCs.

The results of the feature extraction and classification experi-
ment are listed in Table 2. For comparison, the table also shows the
results reported in [10] on the same five records. Although the NLM
based method [10] is slightly better for two records, both approaches
perform excellently.

Fig. 3 shows an example of feature extraction with the DWPA
model. It can be seen that, with a suitable set of parameters, the
proposed approach yields smooth features that need not be corrected
for a non-zero signal baseline.

Table 2. Classification results on five records from the MITDB

Record N V
Sayadi et al. [10] DWPA

Se PPV Se PPV

106 1507 520 1.00 1.00 0.99 0.99

119 1543 444 1.00 1.00 1.00 1.00

123 1515 3 1.00 1.00 1.00 1.00

221 2031 396 1.00 1.00 1.00 0.99

230 2255 1 1.00 1.00 1.00 1.00

Average 1770 273 1.00 1.00 1.00 1.00

N = number of normal beats, V = number of PVCs,
Se = sensitivity, PPV = positive predictive value

4. DISCUSSION

Modeling an ECG signal with Wiener process acceleration is a very
different approach as compared to the use of the NLMs [2]– [14].
While the NLMs utilize a priori information about the typical ECG
beat morphology, the DWPA model may be applied to an arbitrary
signal. Although the use of a priori information is likely to provide

superior results if the information is valid, in this paper we have
specifically considered situations in which the typical assumptions
do not necessarily hold.

It would, however, be possible to extend the present model by
replacing the Wiener acceleration model with a more complicated
linear stochastic state-space model as a state-space representation of
a suitable Gaussian process regressor [24]. When combined with pa-
rameter estimation methods for state-space models [20] this would
lead to a model that learns the shape of the signal automatically and
hence provides an automatic learning of the prior information cur-
rently lacking in the model. The fixed-lag smoother inference could
still be applied exactly analogously to the present approach. The
price is, though, the decreased flexibility of the model and the re-
quirement for an additional parameter estimation phase. For that
reason, we prefer to use the DWPA as a generic and flexible model
for ECG signals.

The classification results indicate that the DWPA model lends it-
self to classifying beats with excellent accuracy in records that only
contain normal beats and PVCs. Even though the requirement for
only two beat types may seem restricting, one should note that these
results were obtained by on-line classification with a training set of
just one or two beats and extra noise added to the already noisy sig-
nals.

As mentioned in Subsection 2.5, the beat annotations in the
MITDB were used for defining the locations of the QRS complexes
in the classification experiment. If desired, this step could be re-
placed by using a standard QRS detector such as the Pan-Tompkins
(PT) algorithm [25]. In fact, it would be possible to implement the
PT algorithm to use a modified version of the DWPA model: after
all, the PT algorithm involves filtering, differentation, squaring, and
computing a moving average (MA). The state in the DWPA model
already contains the denoised signal and its derivative, the squaring
operation is trivial, and the short-time memory required by the MA
operation can be incorporated as extra states in the model. The esti-
mates of ṡk and s̈k could also be used for detecting beat boundaries,
since a wave apex is associated with a zero-crossing of ṡk, and the
type of the apex (positive or negative) is determined by the sign of
s̈k.



5. CONCLUSION

In this paper we have proposed to use a linear stochastic state space
model for ECG signal processing and analysis. The proposed DWPA
model is based on Wiener process acceleration model and provides
numerous advantages over the previous approaches. The results
show that the model can be used effectively for on-line denoising,
feature extraction, and beat classification.

In the future we intend to extend the model to enable on-line
QRS detection and wave delineation. The feature extraction capa-
bilities of the model could be investigated further by using a larger
training set together with proper classification algorithms such as
support vector machines or Gaussian process classifiers. It would
also be of interest to extend the classification framework to multiple
beat types, such as BBBs, ventricular escape beats, and junctional
escape beats.
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