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Abstract— In this paper, we propose step-size adaptation
methods for the Hamiltonian Monte Carlo (HMC) and
Metropolis-adjusted Langevin algorithms (MALA). The adap-
tation procedures consist of an acceptance rate estimator which
is implemented as a Bayesian filter on the observed acceptance
indicator sequence. This sequence is modeled as a Bernoulli
sequence with a time-varying probability, and its distribution
is represented by a beta distribution. Therefore, the resulting
filter is called the Beta-Bernoulli filter. The acceptance rate is
then controlled to the desired target acceptance rate using a
linear feedback controller. The resulting adaptation mechanism
is experimentally evaluated in practical MCMC sampling tasks.

I. INTRODUCTION

Markov chain Monte Carlo (MCMC) methods [1] are a
family of computational methods to generate random sam-
ples from complicated probability distributions. They provide
a flexible means to sample from the posterior distributions
of model parameters in statistical models [2], including
discrete-time and continuous-time models [3]–[5] of dynamic
systems arising in control systems.

In a static setting, the canonical parameter estimation
model has the form (cf. [2])

θ ∼ p(θ),

y ∼ p(y | ξ, θ),
(1)

where the vector of unknown parameters is θ ∈ RD, the
measurement vector is y ∈ RM , and ξ ∈ RS is a vector of
regressors. The posterior distribution of parameters is then
given by Bayes’ rule

p(θ | y, ξ) = p(y | ξ, θ) p(θ)∫
p(y | ξ, θ) p(θ) dθ

∝ p(y | ξ, θ) p(θ), (2)

which is usually intractable in various aspects. An MCMC
method can then be used to generate samples from the
posterior distribution p(θ | y, ξ) without requiring, for
example, the knowledge of the normalization constant of the
distribution.

In the dynamic setting, we usually do not have (explicit)
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regressors, and the canonical model has the form (cf. [3])

θ ∼ p(θ),

x0 ∼ p(x0 | θ),
xk ∼ p(xk | xk−1, θ),

yk ∼ p(yk | xk, θ),

(3)

where xk ∈ RN is the state of the system at time step k.
The aforementioned model is a special case of model (2),
though it requires the computation of the marginal

p(y1:T | θ) =
∫

p(y1:T , x0:T | θ) dx0:T , (4)

which can be done using a Bayesian filter [3] such as the
Kalman filter in the linear Gaussian case or a particle filter
or other nonlinear filter in more general models. Provided
that we have a method to perform the marginalization, we
can use an MCMC method to sample the parameters.

Most of the MCMC methods are special cases of the
so-called Metropolis-Hastings algorithm [6], [7], which is
an acceptance/rejection algorithm to sample from a given
distribution p(θ). The basic idea is that we use a proposal
distribution q(θ′ | θ) to suggest a new sample θ′, and then we
accept or reject it by computing the acceptance probability

α(θ′, θ) = min

[
1,

p(θ′) q(θ | θ′)
p(θ) q(θ′ | θ)

]
. (5)

The tuning of the acceptance rate is important in MCMC
methods because it determines how fast the method generates
samples and how independent the samples are.

Adaptive MCMC methods (e.g., [8], [9]) are a class of
MCMC methods that attempt to adapt the performance of
the MCMC algorithm using the properties of the sampled
distribution. Adaptive Metropolis (AM) algorithms [10], [11]
do this by adapting the magnitude of the covariance of the
random-walk proposal either by using a theoretically optimal
scaling parameter for Gaussians or by explicitly adapting the
parameter to lead to a given acceptance rate [8], [12]–[14].

Hamiltonian Monte Carlo (HMC) [1], [15] is a
Metropolis–Hastings-based method where the proposal dis-
tribution is constructed by simulating a stochastic physical
system whose stationary distribution is the target distribution.
The Metropolis adjusted Langevin Algorithm (MALA) [16],
[17] is a related algorithm that uses a stochastic differential
equation (SDE) with the target distribution as its stationary
distribution as the proposal. It is also possible to adapt these
methods by adjusting the number of leapfrog steps L or the
integrator step size ∆t (often denoted by ϵ) in the HMC or by



adapting the corresponding integrator step size in the MALA
method. In the so-called No-U-Turn sampler (NUTS) [18],
the idea is to optimize the number of steps L by extending
the trajectory until it makes a U-turn. General criteria for
optimal step size in HMC are derived in [19].

In this paper, the aim is to develop and study step-
size adaptation methods for HMC and MALA by using
similar procedures as have been proposed for adaptation
of the scaling parameter in AM [8], [12]–[14]. In addition
to considering the context of (adaptive) HMC and MALA
methods instead of AM, we replace the Robbins–Monro–
based acceptance rate estimation with a Bayesian filter
which uses a beta distribution as its internal state and
processes Bernoulli measurements. We call this filter the
Beta–Bernoulli filter. Additionally, we study the adaptation
mechanism as a control problem where we aim to reach the
given setpoint of acceptance rate. In particular, we use a
linear feedback controller for this purpose.

The structure of the paper is the following. In Section II
we briefly review the adaptive Metropolis algorithm (AM),
Hamiltonian Monte Carlo (HMC) algorithm, and Metropolis-
adjusted Langevin algorithm (MALA). In Section III we
present the Beta-Bernoulli filter and the linear feedback
controller for the step-size adaptation. Section IV contains
experimental results, and finally Section V concludes the
article.

II. ADAPTIVE MCMC, HMC, AND MALA

In this section, the aim is to review the adaptive Metropo-
lis algorithm (AM), the Hamiltonian Monte Carlo (HMC)
algorithm, and the Metropolis-adjusted Langevin algorithm
(MALA). The review is mainly based on the article [9].

A. Adaptive Metropolis algorithms

In so-called adaptive Metropolis (AM) algorithms [10],
[11], the idea is to estimate the local covariance of the
samples on the fly via

Σt = Cov[θ(0), . . . , θ(t−1), θ(t)] + ϵI, (6)

and then use it to tune the proposal distribution so that
the average acceptance rate is optimal. Typically this is
done by selecting the proposal distribution to be a Gaussian
random walk kernel with covariance Ct = λΣt, where λ
is selected to be optimal in a suitable sense, for example,
λ∗ = 2.382/D [20] which is optimal in Gaussian case.
Above, ϵ is a small positive constant used to ensure that Σt

remains well-conditioned. Instead of estimator (6) for the
covariance, it is also possible to estimate Σt by using an
adaptive (variational) Kalman filter [21].

It is also possible to adapt λ directly. A typical rule for
the adaptation then has the Robbins–Monro form

log λt = log λt−1 + γt (αt − ᾱ), (7)

where γt is a suitable gain sequence, αt is the acceptance
probability at the current step, and ᾱ is the target acceptance
rate (e.g., ᾱ = α∗ = 0.234).

B. Hamiltonian Monte Carlo (HMC) algorithm

The Hamiltonian Monte Carlo (HMC) algorithm [1], [15]
is based on constructing an artificial dynamic (Hamiltonian)
system which has the target distribution p(θ) as the marginal
of its stationary distribution. For this purpose, we consider
the Hamiltonian

H(θ, ρ) = − log p(θ) +
1

2
ρ⊤ρ, (8)

where the parameters θ acts as the generalized coordinates
and ρ are the corresponding momenta. The distribution of
the particle states is then given by

p(θ, ρ) =
1

Z
exp(−H(θ, ρ)) = p(θ)N(ρ | 0, I), (9)

which has the target density p(θ) as the marginal.
The Hamiltonian equations of the dynamics of the particles

are then given as

dθ

dt
=

∂H(θ, ρ)

∂ρ
= ρ,

dρ

dt
= −∂H(θ, ρ)

∂θ
=

∂

∂θ
log p(θ),

(10)

where t is an artificial time variable. HMC constructs the
proposal distribution by simulating these equations using the
leapfrog method for L steps using step size ∆t (which is
often denoted as ϵ):

ρ̃(t+∆t/2) = ρ̃(t) +
∆t

2

∂

∂θ
log p(θ̃(t)),

θ̃(t+∆t) = θ̃(t) +∆t ρ̃(t+∆t/2),

ρ̃(t+∆t) = ρ̃(t+∆t/2) +
∆t

2

∂

∂θ
log p(θ̃(t+∆t))),

(11)

starting from the current parameters θ = θ̃(0) and random
momenta ρ̃(t) ∼ N(0, I). The final proposal is then given
by θ′ = θ̃(L∆t).

To correct for the error of the discretization, HMC uses
a Metropolis acceptance step, which amounts to computing
the acceptance probability

α(θ′, ρ′; θ, ρ) = min [1, exp (−H(θ′, ρ′) +H(θ, ρ))] (12)

and then accepting or rejecting the proposal with this prob-
ability.

The important parameters in HMC are the number of steps
L and the step length ∆t. In this paper, the aim is to develop
an adaptation mechanism for the latter parameter.

C. Metropolis-adjusted Langevin algorithm (MALA)

The Metropolis-adjusted Langevin algorithm (MALA)
[16], [17] is based on simulating a stochastic differential
equation (SDE) constructed as

dθ(t) =
1

2

∂

∂θ
log p(θ) dt+ dW (t), (13)

where W (t) is a D-dimensional Brownian motion. It can
be shown that the stationary distribution of this SDE is the
target distribution p(θ) (see, e.g., [22]).



We can now, in principle, generate samples from p(θ) by
simulating trajectories from this SDE. However, this cannot
be done exactly, and hence in MALA we use the so-called
Euler–Maruyama algorithm (see, e.g., [22], [23]) for this
purpose. More precisely, we approximate its solution by one
step of the method

θ(tn+1) ≈ θ(tn) +
∆t

2

∂

∂θ
log p(θ(tn)) +

√
∆t z, (14)

where z ∼ N(0, I) and ∆t is the step size. Although
it is possible to construct multi-step methods by using,
for example, a multi-step Gaussian approximation to the
SDE [24], here we specifically consider the classical Euler–
Maruyama based method. The MALA [16], [17], we use
the discretized SDE (14) as the proposal distribution in the
Metropolis–Hastings algorithm and hence, after simulating
a sample from the discretized SDE, we accept or reject it
using a similar procedure as in HMC above.

The important parameter MALA is the step size ∆t and
here the aim is to develop an adaptation mechanism for it.

III. ADAPTATION OF STEP SIZE IN HMC AND MALA

In this section, we present the proposed Beta-Bernoulli
filter for acceptance rate estimation and the linear feedback
controller for the step-size adaptation.

A. Beta-Bernoulli filtering of the acceptance rate

As discussed in the context of AM algorithm in Section II-
A, one way to adapt the scaling parameter λt is to use the
Robbins–Monro type of rule (7) directly using the accep-
tance probabilities αt. However, the acceptance probabilities
themselves do not directly tell about the performance of the
MCMC method.

Instead, our proposal is to study the acceptance indicator
sequence

yt =

{
1, if the sample was accepted,
0, otherwise.

(15)

This sequence can be now considered as (approximately)
a Bernoulli sequence whose underlying probability is the
actual acceptance rate sequence rt which defines the per-
formance of the method.

We can now construct a Bayesian filter [3] for estimating
the rate sequence by forming a state-space model

rt ∼ p(rt | rt−1),

yt ∼ p(yt | rt),
(16)

where p(rt | rt−1) models the dynamics of the rates and yt
are the Bernoulli random variables. A suitable representation
of the information on rate rt is now a beta distribution:

rt ∼ β(a, b), (17)

which has the probability density

β(r | a, b) = Γ(a+ b)

Γ(a) Γ(b)
ra−1 (1− r)b−1. (18)

This representation is convenient because it is the conjugate
distribution for the Bernoulli distribution which we will use
as the measurement model:

p(yt | rt) = ryt

t (1− rt)
1−yt . (19)

Let us now assume that

p(rt | y1, . . . , yt−1) = β(rt | a−t , b−t ). (20)

Then the update step for the Bayesian filter can be written
by using Bayes’ rule:

p(rt | y1, . . . , yt) ∝ p(yt | rt) p(rt | y1, . . . , yt−1)

∝ ryt

t (1− rt)
1−yt r

a−
t −1

t (1− rt)
b−t −1

= r
a−
t +yt−1

t (1− rt)
(b−t −yt+1)−1

∝ β(rt | a−t + yt, b
−
t − yt + 1)

:= β(rt | a+t , b+t ).
(21)

Thus, the update for the Bayesian filter reduces to

(a+t , b
+
t ) =

{
(a−t , b

−
t + 1), if yt = 0,

(a−t + 1, b−t ), if yt = 1.
(22)

After the update, we can extract an estimate for the accep-
tance rate as the expected value of the beta distribution:

r̂t =
a+t

a+t + b+t
. (23)

It would now be possible to construct an explicit transition
kernel for the dynamics which keeps the beta distribution
within its class. However, for simplicity, we use a similar
construction as in [25] and instead, construct the prediction
step for the parameters explicitly as

a−t = f a+t−1,

b−t = f b+t−1,
(24)

where f ∈ [0, 1) is a forgetting factor. This prediction step
has the property that it keeps the expected value invariant
but increases the variance of the distribution.

B. Control of the step size

Our aim is now to control the acceptance rate rt in the
previous section to a given target value ᾱ by using the step
size ∆t as the controlled variable. In practice, it is enough
to default to a certainty equivalence design [26] and aim to
control the estimate of the acceptance rate r̂t to the target
value.

Let st = log∆t. We then select a feedback controller that
has the form

st = st−1 +G (r̂ − ᾱ), (25)

where the gain G is chosen suitably to steer the value of
r̂ to ᾱ. This form of controller resembles the Robbins–
Monro adaptation mechanism in (7) a lot, but in this control
law, the acceptance rate estimate r̂t replaces the acceptance
probability. Additionally, we are adapting the step size ∆t,
not the λt coefficient as in (7).



It would also be possible to design the controller from first
principles by using, for example, nonlinear extensions of the
linear quadratic regulator (LQR) [26], [27], but this is left as
future work.

C. Step-size adaptation

In practice, it is advisable to use the step size adaptation
only on an initial run of the method, because the adaptation
might cause the MCMC samples to be biased. For the initial
run, we can proceed as follows:

1) Initialize the acceptance rate estimator to, say, a+0 = 1
and b+0 = 1, and the step size to some sensible value,
say, ∆t = 1/2.

2) Run the HMC or MALA algorithm while feeding the
acceptance rate estimates to the feedback controller
which computes the step sizes for each time step during
the run.

3) The step sizes should stabilize to a sensible value
which we can then store.

After doing the initial run, we can fix the step size to
its final value and do the final MCMC run without an
adaptation which then is guaranteed to provide unbiased
MCMC samples.

IV. EXPERIMENTAL RESULTS

In this section, we present results of testing the acceptance
rate estimator and the step size adaptation in practical
MCMC sampling tasks. For comparison, we have imple-
mented the standard versions of MALA and HMC algorithms
without adaptation. The initial step sizes (and number of
steps for HMC-type algorithms) will be specified in each
example separately. Our contention is that the adaptive
versions of the algorithms will be able to steer the acceptance
rate to a predetermined target value which we chose close
to the proposed optimal values in the literature.

For the adaptive version of MALA, from now on called
AdaMALA, the optimal target value is taken to be ā = 0.573.
For the adaptive version of HMC (AdaHMC), the optimal
target value is set to ā = 0.66. The forgetting factor is set
to the value f = 0.999, and, the gain G = 0.01 in all the
experiments.

We note here that in the following we adapt only the
discretization step size of the algorithms and not the co-
variance matrix of the proposal. In all the experiments,
the standard and the adaptive algorithms ran for 20, 000
iterations discarding the first 5, 000 samples as a burn-in
period.

A. Sampling from a Banana distribution

As a first experiment, we aim to sample from the Rosen-
brock banana density function defined on RD as

π(θ) ∝ exp

(
− θ21
200

− 1

2

D∑
d=3

θ2d −
1

2
(θ2 +Bθ21 − 100B)2

)
,

(26)
where we have set B = 0.1 and D = 10. The initial step
size is ∆t = 3 for MALA and AdaMALA algorithms,

(∆t, L) = (2, 5) for HMC and AdaHMC. In Fig. 1 we
present the true density with the sampled values obtained
from standard MALA (left), and AdaMALA (middle) su-
perimposed. The right panel in Fig. 1 shows the evolution
of the acceptance rate during the iterations. The acceptance
rate converges to the optimal target value of approximately
0.574. At convergence, the adapted step size is approximately
∆tend = 0.372.

In Fig. 2 we present the same results where the samples
are obtained using the standard version of HMC (left) and the
algorithm using the step size adaptation AdaHMC (right). We
note how fast the acceptance rate estimator converges to the
pre-determined optimal value for HMC ≈ 0.667. The step
size at convergence for AdaHMC is approximately ∆tend =
0.118.

After obtaining the step size on convergence for AdaHMC,
we re-run the HMC algorithm without adaptation, initializing
the step size at ∆t = 0.118 to obtain unbiased samples. In
Fig. 3 we present the samples obtained using the empirical
HMC (eHMC), that is, the HMC algorithm with initial step
size 0.12, that has been found to achieve a satisfactory
acceptance rate (approximately 0.65) and compare it to the
samples obtained from the HMC with initial step size the
one obtained from the AdaHMC at convergence (aHMC).
We note how similar the sampled values look. Additionally,
MCMC diagnostics have been performed and the samples
obtained from the two methods have similar statistics.

B. Sampling from the posterior distribution of a Bayesian
neural network

Here, we apply the methodology to sample from an autore-
gressive Bayesian neural network (BNN) for the modeling
and prediction of the Canadian Lynx data. The data consists
of a total of 114 observations that represent the annual
lynx trappings in the Mackenzie River District of North-
West Canada for the period from 1821 to 1934. In the
experiment, we use the first 100 observations to estimate
the underlying process responsible for the data generation
using an autoregressive BNN of lag 2 with a single hidden
layer with 10 neurons. The last 14 observations have been
held out in order to make predictions. All the weights and
biases of the neural network are assigned a Normal prior
distribution with zero mean and common layer variance. In
Fig. 4 we present the estimations and predictions obtained
when the step size is ∆t = 0.05 and the total number of
steps is L = 20 for both standard HMC (upper panel) and
AdaHMC (lower panel). It seems that AdaHMC is exploring
the state-space of the posterior distribution more effectively
than the standard HMC which has a very low acceptance
rate for the specific choice of ∆t and L.

The initial step size of HMC and AdaHMC is ∆t = 0.05
and, at convergence of AdaHMC, the final step size is
∆tend = 0.005. This indicates that for the standard HMC,
the value ∆t = 0.05 is quite large and leads to new proposals
outside the support of the target density, leading to very
frequent sample rejection.



Fig. 1. Sampled values from the banana density with standard MALA (left) and AdaMALA (middle). The rightmost panel shows the evolution of their
acceptance rates.

Fig. 2. Sampled values from the banana density with standard HMC (left) and AdaHMC (middle). The rightmost panel shows the evolution of their
acceptance rates.

This frequent sample rejection for HMC leads to poor
exploration of the state space, which in turn leads to poor
fitting and predictions, as shown in Fig. 4 upper panel.
Almost always rejecting a sample, there are not enough
sampled values to represent the uncertainty during fitting.
This leads to predictions with high bias and high variance
for the future values. In contrast, steering the acceptance
rate to a desired value leads to better exploration of the
posterior distribution, which leads to low bias and low
variance estimates and predictions (middle panel).

V. CONCLUSIONS

In this paper, we have proposed and studied step size
adaptation mechanisms for HMC and MALA. The adaptation
mechanisms are based on a combination of a Beta-Bernoulli

filter and a linear feedback controller. Although here the
focus was on the adaptation of HMC and MALA algorithms,
the same idea would also work for the adaptation of the λt

coefficients in adaptive Metropolis (AM) algorithms.
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[5] S. Särkkä, J. Hartikainen, I. S. Mbalawata, and H. Haario, “Posterior
inference on parameters of stochastic differential equations via non-
linear Gaussian filtering and adaptive MCMC,” Statistics and Com-
puting, vol. 25, no. 2, pp. 427–437, 2015.

[6] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines,”
The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[7] W. K. Hastings, “Monte Carlo sampling methods using Markov chains
and their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[8] C. Andrieu and J. Thoms, “A tutorial on adaptive MCMC,” Statistics
and Computing, vol. 18, no. 4, pp. 343–373, 2008.

[9] D. Luengo, L. Martino, M. Bugallo, V. Elvira, and S. Särkkä, “A
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