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Preface

The purpose of these notes is to provide an introduction to stochastic differential
equations (SDEs) from an applied point of view. The main application described
is Bayesian inference in SDE models, including Bayesian filtering, smoothing, and
parameter estimation. However, we have also included some SDE examples aris-
ing in physics and electrical engineering. Because the aim is in applications, much
more emphasis is put into solution methods than to analysis of the theoretical prop-
erties of the equations. From pedagogical point of view the purpose of these notes
is to provide an intuitive understanding in what SDEs are all about, and if the reader
wishes to learn the formal theory later, he/she can read, for example, the brilliant
books of Øksendal (2003) and Karatzas and Shreve (1991).

The pedagogical aim is also to overcome one slight disadvantage in many SDE
books (e.g., the above-mentioned ones), which is that they lean heavily on measure
theory, rigorous probability theory, and to the theory martingales. There is nothing
wrong in these theories—they are very powerful theories and everyone should in-
deed master them. However, when these theories are explicitly used in explaining
SDEs, a lot of technical details need to be taken care of. When studying SDEs
for the first time this tends to blur the basic ideas and intuition behind the theory.
In these notes, with no shame, we trade rigour to readability when treating SDEs
completely without measure theory.

In these notes, the aim is also to present an overview of numerical approxima-
tion methods for SDEs. Along with the Itô–Taylor series based simulation methods
and stochastic Runge–Kutta methods the overview covers Gaussian approximation
based methods which have and are still used a lot in the context of optimal filtering.
Application of these methods to Bayesian inference in SDEs is presented as well.

The final chapter of the notes is currently a less organized collection of impor-
tant topics including brief descriptions of martingale properties of SDEs, Girsanov
theorem, Feynman–Kac formulas, series expansions, as well as Fourier domain
methods for SDEs.

This is now the third version of these notes and for the first time Arno is on
board as well. We are going to improve these notes in the next versions. If/when
you find mistakes, please feel free to report them to us.

Best regards,
Simo and Arno
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Chapter 1

Some background on ordinary
differential equations

1.1 What is an ordinary differential equation?

An ordinary differential equation (ODE) is an equation, where the unknown quan-
tity is a function, and the equation involves derivatives of the unknown function.
For example, the second order differential equation for a forced spring (or, e.g., a
resonator circuit in telecommunications) can be generally expressed as

d2x.t/
dt2

C  dx.t/
dt
C �2 x.t/ D w.t/; (1.1)

where � and  are constants which determine the resonant angular velocity and
damping of the spring. The force w.t/ is some given function which may or may
not depend on time. In this equation the position variable x is called the dependent
variable and time t is the independent variable. The equation is of second or-
der, because it contains the second derivative and it is linear, because x.t/ appears
linearly in the equation. The equation is inhomogeneous, because it contains the
forcing term w.t/. This inhomogeneous term will become essential in later chap-
ters, because replacing it with a random process leads to a stochastic differential
equation.

Here the solution to the differential equation is defined as a particular solution,
where it satisfies the equation and does not contain any arbitrary constants. A
general solution on the other hand contains every particular solution of the equation
parametrized by some free constants. To actually solve the differential equation it is
necessary tie down the general solution by the initial conditions of the differential
equation. In the above case it means that we need to know the spring position
x.t0/ and velocity dx.t0/=dt at some fixed initial time t0. Given these initial
values, there is a unique solution to the equation (provided thatw.t/ is continuous).
Instead of initial conditions, we could also fix some other (boundary) conditions of
the differential equation to get a unique solution, but here we shall only consider
differential equations with given initial conditions.
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Note that it is common not to write the dependencies of x andw on t explicitly,
and write the equation as

d2x
dt2
C  dx

dt
C �2 x D w: (1.2)

Although this sometimes is misleading, this “ink saving” notation is very com-
monly used and we shall also employ it here whenever there is no risk of confusion.
Furthermore, because in these notes we only consider ordinary differential equa-
tions, we often drop the word “ordinary” and just talk about differential equations.

Time derivatives are also sometimes denoted with dots over the variable such
as Px D dx=dt , Rx D d2x

ı
dt2 , and so on. In this Newtonian notation the above

differential equation would be written as

Rx C  Px C �2 x D w: (1.3)

Differential equations of an arbitrary order n can (almost) always be converted into
vector differential equations of order one. For example, in the spring model above,
if we define a state variable as x.t/ D .x1; x2/ D .x.t/; dx.t/=dt /, we can rewrite
the above differential equation as first order vector differential equation as follows:

�
dx1.t/= dt
dx2.t/= dt

�

„ ƒ‚ …
dx.t/=dt

D
�
0 1

��2 �
� �

x1.t/

x2.t/

�

„ ƒ‚ …
f .x.t//

C
�
0

1

�

„ƒ‚…
L

w.t/: (1.4)

The above equation can be seen to be a special case of models of the form

dx.t/

dt
D f .x.t/; t/C L.x.t/; t/w.t/; (1.5)

where the vector valued function x.t/ 2 Rn is generally called the state of the
system, and w.t/ 2 Rs is some (vector valued) forcing function, driving function
or input to the system. Note that we can absorb the second term on the right to the
first term to yield

dx.t/

dt
D f .x.t/; t/; (1.6)

and in that sense Equation (1.5) is slightly redundant. However, the form (1.5)
turns out to be useful in the context of stochastic differential equations and thus it
is useful to consider it explicitly.

The first order vector differential equation representation of an nth differential
equation is often called state-space form of the differential equation. Because nth
order differential equations can always be converted into equivalent vector valued
first order differential equations, it is convenient to just consider such first order
equations instead of considering nth order equations explicitly. Thus in these notes
we develop the theory and solution methods only for first order vector differen-
tial equations and assume that nth order equations are always first converted into
equations of this class.
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The spring model in Equation (1.4) is also a special case of linear differential
equations of the form

dx.t/

dt
D F.t/x.t/C L.t/w.t/; (1.7)

which is a very useful class of differential equations often arising in applications.
The usefulness of linear equations is that we can actually solve these equations
unlike general non-linear differential equations. This kind of equations will be
analyzed in the next section.

1.2 Solutions of linear time-invariant differential equations

Consider the following scalar linear homogeneous differential equation with a fixed
initial condition at t D 0:

dx
dt
D f x; x.0/ D given; (1.8)

where f is a constant. This equation can now be solved, for example, via sepa-
ration of variables, which in this case means that we formally multiply by dt and
divide by x to yield

dx
x
D f dt: (1.9)

If we now integrate left hand side from x.0/ to x.t/ and right hand side from 0 to
t , we get

ln x.t/ � ln x.0/ D f t; (1.10)

or
x.t/ D exp.f t/ x.0/: (1.11)

Another way of arriving to the same solution is by integrating both sides of the
original differential equation from 0 to t . Because

R t
0 dx=dt dt D x.t/�x.0/, we

can then express the solution x.t/ as

x.t/ D x.0/C
Z t

0

f x.�/ d�: (1.12)

We can now substitute the right hand side of the equation for x inside the integral,
which gives:

x.t/ D x.0/C
Z t

0

f

�
x.0/C

Z �

0

f x.�/ d�
�

d�

D x.0/C f x.0/
Z t

0

d� C
“ t

0

f 2 x.�/ d�2

D x.0/C f x.0/ t C
“ t

0

f 2 x.�/ d�2:

(1.13)
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Doing the same substitution for x.t/ inside the last integral further yields

x.t/ D x.0/C f x.t0/ t C
“ t

0

f 2 Œx.0/C
Z �

0

f x.�/ d�� d�2

D x.0/C f x.0/ t C f 2 x.0/
“ t

0

d�2 C
• t

0

f 3 x.�/ d�3

D x.0/C f x.0/ t C f 2 x.0/ t
2

2
C
• t

0

f 3 x.�/ d�3:

(1.14)

It is easy to see that repeating this procedure yields to the solution of the form

x.t/ D x.0/C f x.0/ t C f 2 x.0/ t
2

2
C f 3 x.0/ t

3

6
C : : :

D
�
1C f t C f 2 t2

2Š
C f 3 t3

3Š
C : : :

�
x.0/:

(1.15)

The series in the parentheses can be recognized to be the Taylor series for exp.f t/.
Thus, provided that the series actually converges (it does), we again arrive at the
solution

x.t/ D exp.f t/ x.0/ (1.16)

The multidimensional generalization of the homogeneous linear differential equa-
tion (1.8) is an equation of the form

dx

dt
D F x; x.0/ D given; (1.17)

where F is a constant (time-independent) matrix. For this multidimensional equa-
tion we cannot use the separation of variables method, because it only works for
scalar equations. However, the second series based approach indeed works and
yields to a solution of the form

x.t/ D
�

I C F t C F2 t2

2Š
C F3 t3

3Š
C : : :

�
x.0/: (1.18)

The series in the parentheses now can be seen to be a matrix generalization of the
exponential function. This series indeed is the definition of the matrix exponential:

exp.F t / D I C F t C F2 t2

2Š
C F3 t3

3Š
C : : : (1.19)

and thus the solution to Equation (1.17) can be written as

x.t/ D exp.F t /x.0/: (1.20)

Note that the matrix exponential cannot be computed by computing scalar expo-
nentials of the individual elements in matrix F t , but it is a completely different
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function. Sometimes the matrix exponential is written as expm.F t / to distinguish
it from the elementwise computation definition, but here we shall use the common
convention to simply write it as exp.F t /. The matrix exponential function can
be found as a built-in function in most commercial and open source mathematical
software packages. In addition to this kind of numerical solution, the exponential
can be evaluated analytically, for example, by directly using the Taylor series ex-
pansion, by using the Laplace or Fourier transform, or via the Cayley–Hamilton
theorem (Åström and Wittenmark, 1996).

Example 1.1 (Matrix exponential). To illustrate the difference of the matrix expo-
nential and elementwise exponential, consider the equation

d2x
dt2
D 0; x.0/ D given; .dx=dt /.0/ D given; (1.21)

which in state space form can be written as

dx

dt
D
�
0 1

0 0

�

„ ƒ‚ …
F

x; x.0/ D given; (1.22)

where x D .x; dx= dt /. Because Fn D 0 for n > 1, the matrix exponential is
simply

exp.F t / D I C F t D
�
1 t

0 1

�
(1.23)

which is completely different from the elementwise matrix:
�
1 t

0 1

�
¤
�

exp.0/ exp.1/
exp.0/ exp.0/

�
D
�
1 e

1 1

�
(1.24)

Let’s now consider the following linear differential equation with an inhomo-
geneous term on the right hand side:

dx.t/

dt
D F x.t/C L w.t/; (1.25)

where x.t0/ is given and the matrices F and L are constant. For inhomogeneous
equations the solution methods are quite few especially if we do not want to restrict
ourselves to specific kinds of forcing functions w.t/. However, the integrating
factor method can be used for solving generic inhomogeneous equations.

Let’s now move the term F x to the left hand side and multiply with a magical
term called integrating factor exp.�F t / which results in the following:

exp.�F t /
dx.t/

dt
� exp.�F t /F x.t/ D exp.�F t /L.t/w.t/: (1.26)

From the definition of the matrix exponential we can derive the following property:

d
dt
Œexp.�F t /� D � exp.�F t /F : (1.27)
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The key things is now to observe that

d
dt
Œexp.�F t /x.t/� D exp.�F t /

dx.t/

dt
� exp.�F t /F x.t/; (1.28)

which is exactly the left hand side of Equation (1.26). Thus we can rewrite the
equation as

d
dt
Œexp.�F t /x.t/� D exp.�F t /L.t/w.t/: (1.29)

Integrating from t0 to t then gives

exp.�F t /x.t/ � exp.�F t0/x.t0/ D
Z t

t0

exp.�F �/L.�/w.�/ d�; (1.30)

which further simplifies to

x.t/ D exp.F .t � t0//x.t0/C
Z t

t0

exp.F .t � �//L.�/w.�/ d�; (1.31)

The above expression is thus the complete solution to the Equation (1.25).

1.3 Solutions of general linear differential equations

In this section we consider solutions of more general, time-varying linear differ-
ential equations. The corresponding stochastic equations are a very useful class
of equations, because they can be solved in (semi-)closed form quite much analo-
gously to the deterministic case considered in this section.

The solution presented in the previous section in terms of matrix exponential
only works if the matrix F is constant. Thus for the time-varying homogeneous
equation of the form

dx

dt
D F.t/x; x.t0/ D given; (1.32)

the matrix exponential solution does not work. However, we can implicitly express
the solution in form

x.t/ D ‰.t; t0/x.t0/; (1.33)

where ‰.t; t0/ is the transition matrix which is defined via the properties

@‰.�; t/=@� D F.�/‰.�; t/

@‰.�; t/=@t D �‰.�; t/F.t/

‰.�; t/ D ‰.�; s/‰.s; t/
‰.t; �/ D ‰�1.�; t/
‰.t; t/ D I:

(1.34)
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Given the transition matrix we can then construct the solution to the inhomoge-
neous equation

dx.t/

dt
D F.t/x.t/C L.t/w.t/; x.t0/ D given; (1.35)

analogously to the time-invariant case. This time the integrating factor is ‰.t0; t /
and the resulting solution is:

x.t/ D ‰.t; t0/x.t0/C
Z t

t0

‰.t; �/L.�/w.�/ d�: (1.36)

1.4 Fourier transforms

One very useful method to solve inhomogeneous linear time invariant differential
equations is the Fourier transform. The Fourier transform of a function g.t/ is
defined as

G.i !/ D F Œg.t/� D
Z 1
�1

g.t/ exp.�i ! t/ dt: (1.37)

and the corresponding inverse Fourier transform is

g.t/ D F �1ŒG.i !/� D 1

2�

Z 1
�1

G.i !/ exp.�i ! t/ d!: (1.38)

The usefulness of the Fourier transform for solving differential equations arises
from the property

F Œdng.t/
ı

dtn � D .i !/n F Œg.t/�; (1.39)

which transforms differentiation into multiplication by i !, and from the convolu-
tion theorem which says that convolution gets transformed into multiplication:

F Œg.t/ � h.t/� D F Œg.t/�F Œh.t/�; (1.40)

where the convolution is defined as

g.t/ � h.t/ D
Z 1
�1

g.t � �/ h.�/ d�: (1.41)

In fact, the above properties require that the initial conditions are zero. However,
this is not a restriction in practice, because it is possible to tweak the inhomoge-
neous term such that its effect is equivalent to the given initial conditions.

To demonstrate the usefulness of Fourier transform, let’s consider the spring
model

d2x.t/
dt2

C  dx.t/
dt
C �2 x.t/ D w.t/: (1.42)

Taking Fourier transform of the equation and using the derivative rule we get

.i !/2X.i !/C  .i !/X.i !/C �2X.i !/ D W.i !/; (1.43)
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where X.i !/ is the Fourier transform of x.t/, andW.i !/ is the Fourier transform
of w.t/. We can now solve for X.i !/ which gives

X.i !/ D W.i !/

.i !/2 C  .i !/C �2 (1.44)

The solution to the equation is then given by the inverse Fourier transform

x.t/ D F �1
�

W.i !/

.i !/2 C  .i !/C �2
�
: (1.45)

However, for general w.t/ it is useful to note that the term on the right hand side is
actually a product of the transfer function

H.i !/ D 1

.i !/2 C  .i !/C �2 (1.46)

and W.i !/. This product can now be converted into convolution if we start by
computing the impulse response function

h.t/ D F �1
�

1

.i !/2 C  .i !/C �2
�

D b�1 exp.�a t/ sin.b t/ u.t/;
(1.47)

where a D =2 and b D
q
�2 � 2ı4 , and u.t/ is the Heaviside step function,

which is zero for t < 0 and one for t � 0. Then the full solution can then expressed
as

x.t/ D
Z 1
�1

h.t � �/w.�/ d�; (1.48)

which can be interpreted such that we construct x.t/ by feeding the signal w.t/
though a linear system (filter) with impulse responses h.t/.

We can also use Fourier transform to solve general LTI equations

dx.t/

dt
D F x.t/C L w.t/: (1.49)

Taking Fourier transform gives

.i !/X.i !/ D F X.i !/C L W .i !/; (1.50)

Solving for X.i !/ then gives

X.i !/ D ..i !/ I � F/�1 L W .i !/; (1.51)

Comparing to Equation (1.36) now reveals that actually we have

F �1
h
..i !/ I � F/�1

i
D exp.F t / u.t/; (1.52)

where u.t/ is the Heaviside step function. This identity also provides one useful
way to compute matrix exponentials.
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Example 1.2 (Matrix exponential via Fourier transform). The matrix exponential
considered in Example 1.1 can also be computed as

exp
��
0 1

0 0

�
t

�
D F �1

"��
.i !/ 0

0 .i !/

�
�
�
0 1

0 0

���1#
D
�
1 t

0 1

�
:

(1.53)

1.5 Laplace transforms

Another often encountered method for solving linear time invariant differential
equations is the Laplace transform (see, e.g., Kreyszig, 1993). The Laplace trans-
form of a function f .t/ (defined for all t � 0) is defined as

F.s/ D LŒf .t/�.s/ D
Z 1
0

f .t/ exp.�st/ dt (1.54)

and the inverse transform f .t/ D L�1ŒF .s/�.t/.
Just as for the Fourier transform, the usefulness of the Laplace transform comes

from its property of reducing several often encountered “hard” differential equa-
tions into a “simple” subsidiary form which can be solved by algebraic manipula-
tions. By inverse transforming the solution of the subsidiary equation, the solution
to the original problem can be retrieved. Where a Fourier transform expresses the a
function as a superposition of sinusoids, the Laplace transform expresses a function
as a superposition of moments.

1.6 Numerical solutions of differential equations

For a generic non-linear differential equations of the form

dx.t/

dt
D f .x.t/; t/; x.t0/ D given; (1.55)

there is no general way to find an analytic solution. However, it is possible to
approximate the solution numerically.

If we integrate the equation from t to t C�t we get

x.t C�t/ D x.t/C
Z tC�t

t

f .x.�/; �/ d�: (1.56)

If we knew how to compute the integral on the right hand side, we could generate
the solution at time steps t0, t1 D t0 C �t , t2 D t0 C 2� iterating the above
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equation:

x.t0 C�t/ D x.t0/C
Z t0C�t

t0

f .x.�/; �/ d�

x.t0 C 2�t/ D x.t0 C�t/C
Z tC2�t

t0C�t

f .x.�/; �/ d�

x.t0 C 3�t/ D x.t0 C 2�t/C
Z tC3�t

t0C2�t

f .x.�/; �/ d�

:::

(1.57)

It is now possible to derive various numerical methods by constructing approxi-
mations to the integrals on the right hand side. In the Euler method we use the
approximation

Z tC�t

t

f .x.�/; �/ d� � f .x.t/; t/�t: (1.58)

which leads to the following:

Algorithm 1.1 (Euler’s method). Start from Ox.t0/ D x.t0/ and divide the inte-
gration interval Œt0; t � into n steps t0 < t1 < t2 < : : : < tn D t such that
�t D tkC1 � tk . At each step k approximate the solution as follows:

Ox.tkC1/ D Ox.tk/C f .Ox.tk/; tk/�t: (1.59)

The (global) order of a numerical integration methods can be defined to be the
smallest exponent p such that if we numerically solve an ODE using n D 1=�t

steps of length �t , then there exists a constant K such that

j Ox.tn/ � x.tn/j � K�tp; (1.60)

where Ox.tn/ is the approximation and x.tn/ is the true solution. Because in Euler
method, the first discarded term is of order �t2, the error of integrating over 1=�t
steps is proportional to �t . Thus Euler method has order p D 1.

We can also improve the approximation by using trapezoidal approximation

Z tC�t

t

f .x.�/; �/ d� � �t

2
Œf .x.t/; t/C f .x.t C�t/; t C�t/� : (1.61)

which would lead to the approximate integration rule

x.tkC1/ � x.tk/C
�t

2
Œf .x.tk/; tk/C f .x.tkC1/; tkC1/� : (1.62)

which is implicit rule in the sense that x.tkC1/ appears also on the right hand side.
To actually use such implicit rule, we would need to solve a non-linear equation
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at each integration step which tends to be computationally too intensive when the
dimensionality of x is high. Thus here we consider explicit rules only, where the
next value x.tkC1/ does not appear on the right hand side. If we now replace the
term on the right hand side with its Euler approximation, we get the following
Heun’s method.

Algorithm 1.2 (Heun’s method). Start from Ox.t0/ D x.t0/ and divide the inte-
gration interval Œt0; t � into n steps t0 < t1 < t2 < : : : < tn D t such that
�t D tkC1 � tk . At each step k approximate the solution as follows:

Qx.tkC1/ D Ox.tk/C f .Ox.tk/; tk/�t
Ox.tkC1/ D Ox.tk/C

�t

2
Œf .Ox.tk/; tk/C f .Qx.tkC1/; tkC1/� :

(1.63)

It can be shown that Heun’s method has global order p D 2.
Another useful class of methods are the Runge–Kutta methods. The classical

4th order Runge–Kutta method is the following.

Algorithm 1.3 (4th order Runge–Kutta method). Start from Ox.t0/ D x.t0/ and
divide the integration interval Œt0; t � into n steps t0 < t1 < t2 < : : : < tn D t such
that �t D tkC1 � tk . At each step k approximate the solution as follows:

�x1k D f .Ox.tk/; tk/�t
�x2k D f .Ox.tk/C�x1k=2; tk C�t=2/�t
�x3k D f .Ox.tk/C�x2k=2; tk C�t=2/�t
�x4k D f .Ox.tk/C�x3k; tk C�t/�t

Ox.tkC1/ D Ox.tk/C
1

6
.�x1k C 2�x2k C 2�x3k C�x4k/:

(1.64)

The above Runge–Kutta method can be derived by writing down the Taylor
series expansion for the solution and by selecting coefficient such that many of the
lower order terms cancel out. The order of this method is p D 4.

In fact, all the above integration methods are based on the Taylor series expan-
sions of the solution. This is slightly problematic, because what happens in the case
of SDEs is that the Taylor series expansion does not exists and all of the methods
need to be modified at least to some extent. However, it is possible to replace Taylor
series with so called Itô–Taylor series and then work out the analogous algorithms.
The resulting algorithms are more complicated than the deterministic counterparts,
because Itô–Taylor series is considerably more complicated than Taylor series. But
we shall come back to this issue in Chapter 5.

There exists a wide class of other numerical ODE solvers as well. For ex-
ample, all the above mentioned methods have a fixed step length, but there exists
various variable step size methods which automatically adapt the step size. How-
ever, constructing variable step size methods for stochastic differential equations is
much more involved than for deterministic equations and thus we shall not consider
them here.
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1.7 Picard–Lindelöf theorem

One important issue in differential equations is the question if the solution exists
and whether it is unique. To analyze this questions, let’s consider a generic equa-
tion of the form

dx.t/

dt
D f .x.t/; t/; x.t0/ D x0; (1.65)

where f .x; t / is some given function. If the function t 7! f .x.t/; t/ happens to be
Riemann integrable, then we can integrate both sides from t0 to t to yield

x.t/ D x0 C
Z t

t0

f .x.�/; �/ d�: (1.66)

We can now use this identity to find an approximate solution to the differential
equation by the following Picard’s iteration (see, e.g., Tenenbaum and Pollard,
1985).

Algorithm 1.4 (Picard’s iteration). Start from the initial guess '0.t/ D x0. Then
compute approximations '1.t/;'2.t/;'3.t/; : : : via the following recursion:

'nC1.t/ D x0 C
Z t

t0

f .'n.�/; �/ d� (1.67)

The above iteration, which we already used for finding the solution to linear
differential equations in Section 1.2, can be shown to converge to the unique solu-
tion

lim
n!1

'n.t/ D x.t/; (1.68)

provided that f .x; t / is continuous in both arguments and Lipschitz continuous in
the first argument.

The implication of the above is the Picard–Lindelöf theorem, which says that
under the above continuity conditions the differential equation has a solution and it
is unique at a certain interval around t D t0. We emphasis the innocent looking but
important issue in the theorem: the function f .x; t / needs to be continuous. This
important, because in the case of stochastic differential equations the correspond-
ing function will be discontinuous everywhere and thus we need a completely new
existence theory for them.



Chapter 2

Pragmatic introduction to
stochastic differential equations

2.1 Stochastic processes in physics, engineering, and other
fields

The history of stochastic differential equations (SDEs) can be seen to have started
form the classic paper of Einstein (1905), where he presented a mathematical con-
nection between microscopic random motion of particles and the macroscopic dif-
fusion equation. This is one of the results that proved the existence of the atom.
Einstein’s reasoning was roughly the following.

Example 2.1 (Microscopic motion of Brownian particles). Let � be a small time
interval and consider n particles suspended in liquid. During the time interval �
the x-coordinates of the particles will change by displacement �. The number of
particles with displacement between � and �C d� is then

dn D n�.�/ d�; (2.1)

where �.�/ is the probability density of �, which can be assume to be symmetric
�.�/ D �.��/ and differ from zero only for very small values of �.

Let u.x; t/ be the number of particles per unit volume. Then the number of
particles at time t C � located at x C dx is given as

u.x; t C �/ dx D
Z 1
�1

u.x C�; t/ �.�/ d� dx: (2.2)

Because � is very small, we can put

u.x; t C �/ D u.x; t/C � @u.x; t/
@t

: (2.3)

We can expand u.x C�; t/ in powers of �:

u.x C�; t/ D u.x; t/C� @u.x; t/

@x
C �2

2

@2u.x; t/

@x2
C : : : (2.4)
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„ƒ‚…
�

�.�/

Figure 2.1: Illustration of Einstein’s model of Brownian motion.

Substituting into (2.3) and (2.4) into (2.2) gives

u.x; t/C � @u.x; t/
@t

D u.x; t/
Z 1
�1

�.�/ d�C @u.x; t/

@x

Z 1
�1

��.�/ d�

C @2u.x; t/

@x2

Z 1
�1

�2

2
�.�/ d�C : : : (2.5)

where all the odd order terms vanish. If we recall that
R1
�1

�.�/ d� D 1 and we
put Z 1

�1

�2

2
�.�/ d� D D; (2.6)

we get the diffusion equation

@u.x; t/

@t
D D @2u.x; t/

@x2
: (2.7)

This connection was significant during the time, because diffusion equation was
only known as a macroscopic equation. Einstein was also able to derive a formula
for D in terms of microscopic quantities. From this, Einstein was able to compute
the prediction for mean squared displacement of the particles as function of time:

z.t/ D RT

N

1

3� � r
t; (2.8)

where � is the viscosity of liquid, r is the diameter of the particles, T is the tem-
perature, R is the gas constant, and N is the Avogadro constant.

In modern terms, Brownian motion1 (see Fig. 2.2) is an abstraction of a random
walk process which has the property that each increment of it is independent. That
is, direction and magnitude of each change of the process is completely random and
independent of the previous changes. One way to think about Brownian motion is
that it is the solution to the following stochastic differential equation

dˇ.t/
dt
D w.t/; (2.9)

1In mathematics Brownian motion is also often called the Wiener process.
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Figure 2.2: Two views of Brownian motion: (a) a sample path and 95% quantiles, and (b)
evolution of the probability density.

where w.t/ is a white random process. The term white here means that each the
values w.t/ and w.t 0/ are independent whenever t ¤ t 0. We will later see that the
probability density of the solution of this equation will solve the diffusion equation.
However, at Einstein’s time the theory of stochastic differential equations did not
exists and therefore the reasoning was completely different.

A couple of years after Einstein’s contribution Langevin (1908) presented an
alternative construction of Brownian motion which leads to the same macroscopic
properties. The reasoning in the article, which is outlined in the following, was
more mechanical than in Einstein’s derivation.

Example 2.2 (Langevin’s model of Brownian motion). Consider a small parti-
cle suspended in liquid. Assume that there are two kinds of forces acting on the
particle:

1. Friction force Ff , which by the Stokes law has the form:

Ff D �6� � r v; (2.10)

where � is the viscosity, r is the diameter of particle and v is its velocity.

2. Random force Fr caused by random collisions of the particles.

Newton’s law then gives

m
d2x
dt2
D �6� � r dx

dt
C Fr ; (2.11)

where m is the mass of the particle. Recall that

1

2

d.x2/
dt
D dx

dt
x

1

2

d2.x2/
dt2

D d2x
dt2

x C
�

dx
dt

�2
:

(2.12)
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Random force
from collisions

Movement slowed
down by friction

Figure 2.3: Illustration of Langevin’s model of Brownian motion.

Thus if we multiply Equation (2.11) with x, substitute the above identities, and take
expectation we get

m

2
E
�

d2.x2/
dt2

�
�m E

"�
dx
dt

�2#
D �3� � r E

�
d.x2/

dt

�
C EŒFr x�: (2.13)

From statistical physics we know the relationship between the average kinetic en-
ergy and temperature:

m E

"�
dx
dt

�2#
D RT

N
: (2.14)

If we then assume that the random force and the position are uncorrelated, EŒFr x� D
0 and define a new variable Pz D d EŒx2�

ı
dt we get the differential equation

m

2

d Pz
dt
� RT

N
D �3� � r Pz (2.15)

which has the general solution

Pz.t/ D RT

N

1

3� � r

�
1 � exp

�
6� � r

m
t

��
: (2.16)

The exponential above goes to zero very quickly and thus the resulting mean squared
displacement is nominally just the resulting constant multiplied with time:

z.t/ D RT

N

1

3� � r
t; (2.17)

which is exactly the same what Einstein obtained.

In the above model, Brownian motion is not actually seen as a solution to the
white noise driven differential equation

dˇ.t/
dt
D w.t/; (2.18)
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Figure 2.4: Example RC-circuit.

but instead, as the solution to equation of the form

d2 Q̌.t/
dt2

D �c d Q̌.t/
dt
C w.t/ (2.19)

in the limit of vanishing time constant. The latter (Langevin’s version) is some-
times called the physical Brownian motion and the former (Einstein’s version) the
mathematical Brownian motion. In these notes the term Brownian motion always
means the mathematical Brownian motion.

Stochastic differential equations also arise other contexts. For example, the
effect of thermal noise in electrical circuits and various kind of disturbances in
telecommunications systems can be modeled as SDEs. In the following we present
two such examples.

Example 2.3 (RC Circuit). Consider the simple RC circuit shown in Figure 2.4.
In Laplace domain, the output voltage V.s/ can be expressed in terms of the input
voltage W.s/ as follows:

V.s/ D 1

1CRC s W.s/: (2.20)

Inverse Laplace transform then gives the differential equation

dv.t/
dt
D � 1

RC
v.t/C 1

RC
w.t/: (2.21)

A sin. /

w.t/

K Loop filter

R t
0

�1.t/ �.t/

�
�2.t/

Figure 2.5: Simple phase locked loop (PLL) model.
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w1.t/

w2.t/

Figure 2.6: Illustration of a car’s dynamic model.

For the purposes of studying the response of the circuit to noise, we can now re-
place the input voltage with a white noise process w.t/ and analyze the properties
of the resulting equation.

Example 2.4 (Phase locked loop (PLL)). Phase locked loops (PLLs) are telecom-
munications system devices, which can be used to automatically synchronize a de-
modulator with a carrier signal. A simple mathematical model of PLL is shown
in Figure 2.5 (see, Viterbi, 1966), where w.t/ models disturbances (noise) in the
system. In the case that there is no loop filter at all and when the input is a constant-
frequency sinusoid �1.t/ D .!�!0/ tC � , the differential equation for the system
becomes

d�
dt
D .! � !0/ � A K sin�.t/ �K w.t/: (2.22)

It is now possible to analyze the properties of PLL in the presence of noise by
analyzing the properties of this stochastic differential equation (Viterbi, 1966).

Stochastic differential equations can also be used for modeling dynamic phe-
nomena, where the exact dynamics of the system are uncertain. For example, the
motion model of a car cannot be exactly written down if we do not know all the
external forces affecting the car and the acts of the driver. However, the unknown
sub-phenomena can be modeled as stochastic processes, which leads to stochastic
differential equations. This kind of modeling principle of representing uncertain-
ties as random variables is sometimes called Bayesian modeling. Stochastic differ-
ential equation models of this kind and commonly used in navigation and control
systems (see, e.g., Jazwinski, 1970; Bar-Shalom et al., 2001; Grewal and Andrews,
2001). Stock prices can also be modeled using stochastic differential equations and
this kind of models are indeed commonly used in analysis and pricing of stocks and
related quantities (Øksendal, 2003).

Example 2.5 (Dynamic model of a car). The dynamics of the car in 2d .x1; x2/
are governed by the Newton’s law (see Fig. 2.6):

f .t/ D m a.t/; (2.23)
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g

w.t/

�

Figure 2.7: An illustration for the pendulum example.

where a.t/ is the acceleration, m is the mass of the car, and f .t/ is a vector of
(unknown) forces acting the car. Let’s now model f .t/=m as a two-dimensional
white random process:

d2x1
dt2
D w1.t/;

d2x2
dt2
D w2.t/:

(2.24)

If we define x3.t/ D dx1=dt , x4.t/ D dx2=dt , then the model can be written as a
first order system of differential equations:

d
dt

0
BB@
x1
x2
x3
x4

1
CCA D

0
BB@
0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

1
CCA

„ ƒ‚ …
F

0
BB@
x1
x2
x3
x4

1
CCAC

0
BB@
0 0

0 0

1 0

0 1

1
CCA

„ ƒ‚ …
L

�
w1
w2

�
: (2.25)

In shorter matrix form this can be written as a linear differential equation model:

dx

dt
D F xC L w :

Example 2.6 (Noisy pendulum). The differential equation for a simple pendulum
(see Fig. 2.7) with unit length and mass can be written as:

R� D �g sin.�/C w.t/; (2.26)
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where � is the angle, g is the gravitational acceleration and w.t/ is a random
noise process. This model can be converted converted into the following state
space model:

d
dt

�
�1
�2

�
D
�

�2
�g sin.�1/

�
C
�
0

1

�
w.t/: (2.27)

This can be seen to be a special case of equations of the form

dx

dt
D f .x/C L w ; (2.28)

where f .x/ is a non-linear function.

Example 2.7 (Black–Scholes model). In the Black–Scholes model the asset (e.g.,
stock price) x is assumed to follow geometric Brownian motion

dx D �x dt C � x dˇ: (2.29)

where dˇ is a Brownian motion increment, � is a drift constant and � is a volatility
constant. If we formally divide by dt , this equation can be heuristically interpreted
as a differential equation

dx
dt
D �x C � x w; (2.30)

where w.t/ is a white random process. This equation is now an example of more
general multiplicative noise models of the form

dx

dt
D f .x/C L.x/w : (2.31)

2.2 Differential equations with driving white noise

As discussed in the previous section, many time-varying phenomena in various
fields in science and engineering can be modeled as differential equations of the
form

dx

dt
D f .x; t /C L.x; t /w.t/: (2.32)

where w.t/ is some vector of forcing functions.
We can think a stochastic differential equation (SDE) as an equation of the

above form where the forcing function is a stochastic process. One motivation
for studying such equations is that various physical phenomena can be modeled
as random processes (e.g., thermal motion) and when such a phenomenon enters a
physical system, we get a model of the above SDE form. Another motivation is that
in Bayesian statistical modeling unknown forces are naturally modeled as random
forces which again leads to SDE type of models. Because the forcing function is
random, the solution to the stochastic differential equation is a random process as
well. With a different realization of the noise process we get a different solution.
For this reason the particular solutions of the equations are not often of interest, but
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Figure 2.8: Solutions of the spring model in Equation (1.1) when the input is white noise.
The solution of the SDE is different for each realization of noise process. We can also
compute the mean of the solutions, which in the case of linear SDE corresponds to the
deterministic solution with zero noise.

instead, we aim to determine the statistics of the solutions over all realizations. An
example of SDE solution is given in Figure 2.8.

In the context of SDEs, the term f .x; t / in Equation (2.32) is called the drift
function which determines the nominal dynamics of the system, and L.x; t / is the
dispersion matrix which determines how the noise w.t/ enters the system. This
indeed is the most general form of SDE that we discuss in the document. Although
it would be tempting to generalize these equations to dx=dt D f .x;w ; t /, it is
not possible in the present theory. We shall discuss the reason for this later in this
document.

The unknown function usually modeled as Gaussian and “white” in the sense
that w.t/ and w.�/ are uncorrelated (and independent) for all t ¤ s. The term
white arises from the property that the power spectrum (or actually, the spectral
density) of white noise is constant (flat) over all frequencies. White light is another
phenomenon which has this same property and hence the name.

In mathematical sense white noise process can be defined as follows:

Definition 2.1 (White noise). White noise process w.t/ 2 Rs is a random function
with the following properties:

1. w.t1/ and w.t2/ are independent if t1 ¤ t2.

2. t 7! w.t/ is a Gaussian process with zero mean and Dirac-delta-correlation:

mw.t/ D EŒw.t/� D 0

Cw.t; s/ D EŒw.t/wT.s/� D ı.t � s/Q;
(2.33)

where Q is the spectral density of the process.
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From the above properties we can also deduce the following somewhat peculiar
properties of white noise:

• The sample path t 7! w.t/ is discontinuous almost everywhere.

• White noise is unbounded and it takes arbitrarily large positive and negative
values at any finite interval.

An example of a scalar white noise process realization is shown in Figure 2.9.
It is also possible to use non-Gaussian driving functions in SDEs such as Pois-

son processes or more general Lévy processes (see, e.g., Applebaum, 2004), but
here we will always assume that the driving function is Gaussian.

2.3 Heuristic solutions of linear SDEs

Let’s first consider linear time-invariant stochastic differential equations (LTI SDEs)
of the form

dx.t/

dt
D F x.t/C L w.t/; x.0/ � N.m0;P0/; (2.34)

where F and L are some constant matrices the white noise process w.t/ has zero
mean and a given spectral density Q. Above, we have specified a random initial
condition for the equation such that at initial time t D 0 the solutions should be
Gaussian with a given mean m0 and covariance P0.

If we pretend for a while that the driving process w.t/ is deterministic and
continuous, we can form the general solution to the differential equation as follows:

x.t/ D exp .F t / x.0/C
Z t

0

exp .F .t � �// L w.�/ d�; (2.35)

where exp .F t / is the matrix exponential function.
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We can now take a “leap of faith” and hope that this solutions is valid also
when w.t/ is a white noise process. It turns out that it indeed is, but just because
the differential equation happens to be linear (we’ll come back to this issue in next
chapter). However, it is enough for our purposes for now. The solution also turns
out to be Gaussian, because the noise process is Gaussian and a linear differential
equation can be considered as a linear operator acting on the noise process (and the
initial condition).

Because white noise process has zero mean, taking expectations from the both
sides of Equation (2.35) gives

EŒx.t/� D exp .F t / m0; (2.36)

which is thus the expected value of the SDE solutions over all realizations of noise.
The mean function is here denoted as m.t/ D EŒx.t/�.

The covariance of the solution can be derived by substituting the solution into
the definition of covariance and by using the delta-correlation property of white
noise, which results in

E
h
.x.t/ �m.t// .x.t/ �m/T

i

D exp .F t / P0 exp .F t /T C
Z t

0

exp .F .t � �// L Q LT exp .F .t � �//T d�:

(2.37)

In this document we denote the covariance as P .t/ D E
�
.x.t/ �m.t// .x.t/ �m/T

�
.

By differentiating the mean and covariance solutions and collecting the terms
we can also derive the following differential equations for the mean and covariance:

dm.t/

dt
D F m.t/

dP .t/

dt
D F P .t/C P .t/FT C L Q LT;

(2.38)

Example 2.8 (Stochastic spring model). If in the spring model of Equation (1.4),
we replace the input force with a white noise with spectral density q, we get the
following LTI SDE:

 
dx1.t/

dt
dx2.t/

dt

!

„ ƒ‚ …
dx.t/=dt

D
�
0 1

��2 �
�

„ ƒ‚ …
F

�
x1.t/

x2.t/

�

„ ƒ‚ …
x

C
�
0

1

�

„ƒ‚…
L

w.t/: (2.39)
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Figure 2.10: Solutions, theoretical mean, and the 95% quantiles for the spring model in
Equation (1.1) when the input is white noise.

The equations for the mean and covariance are thus given as
�dm1

dt
dm2

dt

�
D
�
0 1

��2 �
��

m1
m2

�

 
dP11

dt
dP12

dt
dP21

dt
dP22

dt

!
D
�
0 1

��2 �
��

P11 P12
P21 P22

�

C
�
P11 P12
P21 P22

��
0 1

��2 �
�T

C
�
0 0

0 q

�
(2.40)

Figure 2.10 shows the theoretical mean and the 95% quantiles computed from the
variances P11.t/ along with trajectories from the stochastic spring model.

Despite the heuristic derivation, Equations (2.38) are indeed the correct differ-
ential equations for the mean and covariance. But it is easy to demonstrate that one
has to be extremely careful in extrapolation of deterministic differential equation
results to stochastic setting.

Note that we can indeed derive the first of the above equations simply by taking
the expectations from both sides of Equation (2.34):

E
�

dx.t/

dt

�
D E ŒF x.t/�C E ŒL w.t/� ; (2.41)

Exchanging the order of expectation and differentiation, using the linearity of ex-
pectation and recalling that white noise has zero mean then results in correct mean
differential equation. We can now attempt to do the same for the covariance. By
the chain rule of ordinary calculus we get

d
dt

h
.x �m/ .x �m/T

i
D
�

dx

dt
� dm

dt

�
.x �m/T C .x �m/

�
dx

dt
� dm

dt

�T

;

(2.42)
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Substituting the time derivatives to the right hand side and taking expectation then
results in

d
dt

E
h
.x �m/ .x �m/T

i
D F E

h
.x.t/ �m.t// .x.t/ �m.t//T

i

C E
h
.x.t/ �m.t// .x.t/ �m.t//T

i
FT;

(2.43)

which implies the covariance differential equation

dP .t/

dt
D F P .t/C P .t/FT: (2.44)

But this equation is wrong, because the term L.t/Q LT.t/ is missing from the right
hand side. Our mistake was to assume that we can use the product rule in Equa-
tion (2.42), but in fact we cannot. This is one of the peculiar features of stochastic
calculus and it is also a warning sign that we should not take our “leap of faith” too
far when analyzing solutions of SDEs via formal extensions of deterministic ODE
solutions.

2.4 Heuristic solutions of non-linear SDEs

We could now attempt to analyze differential equations of the form

dx

dt
D f .x; t /C L.x; t /w.t/; (2.45)

where f .x; t / and L.x; t / are non-linear functions and w.t/ is a white noise process
with a spectral density Q. Unfortunately, we cannot take the same kind of “leap
of faith” from deterministic solutions as in the case of linear differential equations,
because we could not solve even the deterministic differential equation.

An attempt to generalize the numerical methods for deterministic differential
equations discussed in previous chapter will fail as well, because the basic require-
ment in almost all of those methods is continuity of the right hand side, and in
fact, even differentiability of several orders. Because white noise is discontinuous
everywhere, the right hand side is discontinuous everywhere, and is certainly not
differentiable anywhere either. Thus we are in trouble.

We can, however, generalize the Euler method (leading to Euler–Maruyama
method) to the present stochastic setting, because it does not explicitly require
continuity. From that, we get an iteration of the form

Ox.tkC1/ D Ox.tk/C f .Ox.tk/; tk/�t C L.Ox.tk/; tk/�ˇk; (2.46)

where �ˇk is a Gaussian random variable with distribution N.0;Q�t/. Note that
it is indeed the variance which is proportional to �t , not the standard derivation as
we might expect. This results from the peculiar properties of stochastic differential
equations. Anyway, we can use the above method to simulate trajectories from
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stochastic differential equations and the result converges to the true solution in the
limit�t ! 0. However, the convergence is quite slow as the order of convergence
is only p D 1=2 .

In the case of SDEs, the convergence order definition is a bit more compli-
cated, because we can talk about path-wise approximations, which corresponds to
approximating the solution with fixed w.t/. These are also called strong solution
and give rise to strong order of convergence. But we can also think of approxi-
mating the probability density or the moments of the solutions. These give rise to
weak solutions and weak order of convergence. We will come back to these later.

2.5 The problem of solution existence and uniqueness

Let’s now attempt to analyze the uniqueness and existence of the equation

dx

dt
D f .x; t /C L.x; t /w.t/; (2.47)

using the Picard–Lindelöf theorem presented in the previous chapter. The basic
assumption in the theorem for the right hand side of the differential equation were:

• Continuity in both arguments.

• Lipschitz continuity in the first argument.

Unfortunately, the first of these fails miserably, because white noise is discontinu-
ous everywhere. However, a small blink of hope is implied by that f .x; t / might
indeed be Lipschitz continuous in the first argument, as well as L.x; t /. How-
ever, without extending the Pickard–Lindelöf theorem we cannot determine the
existence or uniqueness of stochastic differential equations.

It turns out that a stochastic analog of Picard iteration will indeed lead to the
solution to the existence and uniqueness problem also in the stochastic case. But
before going into that we need to make the theory of stochastic differential equa-
tions mathematically meaningful.



Chapter 3

Itô calculus and stochastic
differential equations

3.1 The stochastic integral of Itô

As discussed in the previous chapter, a stochastic differential equation can be
heuristically considered as a vector differential equation of the form

dx

dt
D f .x; t /C L.x; t /w.t/; (3.1)

where w.t/ is a zero mean white Gaussian process. However, although this is
sometimes true, it is not the whole truth. The aim in this section is to clarify what
really is the logic behind stochastic differential equations and how we should treat
them.

The problem in the above equation is that it cannot be a differential equation
in traditional sense, because the ordinary theory of differential equations does not
permit discontinuous functions such as w.t/ in differential equations (recall the
problem with the Picard–Lindelöf theorem). And the problem is not purely theo-
retical, because the solution actually turns out to depend on infinitesimally small
differences in mathematical definitions of the noise and thus without further re-
strictions the solution would not be unique even with a given realization of white
noise w.t/.

Fortunately, there is a solution to this problem, but in order to find it we need
to reduce the problem to definition of a new kind of integral called the Itô integral,
which is an integral with respect to a stochastic process. In order to do that, let’s
first formally integrate the differential equation from some initial time t0 to final
time t :

x.t/ � x.t0/ D
Z t

t0

f .x.t/; t/ dt C
Z t

t0

L.x.t/; t/w.t/ dt: (3.2)

The first integral on the right hand side is just a normal integral with respect to
time and can be defined as a Riemann integral of t 7! f .x.t/; t/ or as a Lebesgue
integral with respect to the Lebesgue measure, if more generality is desired.
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The second integral is the problematic one. First of all, it cannot be defined as
Riemann integral due to the unboundedness and discontinuity of the white noise
process. Recall that in the Riemannian sense the integral would be defined as the
following kind of limit:

Z t

t0

L.x.t/; t/w.t/ dt D lim
n!1

X
k

L.x.t�k /; t
�
k /w.t�k / .tkC1 � tk/; (3.3)

where t0 < t1 < : : : < tn D t and t�
k
2 Œtk; tkC1�. In the context of Riemann

integrals so called upper and lower sums are defined as the selections of t�
k

such
that the integrand L.x.t�

k
/; t�
k
/w.t�

k
/ has its maximum and minimum values, re-

spectively. The Riemann integral is defined if the upper and lower sums converge
to the same value, which is then defined to be the value of the integral. In the
case of white noise it happens that w.t�

k
/ is not bounded and takes arbitrarily small

and large values at every finite interval, and thus the Riemann integral does not
converge.

We could also attempt to define it as a Stieltjes integral which is more general
than the Riemann integral. For that definition we need to interpret the increment
w.t/ dt as an increment of another process ˇ.t/ such that the integral becomes

Z t

t0

L.x.t/; t/w.t/ dt D
Z t

t0

L.x.t/; t/ dˇ.t/: (3.4)

It turns out that a suitable process for this purpose is the Brownian motion which
we already discussed in the previous chapter:

Definition 3.1 (Brownian motion). Brownian motion ˇ.t/ is a process with the
following properties:

1. Any increment �ˇk D ˇ.tkC1/ � ˇ.tk/ is a zero mean Gaussian ran-
dom variable with covariance Q�tk , where Q is the diffusion matrix of
the Brownian motion and �tk D tkC1 � tk .

2. When the time spans of increments do not overlap, the increments are inde-
pendent.

Some further properties of Brownian motion which result from the above are
the following:

1. Brownian motion t 7! ˇ.t/ has a discontinuous derivative everywhere.

2. White noise can be considered as the formal derivative of Brownian motion
w.t/ D dˇ.t/=dt .

An example of a scalar Brownian motion realization is shown in Figure 3.1.
Unfortunately, the definition of the latter integral in Equation (3.2) in terms of

increments of Brownian motion as in Equation (3.4) does not solve our existence
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Figure 3.1: A realization trajectory of Brownian motion, where the derivative is discon-
tinuous everywhere. White noise can be considered the formal derivative of Brownian
motion.

problem. The problem is the everywhere discontinuous derivative of ˇ.t/ which
makes it too irregular for the defining sum of the Stieltjes integral to converge. Un-
fortunately, the same happens with the Lebesgue integral. Recall that both Stieltjes
and Lebesgue integrals are essentially defined as limits of the form

Z t

t0

L.x.t/; t/ dˇ D lim
n!1

X
k

L.x.t�k /; t
�
k / Œˇ.tkC1/ � ˇ.tk/�; (3.5)

where t0 < t1 < : : : < tn and t�
k
2 Œtk; tkC1�. The core problem in both of these

definitions is that they would require the limit to be independent of the position on
the interval t�

k
2 Œtk; tkC1�. But for integration with respect to Brownian motion

this is not the case. Thus, the Stieltjes or Lebesgue integral definitions does not
work either.

The solution to the problem is the Itô stochastic integral which is based on the
observation that if we fix the choice to t�

k
D tk , then the limit becomes unique.

The Itô integral can thus be defined as the limit

Z t

t0

L.x.t/; t/ dˇ.t/ D lim
n!1

X
k

L.x.tk/; tk/ Œˇ.tkC1/ � ˇ.tk/�; (3.6)

which is a sensible definition of the stochastic integral required for the SDE.
The stochastic differential equation (2.32) can now be defined to actually refer

to the corresponding (Itô) integral equation

x.t/ � x.t0/ D
Z t

t0

f .x.t/; t/ dt C
Z t

t0

L.x.t/; t/ dˇ.t/; (3.7)

which should be true for arbitrary t0 and t .
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We can now take a step backwards and return from this stochastic integral
equation to the differential equation as follows. If we choose the integration limits
in Equation (3.7) to be t and t C dt , where dt is “small”, we can write the equation
in the differential form

dx D f .x; t / dt C L.x; t / dˇ; (3.8)

which should be interpreted as shorthand for the integral equation. The above is
the form which is most often used in literature on stochastic differential equations
(e.g., Øksendal, 2003; Karatzas and Shreve, 1991). We can now formally divide by
dt to obtain a differential equation:

dx

dt
D f .x; t /C L.x; t /

dˇ
dt
; (3.9)

which shows that also here white noise can be interpreted as the formal derivative
of Brownian motion. However, due to non-classical transformation properties of
the Itô differentials, one has to be very careful in working with such formal manip-
ulations.

It is now also easy to see why we are not permitted to consider more general
differential equations of the form

dx.t/

dt
D f .x.t/;w.t/; t/; (3.10)

where the white noise w.t/ enters the system through a non-linear transformation.
There is no way to rewrite this equation as a stochastic integral with respect to
a Brownian motion and thus we cannot define the mathematical meaning of this
equation. More generally, white noise should not be thought of as an entity as
such, but it only exists as the formal derivative of Brownian motion. Therefore
only linear functions of white noise have a meaning whereas non-linear functions
do not.

Let’s now take a short excursion to how Itô integrals are often treated in stochas-
tic analysis. In the above treatment we have only considered stochastic integration
of the term L.x.t/; t/, but the definition can be extended to arbitrary Itô processes
‚.t/, which are “adapted” to the Brownian motion ˇ.t/ to be integrated over. Be-
ing “adapted” means that ˇ.t/ is the only stochastic “driving force” in‚.t/ in the
same sense that L.x.t/; t/ was generated as a function of x.t/, which in turn is
generated though the differential equation, where the only stochastic driver is the
Brownian motion. This adaptation can also be denoted by including the “event
space element” ! as an argument to the function ‚.t; !/ and Brownian motion
ˇ.t; !/. The resulting Itô integral is then defined as the limit

Z t

t0

‚.t; !/ dˇ.t; !/ D lim
n!1

X
k

‚.tk; !/ Œˇ.tkC1; !/ � ˇ.tk; !/�: (3.11)

Actually, the definition is slightly more complicated (see Karatzas and Shreve,
1991; Øksendal, 2003), but the basic principle is the above. Furthermore, if‚.t; !/
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is such an adapted process, then according to the martingale representation theorem
it can always be represented as the solution to a suitable Itô stochastic differential
equation. Malliavin calculus (Nualart, 2006) provides the tools for finding such an
equation in practice. However, this kind of analysis would require us to use the full
measure theoretical formulation of the Itô stochastic integral which we will not do
here.

3.2 Itô formula

Consider the stochastic integral
Z t

0

ˇ.t/ dˇ.t/ (3.12)

where ˇ.t/ is a standard Brownian motion, that is, scalar Brownian motion with
diffusion matrix Q D 1. Based on ordinary calculus we would expect the value
of this integral to be ˇ2.t/=2, but it is the wrong answer. If we select a partition
0 D t0 < t1 < : : : < tn D t , we get by rearranging the terms
Z t

0

ˇ.t/ dˇ.t/ D lim
n!1

X
k

ˇ.tk/Œˇ.tkC1/ � ˇ.tk/�

D lim
n!1

X
k

�
�1
2
.ˇ.tkC1/ � ˇ.tk//2 C

1

2
.ˇ2.tkC1/ � ˇ2.tk//

�

D �1
2
t C 1

2
ˇ2.t/;

(3.13)

where we have used the result that the limit of the first term is limn!1
P
k.ˇ.tkC1/�

ˇ.tk//
2 D t . The Itô differential of ˇ2.t/=2 is analogously

dŒ
1

2
ˇ2.t/� D ˇ.t/ dˇ.t/C 1

2
dt; (3.14)

not ˇ.t/ dˇ.t/ as we might expect. This is a consequence and also a drawback of
the selection of the fixed t�

k
D tk .

The general rule for calculating the Itô differentials and thus Itô integrals can
be summarized as the following Itô formula, which corresponds to chain rule in
ordinary calculus:

Theorem 3.1 (Itô formula). Assume that x.t/ is an Itô process, and consider an
arbitrary (scalar) function �.x.t/; t/ of the process. Then the Itô differential of �,
that is, the Itô SDE for � is given as

d� D @�

@t
dt C

X
i

@�

@xi
dxi C 1

2

X
ij

�
@2�

@xi@xj

�
dxi dxj

D @�

@t
dt C .r�/T dxC 1

2
tr
n�
rrT�

�
dx dxT

o
;

(3.15)
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provided that the required partial derivatives exist, where the mixed differentials
are combined according to the rules

dˇ dt D 0
dt dˇ D 0

dˇ dˇT D Q dt:

(3.16)

Proof. See, for example, Øksendal (2003); Karatzas and Shreve (1991).

Although the Itô formula above is defined only for scalar �, it obviously works
for each of the components of a vector valued function separately and thus also
includes the vector case. Also note that every Itô process has a representation as
the solution of a SDE of the form

dx D f .x; t / dt C L.x; t / dˇ; (3.17)

and an explicit expression for the differential in terms of the functions f .x; t / and
L.x; t / could be derived by substituting the above equation for dx in the Itô for-
mula.

The Itô formula can be conceptually derived by a Taylor series expansion:

�.xC dx; t C dt / D �.x; t /C @�.x; t /

@t
dt C

X
i

@�.x; t /

@xi
dxi

C 1

2

X
ij

�
@2�

@xi@xj

�
dxj dxj C : : :

(3.18)

that is, for the first order in dt and second order in dx we have

d� D �.xC dx; t C dt / � �.x; t /

� @�.x; t /

@t
dt C

X
i

@�.x; t/

@xi
dxi C 1

2

X
ij

�
@2�

@xi@xj

�
dxi dxj :

(3.19)

In deterministic case we could ignore the second order and higher order terms, be-
cause dx dxT would already be of the order dt2. Thus the deterministic counterpart
is

d� D @�

@t
dt C @�

@x
dx: (3.20)

But in the stochastic case we know that dx dxT is potentially of the order dt , be-
cause dˇ dˇT is of the same order. Thus we need to retain the second order term
also.
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Example 3.1 (Itô differential of ˇ2.t/=2). If we apply the Itô formula to �.x/ D
1
2
x2.t/, with x.t/ D ˇ.t/, where ˇ.t/ is a standard Brownian motion, we get

d� D ˇ dˇ C 1

2
dˇ2

D ˇ dˇ C 1

2
dt;

(3.21)

as expected.

Example 3.2 (Itô differential of sin.! x/). Assume that x.t/ is the solution to the
scalar SDE:

dx D f .x/ dt C dˇ; (3.22)

where ˇ.t/ is a Brownian motion with diffusion constant q and ! > 0. The Itô
differential of sin.! x.t// is then

dŒsin.x/� D ! cos.! x/ dx � 1
2
!2 sin.! x/ dx2

D ! cos.! x/ Œf .x/ dt C dˇ� � 1
2
!2 sin.! x/ Œf .x/ dt C dˇ�2

D ! cos.! x/ Œf .x/ dt C dˇ� � 1
2
!2 sin.! x/ q dt:

(3.23)

3.3 Explicit solutions to linear SDEs

In this section we derive the full solution to a general time-varying linear stochastic
differential equation. The time-varying multidimensional SDE is assumed to have
the form

dx D F.t/x dt C u.t/ dt C L.t/ dˇ (3.24)

where x 2 Rn is the state and ˇ 2 Rs is a Brownian motion.
We can now proceed by defining a transition matrix‰.�; t/ in the same way as

we did in Equation (1.34). Multiplying the above SDE with the integrating factor
‰.t0; t / and rearranging gives

‰.t0; t / dx �‰.t0; t /F.t/x dt D ‰.t0; t /u.t/ dt C‰.t0; t /L.t/ dˇ: (3.25)

Applying the Itô formula gives

dŒ‰.t0; t /x� D �‰.t0; t /F.t/x dt C‰.t0; t / dx: (3.26)

Thus the SDE can be rewritten as

dŒ‰.t0; t /x� D ‰.t0; t /u.t/ dt C‰.t0; t /L.t/ dˇ; (3.27)
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where the differential is an Itô differential. Integration (in Itô sense) from t0 to t
gives

‰.t0; t /x.t/ �‰.t0; t0/x.t0/ D
Z t

t0

‰.t0; �/u.�/ d� C
Z t

t0

‰.t0; �/L.�/ dˇ.�/;

(3.28)
which can be further written in form

x.t/ D ‰.t; t0/x.t0/C
Z t

t0

‰.t; �/u.�/ d� C
Z t

t0

‰.t; �/L.�/ dˇ.�/; (3.29)

which is thus the desired full solution.
In the case of a linear time-invariant SDE

dx D F x dt C L dˇ; (3.30)

where F and L are constant, and ˇ has a constant diffusion matrix Q, the solution
simplifies to

x.t/ D exp .F .t � t0// x.t0/C
Z t

t0

exp .F .t � �// L dˇ.�/: (3.31)

By comparing this to Equation (2.35) in Section 2.3, this solution is exactly what
we would have expected—it is what we would obtain if we formally replaced
w.�/ d� with dˇ.�/ in the deterministic solution. However, it is just because the
usage of Itô formula in Equation (3.26) above happened to result in the same result
as deterministic differentiation would. In the non-linear case we cannot expect to
get the right result with this kind of formal replacement.

Example 3.3 (Solution of the Ornstein–Uhlenbeck process). The complete solu-
tion to the scalar SDE

dx D ��x dt C dˇ; x.0/ D x0; (3.32)

where � > 0 is a given constant and ˇ.t/ is a Brownian motion is

x.t/ D exp.�� t/ x0 C
Z t

0

exp.�� .t � �// dˇ.�/: (3.33)

The solution, called the Ornstein–Uhlenbeck process, is illustrated in Figure 3.2.

3.4 Existence and uniqueness of solutions

A solution to a stochastic differential equation is called strong if for given Brow-
nian motion ˇ.t/, it is possible to construct a solution x.t/, which is unique for
that given Brownian motion. It means that the whole path of the process is unique
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Figure 3.2: Realizations, mean, and 95% quantiles of an Ornstein–Uhlenbeck process.

for a given Brownian motion. Hence strong uniqueness is also called path-wise
uniqueness.

The strong uniqueness of a solution to SDE of the general form

dx D f .x; t/ dt C L.x; t / dˇ; x.t0/ D x0; (3.34)

can be determined using stochastic Picard’s iteration which is a direct extension
of the deterministic Picard’s iteration. Thus we first rewrite the equation in integral
form

x.t/ D x0 C
Z t

t0

f .x.�/; �/ d� C
Z t

t0

L.x.�/; �/ dˇ.�/: (3.35)

Then the solution can be approximated with the following iteration.

Algorithm 3.1 (Stochastic Picard’s iteration). Start from the initial guess '0.t/ D
x0. With the given ˇ, compute approximations '1.t/;'2.t/;'3.t/; : : : via the fol-
lowing recursion:

'nC1.t/ D x0 C
Z t

t0

f .'n.�/; �/ d� C
Z t

t0

L.'n.�/; �/ dˇ.�/: (3.36)

It can be shown that this iteration converges to the exact solution in mean
squared sense if both of the functions f and L grow at most linearly in x, and
they are Lipschitz continuous in the same variable (see, e.g., Øksendal, 2003). If
these conditions are met, then there exists a unique strong solution to the SDE.

A solution is called weak if it is possible to construct some Brownian motion
Q̌.t/ and a stochastic process Qx.t/ such that the pair is a solution to the stochas-

tic differential equation. Weak uniqueness means that the probability law of the
solution is unique, that is, there cannot be two solutions with different finite-
dimensional distributions. An existence of strong solution always implies the ex-
istence of a weak solution (every strong solution is also a weak solution), but the
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converse is not true. Determination if an equation has a unique weak solution when
it does not have a unique strong solution is considerably harder than the criterion
for the strong solution.

3.5 Stratonovich calculus

It is also possible to define a stochastic integral in such a way that the chain
rule from ordinary calculus is valid. The symmetrized stochastic integral or the
Stratonovich integral (Stratonovich, 1968) can be defined as follows:

Z t

t0

L.x.t/; t/ ı dˇ.t/ D lim
n!1

X
k

L.x.t�k /; t
�
k / Œˇ.tkC1/ � ˇ.tk/�; (3.37)

where t�
k
D .tk C tkC1/=2 . The difference is that we do not select the start-

ing point of the interval as the evaluation point, but the middle point. This en-
sures that the calculation rules of ordinary calculus apply. The disadvantage of the
Stratonovich integral over the Itô integral is that the Stratonovich integral is not a
martingale, which makes its theoretical analysis harder.

The Stratonovich stochastic differential equations (Stratonovich, 1968; Øk-
sendal, 2003) are similar to Itô differential equations, but instead of Itô integrals
they involve stochastic integrals in the Stratonovich sense. To distinguish between
Itô and Stratonovich stochastic differential equations, the Stratonovich integral is
denoted by a small circle before the Brownian differential as follows:

dx D f .x; t / dt C L.x; t / ı dˇ: (3.38)

The white noise interpretation of SDEs naturally leads to stochastic differential
equations in Stratonovich sense. This is because, broadly speaking, discrete-time
and smooth approximations of white noise driven differential equations converge to
stochastic differential equations in Stratonovich sense, not in Itô sense. However,
this result of Wong and Zakai (1965) is strictly true only for scalar SDEs and thus
this result should not be extrapolated too far.

A Stratonovich stochastic differential equation can always be converted into
an equivalent Itô equation by using simple transformation formulas (Stratonovich,
1968; Øksendal, 2003). If the dispersion term is independent of the state L.x; t / D
L.t/, then the Itô and Stratonovich interpretations of the stochastic differential
equation are the same.

Algorithm 3.2 (Conversion of Stratonovich SDE into Itô SDE). The following
SDE in Stratonovich sense

dx D f .x; t / dt C L.x; t / ı dˇ; (3.39)

is equivalent to the following SDE in Itô sense

dx D Qf .x; t / dt C L.x; t / dˇ; (3.40)
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where
Qfi .x; t / D fi .x; t /C 1

2

X
j;k

@Lij .x/

@xk
Lkj .x/: (3.41)
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Chapter 4

Probability distributions and
statistics of SDEs

4.1 Fokker–Planck–Kolmogorov equation

In this section we derive the equation for the probability density of an Itô process
x.t/, when the process is defined as the solution to the SDE

dx D f .x; t / dt C L.x; t / dˇ: (4.1)

The corresponding probability density is usually denoted as p.x.t//, but in this
section, to emphasize that the density is actually function of both x and t , we will
occasionally write it as p.x; t /.

Theorem 4.1 (Fokker–Planck–Kolmogorov equation). The probability density p.x; t /
of the solution of the SDE in Equation (4.1) solves the partial differential equation

@p.x; t /

@t
D �

X
i

@

@xi
Œfi .x; t/ p.x; t /�

C 1

2

X
ij

@2

@xi @xj

n
ŒL.x; t /Q LT.x; t /�ij p.x; t /

o
:

(4.2)

This partial differential equation is here called the Fokker–Planck–Kolmogorov
(FPK) equation. In physics literature it is often called the Fokker–Planck equation
and in stochastics it is the forward Kolmogorov equation, hence the name.

Proof. Let �.x/ be an arbitrary twice differentiable function. The Itô differential
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of �.x.t// is, by the Itô formula, given as follows:
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ij
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ij
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@xi@xj

�
ŒL.x; t /Q LT.x; t /�ij dt:

(4.3)

Taking the expectation of both sides with respect to x and formally dividing by dt
gives the following:

d EŒ��
dt
D
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i
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@xi
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X
ij
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ŒL.x; t /Q LT.x; t /�ij
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:

(4.4)

The left hand side can now be written as follows:

dEŒ��
dt

D d
dt

Z
�.x/ p.x; t / dx

D
Z
�.x/

@p.x; t/

@t
dx:

(4.5)

Recall the multidimensional integration by parts formula
Z
C

@u.x/

@xi
v.x/ dx D

Z
@C

u.x/ v.x/ ni dS �
Z
C

u.x/
@v.x/

@xi
dx; (4.6)

where n is the normal of the boundary @C of C and dS is its area element. If
the integration area is whole Rn and functions u.x/ and v.x/ vanish at infinity, as
is the case here, then the boundary term on the right hand side vanishes and the
formula becomes

Z
@u.x/

@xi
v.x/ dx D �

Z
u.x/

@v.x/

@xi
dx: (4.7)

The term inside the summation of the first term on the right hand side of Equa-
tion (4.4) can now be written as

E
�
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@xi
fi .x; t /

�
D
Z
@�

@xi
fi .x; t / p.x; t / dx

D �
Z
�.x/

@

@xi
Œfi .x; t / p.x; t /� dx;

(4.8)
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where we have used the integration by parts formula with u.x/ D �.x/ and v.x/ D
fi .x; t / p.x; t /. For the term inside the summation sign of the second term we get:
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@xi @xj
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ŒL.x; t /Q LT.x; t /�ij p.x; t /

o
dx;

(4.9)

where we have first used the integration by parts formula with u.x/ D @�.x/=@xj ,
v.x/ D ŒL.x; t /Q LT.x; t /�ij p.x; t / and then again with u.x/ D �.x/, v.x/ D
@
@xi
fŒL.x; t /Q LT.x; t /�ij p.x; t /g.
If we substitute Equations (4.5), (4.8), and (4.9) into (4.4), we get:Z
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(4.10)

which can also be written asZ
�.x/

h@p.x; t /
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ij
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i
dx D 0:

(4.11)

The only way that this equation can be true for an arbitrary �.x/ is if the term in
the brackets vanishes, which gives the FPK equation.

Example 4.1 (Diffusion equation). In Example 2.1 we derived the diffusion equa-
tion by considering random Brownian movement occurring during small time in-
tervals. Note that Brownian motion can be defined as a solution to the SDE

dx D dˇ: (4.12)

If we set the diffusion constant of the Brownian motion to be q D 2D, then the
FPK reduces to

@p

@t
D D @2p

@x2
; (4.13)

which is the same result as in Equation (2.7).
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4.2 Operator formulation of the FPK equation

First note that if we define a linear operator A� (operating on some function �) as

A�.�/ D �
X
i

@

@xi
Œfi .x; t/ .�/�

C 1

2

X
ij

@2

@xi @xj
fŒL.x; t /Q LT.x; t /�ij .�/g;

(4.14)

then Fokker–Planck–Kolmomogorov equation can be written compactly as

@p

@t
D A�p: (4.15)

which is just linear differential equation—however, an infinite-dimensional one.
This operator formulation allows us to gain insight on what actually happened

in the FPK derivation in the previous section. Let us now define the L2 inner
product between two functions � and ' as follows:

h�; 'i D
Z
�.x/ '.x/ dx: (4.16)

The expectation of a function �.x.t// can now be written in terms of the inner
product as follows:

EŒ�.x.t//� D h�; pi; (4.17)

where p D p.x; t /. This also means that Equation (4.4), which was derived from
the Itô formula, can be compactly written as

d
dt
h�; pi D hA�; pi; (4.18)

where
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@xi@xj

��
:

(4.19)

Recall that the adjoint of an operator A—with respect to the given inner product—
is defined to be an operator A� such that for all � and ' we have hA�; 'i D
h�;A� 'i. In terms of the adjoint operator we can now write Equation (4.18) as

d
dt
h�; pi D h�;A� pi: (4.20)

As � is independent of time, this can also be written as

h�; @p
@t
i D h�;A� pi: (4.21)
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Because � can be arbitrary, the above can only be true if in fact

@p

@t
D A� p: (4.22)

It now turns out that the adjoint of the operator A in Equation (4.19) is exactly the
operator in Equation (4.14) and hence the above equation is in fact the Fokker–
Planck–Kolmogorov equation. What we did in the previous section is that we used
brute-force integration by parts to derive the adjoint of the operator A. We could
also have used the properties of the adjoints directly as is illustrated in the following
example.

Example 4.2 (Operator adjoint derivation of FKP). Let us consider a one-dimensional
SDE

dx D f .x/ dt C L.x/ dˇ; (4.23)

in which case the operator A takes the form

A D f .x/ @
@x
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2
L2.x/ q

@2

@x2
: (4.24)

Now recall the following L2 adjoint computation rules:

• The operation of multiplication with a function f .x/ is its own adjoint (i.e.,
the operator is self-adjoint).

• The operation of differentiation obeys
�
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��
D � @
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derivative operator is self-adjoint
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@x2 .

• The adjoint of a sum is .A1 C A2/
� D A�1 C A�2 and the product of two

operators is .A1A2/
� D A�2 A�1 .

Thus we get
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(4.25)

where we can thus recover the adjoint operator

A�.�/ D � @
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Œf .x/ .�/�C 1
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q
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@x2

�
L2.x/ .�/� : (4.26)
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4.3 Markov properties and transition densities of SDEs

In this section the aim is to discuss the Markovian property of Itô processes and
the corresponding transition kernels. We denote the history of the Itô process x.t/

up to the time t as
Xt D fx.�/ W 0 � � � tg: (4.27)

More formally, the history of an Itô process should not be defined through its ex-
plicit path, but via the sigma-algebra generated by it (see, e.g., Øksendal, 2003).
The history as function of increasing t is then an object called filtration, which
means an increasing family of sigma-algebras. However, for pedagogical reasons
we simply talk about the history of an Itô process.

The definition of a Markov process is the following:

Definition 4.1 (Markov process). A stochastic process x.t/ is a Markov process if
its future is independent of its past given the present:

p.x.t/ j Xs/ D p.x.t/ j x.s//; for all t � s: (4.28)

It turns out that all Itô processes, that is, solutions to Itô stochastic differential
equations are Markov processes. The proof of this can be found, for example, in
Øksendal (2003, Theorem 7.1.2). This means that the all Itô processes are, in prob-
abilistic sense, completely characterized by the two-parameter family of transition
densities p.x.t/ j x.s//. The transition density is also a solution to the Fokker–
Planck–Kolmogorov equation with a degenerate initial condition concentrated on
x.s/ at time s.

Theorem 4.2 (Transition density of an SDE). The transition density p.x.t/ j x.s//
of the SDE (4.1), where t � s, is the solution to the Fokker–Planck–Kolmogorov
equation (4.2) with the initial condition p.x; s/ D ı.x � x.s//.

Once we know the transition densities of an SDE, we can also use Markov
properties to form an explicit formula for the finite-dimensional distributions of
the SDE.

Remark 4.1 (Finite-dimensional distributions of SDEs). For an arbitrary finite-set
of time indices t0 < t1 < � � � < tn the joint distribution of the values of the process
(i.e., the finite-dimensional distribution) is

p.x.t0/;x.t1/; : : : ;x.tn// D p.x.t0//
nY
iD1

p.x.ti / j x.ti�1//: (4.29)

The above result is extremely important in Bayesian filtering theory (Särkkä,
2013), because it states that a Bayesian filtering problem on an SDE model with
discrete time measurements can always be converted into an equivalent discrete-
time Bayesian filtering problem. We will return to this in the later chapters.
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Remark 4.2 (Chapman–Kolmogorov equation). The Markov property also implies
that the transition densities have the following group property which says that for
any three time instants t1 < t2 < t3 we have the Chapman–Kolmogorov equation

p.x.t3/ j x.t1// D
Z
p.x.t3/ j x.t2// p.x.t2/ j x.t1// dx.t2/: (4.30)

Although in the present formulation the above equation follows from the FPK
equation, it is also possible to derive the FPK equation from it as was done, for
example, in Jazwinski (1970).

4.4 Mean and covariance of SDEs

In Section 4.1 we derived the Fokker–Planck–Kolmogorov (FPK) equation which,
in principle, is the complete probabilistic description of the state. The mean, co-
variance and other moments of the state distribution can be derived from its solu-
tion. However, we are often primarily interested in the mean and covariance of the
distribution and would like to avoid solving the FPK equation as an intermediate
step.

If we take a look at the Equation (4.4) in Section 4.1, we can see that it can be
interpreted as equation for the general moments of the state distribution. This equa-
tion can be generalized to time dependent �.x; t / by including the time derivative:
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(4.31)

If we select the function as �.x; t/ D xu, then the Equation (4.31) reduces to

d EŒxu�
dt

D E Œfu.x; t /� (4.32)

which can be seen as the differential equation for the components of the mean of
the state. If we denote the mean function as m.t/ D EŒx.t/� and select the function
as �.x; t / D xu xv �mu.t/mv.t/, then Equation (4.31) gives

d EŒxu xv �mu.t/mv.t/�
dt

D E Œ.xv �mv.t// fu.x; t/�C E Œ.xu �mu.v// fv.x; t/�
C ŒL.x; t /Q LT.x; t /�uv:

(4.33)

If we denote the covariance as P .t/ D EŒ.x.t/ � m.t// .x.t/ � m.t//T�, then
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Equations (4.32) and (4.33) can be written in the following matrix form:

dm

dt
D E Œf .x; t /� (4.34)

dP

dt
D E

h
f .x; t / .x �m/T

i
C E

h
.x �m/ f T.x; t /

i

C E
h
L.x; t /Q LT.x; t /

i
; (4.35)

which are the differential equations for the mean and covariance of the state. How-
ever, these equations cannot be used in practice as such, because the expectations
should be taken with respect to the actual distribution of the state—which is the
solution to the FPK equation. Only in the Gaussian case the first two moments
actually characterize the solution. Even though we cannot use these equations as
such in the non-linear case, they provide a useful starting point for forming Gaus-
sian approximations to SDEs.

Example 4.3 (Moments of an Ornstein–Uhlenbeck process). Let us again consider
the Ornstein–Uhlenbeck process which we solved in Example 3.3:

dx D ��x dt C dˇ; x.0/ D x0; (4.36)

where � > 0 and ˇ.t/ is a Brownian motion with diffusion constant q. We have
f .x/ D ��x and thus

EŒf .x/� D �� EŒx� D ��m
EŒf .x/ .x �m/� D EŒ��x .x �m/� D �� EŒ.x �m/2� D ��P: (4.37)

The differential equations for the mean and variance are thus given as

dm
dt
D ��m;

dP
dt
D �2�P C q;

(4.38)

with the initial conditions m.0/ D x0, P.0/ D 0. Because the solution of the
Ornstein–Uhlenbeck process is a Gaussian process, these first two moments char-
acterize the whole state distribution which is

p.x; t/ , p.x.t// D N.x.t/ j m.t/; P.t//: (4.39)

4.5 Higher order moments of SDEs

It is also possible to derive differential equations for the higher order moments of
SDEs. However, the required number of equations quickly becomes huge, because
if the state dimension is n, the number of independent third moments is cubic, n3,
in the number of state dimension. The number of fourth order moments is quartic,
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n4, and so on. The general moments equations can be found, for example, in the
book of Socha (2008).

To illustrate the idea, let’s consider the scalar SDE

dx D f .x/ dt C L.x/ dˇ: (4.40)

Recall that the expectation of an arbitrary twice differentiable function �.x/ satis-
fies

d EŒ�.x/�
dt

D E
�
@�.x/

@x
f .x/

�
C q

2
E
�
@2�.x/

@x2
L2.x/

�
: (4.41)

If we apply this to �.x/ D xn, where n � 2, we get

d EŒxn�
dt

D n EŒxn�1 f .x; t/�C q

2
n .n � 1/ EŒxn�2L2.x/�; (4.42)

which, in principle, gives the equations for the third order moments, fourth order
moments and so on. It is also possible to derive similar differential equations for
the central moments, cumulants, or quasi-moments.

However, unless f .x/ and L.x/ are linear (or affine) functions, the equation
for the nth order moment depends on the moments of higher order (greater than
n). Thus in order to actually compute the required expectations, we would need to
integrate an infinite number of moment equations, which is impossible in practice.
This problem can be solved by using moment closure methods which typically
are based on replacing the higher order moments (or cumulants or quasi-moments)
with suitable approximations. For example, it is possible to set the cumulants above
a certain order to zero, or to approximate the moments/cumulants/quasi-moments
with their steady state values (Socha, 2008).

In the scalar case, given a set of moments, cumulants or quasi-moments, it is
possible to form a distribution which has these moments/cumulants/quasi-moments,
for example, as the maximum entropy distribution. Unfortunately, in the multidi-
mensional case the situation is much more complicated.

4.6 Mean, covariance, transition density of linear SDEs

Let’s now consider a linear stochastic differential equation of the general form

dx D F.t/x.t/ dt C u.t/ dt C L.t/ dˇ.t/; (4.43)

where the initial conditions are x.t0/ � N.m0;P0/, F.t/ and L.t/ are matrix
valued functions of time, u.t/ is a vector valued function of time and ˇ.t/ is a
Brownian motion with diffusion matrix Q.

The mean and covariance can be solved from the Equations (4.34) and (4.35),
which in this case reduce to

dm.t/

dt
D F.t/m.t/C u.t/

dP .t/

dt
D F.t/P .t/C P .t/FT.t/C L.t/Q LT.t/

(4.44)
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with the initial conditions m0.t0/ D m0 and P .t0/ D P0. The general solutions to
these differential equations are

m.t/ D ‰.t; t0/m.t0/C
Z t

t0

‰.t; �/u.�/ d� (4.45)

P .t/ D ‰.t; t0/P .t0/‰
T.t; t0/

C
Z t

t0

‰.t; �/L.�/Q LT.�/‰T.t; �/ d�; (4.46)

which could also be obtained by computing the mean and covariance of the explicit
solution in Equation (3.29).

Because the solution is a linear transformation of the Brownian motion, which
is a Gaussian process, the solution is Gaussian

p.x; t / , p.x.t// D N.x.t/ jm.t/;P .t//; (4.47)

which can be verified by checking that this distribution indeed solves the corre-
sponding Fokker–Planck–Kolmogorov equation (4.2). Furthermore, the transition
density can be recovered by formally using the initial condition m.s/ D x.s/,
P .s/ D 0, which gives

p.x.t/ j x.s// D N.x.t/ jm.t j s/;P .t j s//; (4.48)

where

m.t j s/ D ‰.t; s/x.s/C
Z t

s

‰.t; �/u.�/ d�

P .t j s/ D
Z t

s

‰.t; �/L.�/Q LT.�/‰T.t; �/ d�:
(4.49)

It is now useful to note that the above implies that the original linear SDE is
(weakly, in distribution) equivalent to the following discrete-time system:

x.tkC1/ D Ak x.tk/C uk C qk; qk � N .0;†k/ ; (4.50)

where

Ak , ‰.tkC1; tk/; (4.51)

uk ,
Z tkC1

tk

‰.t; �/u.�/ d� (4.52)

†k , †.tkC1; tk/ D
Z tkC1

tk

‰.t; �/L.�/Q LT.�/‰T.t; �/ d�; (4.53)

which is sometimes called the equivalent discretization of the SDEs in Kalman
filtering context (cf. Grewal and Andrews, 2001; Särkkä, 2006, 2013).
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4.7 Linear time-invariant SDEs and matrix fractions

In the case of a linear time-invariant SDE

dx D F x.t/ dt C L dˇ.t/; (4.54)

the mean and covariance are also given by Equations (4.45) and (4.46), which now
take the form

dm.t/

dt
D F m.t/

dP .t/

dt
D F P .t/C P .t/FT C L Q LT:

(4.55)

Thus the only differences are that the matrices F and L are constant, and there
is no input. In this LTI SDE case the transition matrix is the matrix exponential
function ‰.t; �/ D exp.F .t � �// and the solutions to the differential equations
can be obtained by simple substitution of these special cases to Equations (4.45)
and (4.46). The transition density can be obtained in an analogous manner.

Fortunately, the corresponding equivalent discrete system now takes a particu-
larly simple form

x.tkC1/ D Ak x.tk/C qk; qk � N.0;†k/; (4.56)

where �tk D tkC1 � tk and

Ak , A.�tk/ D exp.F �tk/ (4.57)

†k , †.�tk/ D
Z �tk

0

exp.F .�tk � �//L Q LT exp.F .�tk � �//T d�:

(4.58)

These equations can often be found in tracking literature (Bar-Shalom et al., 2001;
Grewal and Andrews, 2001; Särkkä, 2006, 2013), because they are extremely use-
ful in converting continuous-discrete Kalman filtering problems into equivalent
discrete-time Kalman filtering problems. A typical example of a model in that
context is the following.

Example 4.4 (Discretized Wiener velocity model). The Wiener velocity model
(see, e.g., Bar-Shalom et al., 2001; Särkkä, 2006) is a typical model found in tar-
get tracking, where the velocity (the first derivative of the process) is modeled as
a Wiener process, that is, as a Brownian motion. In white noise interpretation this
means that the acceleration (i.e., the second derivative) is a white noise process
with spectral density q:

d2x.t/
dt2

D w.t/: (4.59)
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In more rigorous Itô SDE form this model can be written as�
dx1
dx2

�
D
�
0 1

0 0
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�
x1
x2

�
dt C

�
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1
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L

dˇ.t/; (4.60)

where ˇ.t/ is a Brownian motion with diffusion coefficient q, x1.t/ , x.t/ is the
actual process, and x2.t/ is its derivative.

Now the matrices of the equivalent discrete-time model are given as follows
(notice that F is a nilpotent matrix such that Fn D 0 for n > 1):

A.�t/ D exp .F �t/ D I C F �C 1

2Š
F2�t2 C � � �„ ƒ‚ …
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0 1
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3
�t3 1

2
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1
2
�t2 �t

�
q:

(4.61)

Example 4.5 (Discretization of the car model). A 2d-dimensional version of the
above Wiener velocity model was already presented in Example 2.5 for the purpose
of modeling the movement of a car. The same model was also used in a Kalman
filtering and smoothing context, for example, in Särkkä (2013). The corresponding
discrete-time model matrices now become:
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2

2
0

0
qc

2 �t
3

3
0

qc
2 �t

2

2
qc

1 �t
2

2
0 qc1 �t 0

0
qc

2 �t
2

2
0 qc2 �t

1
CCCCA :

A convenient numerical method for solving the covariance P .t/ from Equa-
tions (4.55) is by using matrix fractions (see, e.g., Stengel, 1994; Grewal and
Andrews, 2001; Särkkä, 2006). If we define matrices C.t/ and D.t/ such that
P .t/ D C.t/D�1.t/, it is easy to show that P solves the matrix Lyapunov differ-
ential equation

dP .t/

dt
D F P .t/C P .t/FT C L Q LT; (4.62)

if the matrices C.t/ and D.t/ solve the differential equation�
dC.t/= dt
dD.t/= dt

�
D
�

F L Q LT

0 �FT

��
C.t/

D.t/

�
; (4.63)

and P .t0/ D C.t0/D.t0/
�1. We can select, for example,

C.t0/ D P .t0/ (4.64)

D.t0/ D I: (4.65)
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Because the differential equation (4.63) is linear and time-invariant, it can be solved
using the matrix exponential function:

�
C.t/

D.t/

�
D exp

��
F L Q LT

0 �FT

�
t

��
C.t0/

D.t0/

�
: (4.66)

The final solution is then given as P .t/ D C.t/D�1.t/. This is useful, because
now both the mean and covariance can be solved via simple matrix exponential
function computation, which allows for easy numerical treatment.

In practical Kalman filter we are often interested in forming the matrices A.�t/

and †.�t/ in Equations (4.57) and (4.58) by numerical means. This is because
these numerical matrices can then be directly used in a discrete-time Kalman filter
to infer the state of the SDE at a discrete set of time instants (see, e.g., Särkkä,
2013). The numerical computation of A.�t/ is easy, because it is just a matrix ex-
ponential for which good numerical computation methods are available. However,
the integral expression for †.�t/ is more problematic in numerical point of view.

It turns out that the matrix fractions can also be used reduce the computation
of the matrix †.�t/ into a simple matrix exponential (Särkkä, 2006). The trick is
that the matrix is also the solution to the differential equation

d†.t/
dt
D F †.t/C†.t/FT C L Q LT; †.0/ D 0: (4.67)

Thus we can now use the matrix fractions to solve †.�t/ D CW .�t/D�1W .�t/,
where �

CW .�t/

DW .�t/

�
D exp

��
F L Q LT

0 �FT

�
�t

��
0
I

�
: (4.68)

Example 4.6 (Discretization of spring model). Recall that the spring model in
Example 2.8, which in proper SDE interpretation has the form

�
dx1.t/
dx2.t/

�

„ ƒ‚ …
dx.t/

D
�
0 1

��2 �
�

„ ƒ‚ …
F

�
x1.t/

x2.t/

�

„ ƒ‚ …
x

dt C
�
0

1

�

„ƒ‚…
L

dˇ.t/: (4.69)

If we now wish to discretize this model, we encounter the problem that already the
matrix exponential for A.�t/ is fairly complicated and we cannot hope to com-
pute the integral for †.�t/ in Equation (4.61) in closed form. Hence, numerical
integration would be needed which can be cumbersome. However, for given values
of the parameters, we can numerically use the matrix fraction decomposition and
do the discretization with the following simple Matlab code snippet:

1 nu = 1;
ga = 1/10;
dt = 1/2;

5 F = [0 1; -nu^2 -ga];
L = [0; 1];
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Q = 1;
dim = size(F,1);

10 M = [F L*Q*L'; zeros(dim) -F'];
A = expm(F*dt)
CD = expm(M*dt)*[zeros(dim); eye(dim)];
S = CD(1:dim,:) / CD(dim+1:end,:)

which outputs the matrices:

1 A =

0.8796 0.4676
-0.4676 0.8328

5

S =

0.0382 0.1093
0.1093 0.4386

This same functionality has also been implemented in the function lti_disc.m in
the EKF/UKF Toolbox (http://becs.aalto.fi/en/research/bayes/ekfukf/ ).

Remark 4.3 (LTI SDE with constant input). Note the that by the first glance the
above method does not seem to directly work for discretization of LTI SDEs with a
constant input u:

dx D F x.t/ dt C u dt C L dˇ.t/; (4.70)

but it turns out that it actually does. This is because we can rewrite the equation as

dx D F x dt C u dt C L dˇ.t/

du D 0:
(4.71)

The discretization can now be done to the joint state space .x;u/, which then gives
one additional coefficient B.�t/ for the discretization:

x.tkC1/ D A.�tk/x.tk/C B.�tk/uC qk : (4.72)

If the input is some time-dependent u.t/, we can also directly use this result to
form a zeroth-order-hold (ZOH) approximation to the input contribution. How-
ever, by more complicated augmentation tricks, we can also construct higher order
approximations with respect to the input.

http://becs.aalto.fi/en/research/bayes/ekfukf/


Chapter 5

Linearization and Itô–Taylor
series of SDEs

5.1 Gaussian approximations

In the previous chapter we saw that the differential equations for the mean and
covariance of the solution to the SDE

dx D f .x; t / dt C L.x; t / dˇ; x.0/ � p.x.0//; (5.1)

are

dm

dt
D E Œf .x; t /� ; (5.2)

dP

dt
D E

h
f .x; t / .x �m/T

i
C E

h
.x �m/ f T.x; t /

i

C E
h
L.x; t /Q LT.x; t /

i
: (5.3)

If we write down the expectation integrals explicitly, these equations can be seen
to have the form

dm

dt
D
Z

f .x; t / p.x; t / dx; (5.4)

dP

dt
D
Z

f .x; t / .x �m/T p.x; t / dx

C
Z
.x �m/ f T.x; t / p.x; t / dx

C
Z

L.x; t /Q LT.x; t / p.x; t / dx: (5.5)

Because p.x; t / is the solution of the Fokker–Planck–Kolmogorov equation (4.2),
these equations cannot be solved in practice. However, one very useful class of
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approximations can be obtained by replacing the FPK solution with a Gaussian
approximation as follows:

p.x; t / � N.x j m.t/;P .t//; (5.6)

where m.t/ and P .t/ are the mean and covariance of the state, respectively. This
approximation is referred to as the Gaussian assumed density approximation (Kush-
ner, 1967), because we do the computations under the assumption that the state
distribution is indeed Gaussian. It is also called Gaussian process approximation
(Archambeau and Opper, 2011). The approximation method can be written as the
following algorithm.

Algorithm 5.1 (Gaussian process approximation I). A Gaussian process approx-
imation to the SDE (5.1) can be obtained by integrating the following differential
equations from the initial conditions m.0/ D EŒx.0/� and P .0/ D CovŒx.0/� to
the target time t :

dm

dt
D
Z

f .x; t / N.x j m;P / dx;

dP

dt
D
Z

f .x; t / .x �m/T N.x j m;P / dx

C
Z
.x �m/ f T.x; t / N.x j m;P / dx

C
Z

L.x; t /Q LT.x; t / N.x j m;P / dx;

(5.7)

or if we denote the Gaussian expectation as

ENŒg.x/� D
Z

g.x/ N.x j m;P / dx; (5.8)

the equations can be written as

dm

dt
D ENŒf .x; t /�;

dP

dt
D ENŒ.x �m/ f T.x; t /�C ENŒf .x; t / .x �m/T�

C ENŒL.x; t /Q LT.x; t /�;

(5.9)

If the function x 7! f .x; t / is differentiable, the covariance differential equa-
tion can be simplified by using the following well known property of Gaussian
random variables:

Theorem 5.1. Let f .x; t / be differentiable with respect to x and let x � N.m;P /.
Then the following identity holds (see, e.g., Papoulis, 1984; Särkkä and Sarmavuori,
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2013):
Z

f .x; t / .x �m/T N.x j m;P / dx D
�Z

Fx.x; t / N.x j m;P / dx

�
P ; (5.10)

where Fx.x; t / is the Jacobian matrix of f .x; t / with respect to x.

Using the theorem, the mean and covariance Equations (5.9) can be equiva-
lently written as follows.

Algorithm 5.2 (Gaussian process approximation II). A Gaussian process approx-
imation to the SDE (5.1) can be obtained by integrating the following differential
equations from the initial conditions m.0/ D EŒx.0/� and P .0/ D CovŒx.0/� to
the target time t :

dm

dt
D ENŒf .x; t /�;

dP

dt
D P ENŒFx.x; t /�

T C ENŒFx.x; t /�P C ENŒL.x; t /Q LT.x; t /�;

(5.11)

where ENŒ�� denotes the expectation with respect to x � N.m;P /.

The approximations presented in this section are formally equivalent to so
called statistical linearization approximations (Gelb, 1974; Socha, 2008) and they
are also closely related to the variational approximations of Archambeau and Op-
per (2011).

5.2 Linearization and sigma-point approximations

In the previous section we presented how to form Gaussian approximations of
SDEs. However, to implement the method one is required to compute the fol-
lowing kind of n-dimensional Gaussian integrals:

ENŒg.x; t /� D
Z

g.x; t / N.x j m;P / dx: (5.12)

A classical approach which is very common in filtering theory (Jazwinski, 1970;
Maybeck, 1982) is to linearize the drift f .x; t / around the mean m as follows:

f .x; t / � f .m; t /C Fx.m; t / .x �m/; (5.13)

and to approximate the expectation of the diffusion part as

L.x; t / � L.m; t /: (5.14)

This leads to the following approximation, which is commonly used in extended
Kalman filters (EKF).
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Algorithm 5.3 (Linearization approximation of SDE). A linearization based ap-
proximation to the SDE (5.1) can be obtained by integrating the following differen-
tial equations from the initial conditions m.0/ D EŒx.0/� and P .0/ D CovŒx.0/�
to the target time t :

dm

dt
D f .m; t /;

dP

dt
D P FT

x .m; t /C Fx.m; t /P C L.m; t /Q LT.m; t /:

(5.15)

Another general class of approximations are the Gauss–Hermite cubature type
of approximations where we approximate the integrals as weighted sums:

Z
f .x; t / N.x j m;P / dx �

X
i

W .i/ f .x.i/; t /; (5.16)

where x.i/ and W .i/ are the sigma points (abscissas) and their accompanying
weights, which have been selected using a method specific deterministic rule. This
kind of rules are commonly used in the context of filtering theory (cf. Särkkä and
Sarmavuori, 2013). In multidimensional Gauss–Hermite integration, the unscented
transform, and cubature integration, the sigma points are selected as follows:

x.i/ D mC
p

P �i ; (5.17)

where the matrix square root is defined by P D pP
p

P
T

(typically Cholesky
factorization), and the points �i and the weights W .i/ are selected as follows:

The Gauss–Hermite integration method (the product rule based method) uses a
set ofmn vectors �i , which have been formed as a Cartesian product of zeros
of the Hermite polynomials of order m. The weights W .i/ are formed as
products of the corresponding one-dimensional Gauss–Hermite integration
weights (see, Ito and Xiong, 2000; Wu et al., 2006, for details).

The Unscented transform uses a zero vector (origin) and 2n unit coordinate vec-
tors ei as follows (the method can also be generalized a bit):

�0 D 0;

�i D
� p

�C n ei ; i D 1; : : : ; n;
�p�C n ei�n; i D nC 1; : : : ; 2n;

(5.18)

and the weights are defined as follows:

W .0/ D �

nC � ;

W .i/ D 1

2.nC �/ ; i D 1; : : : ; 2n;
(5.19)

where � is a parameter of the method.
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The Cubature method (spherical 3rd degree) uses only 2n vectors as follows:

�i D
� p

n ei ; i D 1; : : : ; n;
�pn ei�n; i D nC 1; : : : ; 2n; (5.20)

and the weights are defined as W .i/ D 1=.2n/, for i D 1; 2; : : : ; 2n.

The sigma point methods above lead to the following approximations to the pre-
diction differential equations.

Algorithm 5.4 (Sigma-point approximation of SDEs). A sigma-point based ap-
proximation to the SDE (5.1) can be obtained by integrating the following differen-
tial equations from the initial conditions m.0/ D EŒx.0/� and P .0/ D CovŒx.0/�
to the target time t :

dm

dt
D
X
i

W .i/ f .mC
p

P �i ; t /;

dP

dt
D
X
i

W .i/ f .mC
p

P �i ; t / �
T
i

p
P

T

C
X
i

W .i/
p

P �i f T.mC
p

P �i ; t /

C
X
i

W .i/L.mC
p

P �i ; t /Q LT.mC
p

P �i ; t /:

(5.21)

Once the Gaussian integral approximation has been selected, the solutions to
the resulting ordinary differential equations can be computed, for example, by
the fourth order Runge–Kutta method or some similar numerical ODE solution
method. It would also be possible to approximate the integrals using various other
methods from filtering theory (see, e.g., Jazwinski, 1970; Wu et al., 2006; Särkkä
and Sarmavuori, 2013).

Example 5.1. Consider the non-linear Itô stochastic differential equation model

dx D �
�
1

10

�2
sin.x/ cos3.x/ dt C 1

10
cos2.x/ dˇ; x.0/ D x0: (5.22)

This model has the solution x.t/ D arctan.1=10 ˇ.t/ C tan.x0// which we will
use as ground truth, where ˇ.t/ is a standard Brownian motion. In this example,
let x0 D 1. The goal is to characterize the solution at t D 10 using a Gaussian
approximation Qx.t/ � N.m.t/; P.t// of the exact solution.

From the model we have the drift f .x/ D � .1=10/2 sin.x/ cos3.x/ and dif-
fusion L.x/ D 1=10 cos2.x/. We use a the Cubature integration sigma-point
scheme, which gives us the following two-dimensional ordinary differential equa-
tion model for the mean and covariance: Pz.t/ D .dm.t/=dt ; dP.t/=dt /. Apply-
ing the Cubature formula (� D ˙1;W .i/ D 1=2 ; i D 1; 2) gives the following
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0 0:2 0:4 0:6 0:8 1 1:2

x.10/

Exact
Gaussian fit
Approximate Gaussian solution

Figure 5.1: An example of a sigma-point based Gaussian approximation to a non-linear
SDE. The exact solution at t D 10 is shown by the patch, and the dashed line illustrates
the Gaussian fit to it. The approximation is shown in solid black.

integrand:

Pz1 D 1

2
f .z1 �

p
z2/C 1

2
f .z1 C

p
z2/; (5.23)

Pz2 D
p
z2 f .z1 �

p
z2/ �

p
z2 f .z1 C

p
z2/

C 1

2

�
L.z1 �

p
z2/
�2 C 1

2

�
L.z1 C

p
z2/
�2
; (5.24)

where z.0/ D .x0; 0/. We use the fourth order Runge–Kutta scheme for solving
z.10/ with a step size of �t D 2�6. Figure 5.1 illustrates the exact solution of
x.10/ by a shaded patch, and shows the Gaussian fit to it by a dashed line. The
ODE-based approximative solution Qx.10/ D N.m.10/; P.10// is shown in solid
black, and it coincides well with the Gaussian fit.

5.3 Taylor series of ODEs

One way to find approximate solutions of deterministic ordinary differential equa-
tions (ODEs) is by using Taylor series expansions (in time direction). Even though
this method as a practical ODE numerical approximation method is quite much
superseded by Runge–Kutta type of derivative-free methods, it still is an important
theoretical tool for finding and analyzing numerical schemes (e.g., the theory of
Runge–Kutta methods is based on Taylor series). In the case of SDEs, the cor-
responding Itô–Taylor series solutions provide a useful basis for numerical meth-
ods for SDEs. However, we cannot simply apply the same ODE-based numerical
schemes to SDEs. This is because of the inconvenient fact that in the stochastic
case, Runge–Kutta methods are not as easy to use as in the case of ODEs.
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In this section, we derive the Taylor series based solutions of ODEs in detail,
because the derivation of the Itô–Taylor series can be done in an analogous way.
As the idea is the same, by first going through the deterministic case it is easy to
see the essential things behind the technical details also in the SDE case.

Let’s start by considering the following differential equation:

dx.t/

dt
D f .x.t/; t/; x.t0/ D given; (5.25)

which can be integrated to give

x.t/ D x.t0/C
Z t

t0

f .x.�/; �/ d�: (5.26)

If the function f is differentiable, we can also write t 7! f .x.t/; t/ as the solution
to the differential equation

df .x.t/; t/

dt
D @

@t
f .x.t/; t/C

X
i

fi .x.t/; t/
@

@xi
f .x.t/; t/; (5.27)

where f .x.t0/; t0/ is the given initial condition. The integral form of this is

f .x.t/; t/ D f .x.t0/; t0/C
Z t

t0

"
@

@t
f .x.�/; �/C

X
i

fi .x.�/; �/
@

@xi
f .x.�/; �/

#
d�:

(5.28)
At this point it is convenient to define the linear operator

L.�/ D @

@t
.�/C

X
i

fi
@

@xi
.�/; (5.29)

and rewrite the integral equation as

f .x.t/; t/ D f .x.t0/; t0/C
Z t

t0

L f .x.�/; �/ d�: (5.30)

Substituting this into Equation (5.26) gives

x.t/ D x.t0/C
Z t

t0

Œf .x.t0/; t0/C
Z �

t0

L f .x.�/; �/ d�� d�

D x.t0/C f .x.t0/; t0/ .t � t0/C
Z t

t0

Z �

t0

L f .x.�/; �/ d� d�:
(5.31)

The term in the integrand on the right can again be defined as solution to the dif-
ferential equation

dŒL f .x.t/; t/�

dt
D @ŒL f .x.t/; t/�

@t
C
X
i

fi .x.t/; t/
@ŒL f .x.t/; t/�

@xi

D L2 f .x.t/; t/:

(5.32)
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which in integral form is

L f .x.t/; t/ D L f .x.t0/; t0/C
Z t

t0

L2 f .x.�/; �/ d�: (5.33)

Substituting into the equation of x.t/ then gives

x.t/ D x.t0/C f .x.t0/; t/ .t � t0/

C
Z t

t0

Z �

t0

ŒL f .x.t0/; t0/C
Z �

t0

L2 f .x.�/; �/ d�� d� d�

D x.t0/C f .x.t0/; t0/ .t � t0/C 1

2
L f .x.t0/; t0/ .t � t0/2

C
Z t

t0

Z �

t0

Z �

t0

L2 f .x.�/; �/ d� d� d�:

(5.34)

If we continue this procedure ad infinitum, we obtain the following Taylor series
expansion for the solution of the ODE:

x.t/ D x.t0/C f .x.t0/; t0/ .t � t0/C 1

2Š
L f .x.t0/; t0/ .t � t0/2

C 1

3Š
L2 f .x.t0/; t0/ .t � t0/3 C : : :

(5.35)

From the above derivation we also get the result that if we truncate the series at the
nth term, the residual error is

rn.t/ D
Z t

t0

� � �
Z �

t0

Ln f .x.�/; �/ d�nC1; (5.36)

which could be further simplified via integration by parts and using the mean value
theorem. To derive the series expansion for an arbitrary function x.t/, we can
define it as solution to the trivial differential equation

dx

dt
D f .t/; x.t0/ D given; (5.37)

where f .t/ D dx.t/=dt . Because f is independent of x, we have

Lnf D dnC1x.t/
dtnC1

: (5.38)

Thus the corresponding series becomes the classical Taylor series:

x.t/ D x.t0/C dx

dt
.t0/ .t � t0/C 1

2Š

d2x
dt2

.t0/ .t � t0/2

C 1

3Š

d3x
dt3

.t0/ .t � t0/3 C : : :
(5.39)
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5.4 Itô–Taylor series based strong approximations of SDEs

Itô–Taylor series (see Kloeden et al., 1994; Kloeden and Platen, 1999) is an exten-
sion of the Taylor series of ODEs to SDEs. The derivation is identical to the Taylor
series solution in the previous section except that we replace the time derivative
computations with application of the Itô formula.

Let’s consider the following SDE

dx D f .x.t/; t/ dt C L.x.t/; t/ dˇ; x.t0/ � p.x.t0//: (5.40)

In integral form this equation can be expressed as

x.t/ D x.t0/C
Z t

t0

f .x.�/; �/ d� C
Z t

t0

L.x.�/; �/ dˇ.�/: (5.41)

Applying the Itô formula to terms f .x.t/; t/ and L.x.t/; t/ gives the following for
the drift

df .x.t/; t/ D @f .x.t/; t/

@t
dt C

X
u

@f .x.t/; t/

@xu
fu.x.t/; t/ dt

C
X
u

@f .x.t/; t/

@xu
ŒL.x.t/; t/ dˇ.�/�u

C 1

2

X
uv

@2f .x.t/; t/

@xu @xv
ŒL.x.t/; t/Q LT.x.t/; t/�uv dt;

(5.42)

and the following for the diffusion

dL.x.t/; t/ D @L.x.t/; t/

@t
dt C

X
u

@L.x.t/; t/

@xu
fu.x.t/; t/ dt

C
X
u

@L.x.t/; t/

@xu
ŒL.x.t/; t/ dˇ.�/�u

C 1

2

X
uv

@2L.x.t/; t/

@xu @xv
ŒL.x.t/; t/Q LT.x.t/; t/�uv dt:

(5.43)

In integral form these can be written as

f .x.t/; t/ D f .x.t0/; t0/C
Z t

t0

@f .x.�/; �/

@t
d�

C
Z t

t0

X
u

@f .x.�/; �/

@xu
fu.x.�/; �/ d�

C
Z t

t0

X
u

@f .x.�/; �/

@xu
ŒL.x.�/; �/ dˇ.�/�u

C
Z t

t0

1

2

X
uv

@2f .x.�/; �/

@xu @xv
ŒL.x.�/; �/Q LT.x.�/; �/�uv d�;

(5.44)
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and

L.x.t/; t/ D L.x.t0/; t0/C
Z t

t0

@L.x.�/; �/

@t
d�

C
Z t

t0

X
u

@L.x.�/; �/

@xu
fu.x.�/; �/ d�

C
Z t

t0

X
u

@L.x.�/; �/

@xu
ŒL.x.�/; �/ dˇ.�/�u

C
Z t

t0

1

2

X
uv

@2L.x.�/; �/

@xu @xv
ŒL.x.�/; �/Q LT.x.�/; �/�uv d�:

(5.45)

If we define the following two operators

Lt .�/ D @.�/
@t
C
X
u

@.�/
@xu

fu C 1

2

X
uv

@2.�/
@xu @xv

ŒL Q LT�uv

Lˇ;v .�/ D
X
u

@.�/
@xu

Luv; for v D 1; : : : ; n;
(5.46)

then we can conveniently write

f .x.t/; t/ D f .x.t0/; t0/C
Z t

t0

Lt f .x.�/; �/ d�

C
X
v

Z t

t0

Lˇ;vf .x.�/; �/ dˇv.�/;

L.x.t/; t/ D L.x.t0/; t0/C
Z t

t0

LtL.x.�/; �/ d�

C
X
v

Z t

t0

Lˇ;vL.x.�/; �/ dˇv.�/:

(5.47)

If we now substitute these into the expression of x.t/ in Equation (6.22), we get

x.t/ D x.t0/C f .x.t0/; t0/ .t � t0/C L.x.t0/; t0/ .ˇ.t/ � ˇ.t0//

C
Z t

t0

Z �

t0

Lt f .x.�/; �/ d� d� C
X
v

Z t

t0

Z �

t0

Lˇ;vf .x.�/; �/ dˇv.�/ d�

C
Z t

t0

Z �

t0

LtL.x.�/; �/ d� dˇ.�/

C
X
v

Z t

t0

Z �

t0

Lˇ;vL.x.�/; �/ dˇv.�/ dˇ.�/:

(5.48)

This can be seen to have the form

x.t/ D x.t0/C f .x.t0/; t0/ .t � t0/C L.x.t0/; t0/ .ˇ.t/ � ˇ.t0//C r.t/;

(5.49)
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where the remainder r.t/ consists of higher order multiple stochastic integrals in-
volving the function itself, the drift and diffusion, and their derivatives such that

r.t/ D
Z t

t0

Z �

t0

Lt f .x.�/; �/ d� d� C
X
v

Z t

t0

Z �

t0

Lˇ;vf .x.t/; t/ dˇv.�/ d�

C
Z t

t0

Z �

t0

LtL.x.�/; �/ d� dˇ.�/

C
X
v

Z t

t0

Z �

t0

Lˇ;vL.x.�/; �/ dˇv.�/ dˇ.�/: (5.50)

We can now form a first order approximation to the solution by discarding the
remainder term:

x.t/ � x.t0/C f .x.t0/; t0/ .t � t0/C L.x.t0/; t0/ .ˇ.t/ � ˇ.t0//: (5.51)

This leads to the Euler–Maruyama method already discussed in Section 2.4.

Algorithm 5.5 (Euler–Maruyama method). Draw Ox0 � p.x0/ and divide time
Œ0; t � interval into K steps of length �t . At each step k do the following:

1. Draw random variable �ˇk from the distribution (where tk D k �t)

�ˇk � N.0;Q�t/: (5.52)

2. Compute

Ox.tkC1/ D Ox.tk/C f .Ox.tk/; tk/�t C L.Ox.tk/; tk/�ˇk : (5.53)

The strong order of convergence of a stochastic numerical integration method
can be roughly defined to be the smallest exponent  such that if we numerically
solve an SDE using n D 1=�t steps of length �, then there exists a constant K
such that

E Œjx.tn/ � Ox.tn/j� � K�t : (5.54)

For stochastic methods, there also exist a second type of convergence, namely weak
order of convergence. This will be discussed in more detail in the next section.

It can be shown (Kloeden and Platen, 1999) that in the case of the Euler–
Maruyama method above (under assumptions of sufficient regularity), the strong
order of convergence is  D 1=2. However, as will be shown later on, it has the
weak order of convergence ˛ D 1. The reason why the strong order of conver-
gence is just 1=2 is that the term with dˇv.�/ dˇ.�/ in the residual, when inte-
grated, leaves us with a term with dˇ.�/ which is only of order dt1=2. Thus we can
increase the strong order to one by expanding that term.



64 Linearization and Itô–Taylor series of SDEs

We can now do the same kind of expansion for the term Lˇ;vL.x.�/; �/ as we
did in Equation (5.47), which leads to

Lˇ;vL.x.t/; t/ D Lˇ;vL.x.t0/; t0/C
Z t

t0

LtLˇ;vL.x.t/; t/ dt

C
X
v

Z t

t0

L2
ˇ;vL.x.t/; t/ dˇv.�/:

(5.55)

Substituting this into the Equation (5.48) gives

x.t/ D x.t0/C f .x.t0/; t0/ .t � t0/C L.x.t0/; t0/ .ˇ.t/ � ˇ.t0//

C
X
v

Lˇ;vL.x.t0/; t0/

Z t

t0

Z �

t0

dˇv.�/ dˇ.�/C remainder:
(5.56)

Now the important thing is to notice the iterated Itô integral appearing in the equa-
tion: Z t

t0

Z �

t0

dˇv.�/ dˇ.�/: (5.57)

Computation of this kind of integrals and more general iterated Itô integrals turns
out to be quite non-trivial. However, assuming that we can indeed compute the in-
tegral, as well as draw the corresponding Brownian increment (recall that the terms
are not independent), then we can form the following scheme known as Milstein’s
method.

Algorithm 5.6 (Milstein’s method). Draw Ox0 � p.x0/ and divide the time interval
Œ0; t � into K steps of length �t . At each step k do the following:

1. Jointly draw a Brownian motion increment and the iterated Itô integral of it:

�ˇk D ˇ.tkC1/ � ˇ.tk/

��v;k D
Z tkC1

tk

Z �

tk

dˇv.�/ dˇ.�/:
(5.58)

2. Compute

Ox.tkC1/ D Ox.tk/C f .Ox.tk/; tk/�t C L.Ox.tk/; tk/�ˇk

C
X
v

"X
u

@L

@xu
.Ox.tk/; tk/Luv.Ox.tk/; tk/

#
��v;k :

(5.59)

The strong and weak orders of the above method are both one ( D ˛ D 1).
However, the difficulty is that drawing the iterated stochastic integral jointly with
the Brownian motion is hard (cf. Kloeden and Platen, 1999). But if the noise is
additive, that is, L.x; t / D L.t/ then Milstein’s algorithm reduces to the Euler–
Maruyama method. Thus in the additive noise case the strong order of Euler–
Maruyama is  D 1 as well.
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In the scalar case we can compute the iterated stochastic integral:
Z t

t0

Z �

t0

dˇ.�/ dˇ.�/ D 1

2

�
.ˇ.t/ � ˇ.t0//2 � q .t � t0/

�
: (5.60)

Thus in the scalar case we can write down the Milstein’s method explicitly as
follows.

Algorithm 5.7 (Scalar Milstein’s method). Draw Ox0 � p.x0/ and divide the time
interval Œ0; t � into K steps of length �t . At each step k do the following:

1. Draw random variable �ˇk from the distribution (where tk D k �t)

�ˇk � N.0; q �t/: (5.61)

2. Compute

Ox.tkC1/ D Ox.tk/C f . Ox.tk/; tk/�t C L. Ox.tk/; tk/�ˇk
C 1

2

@L. Ox.tk/; tk/
@x

L. Ox.tk/; tk/ .�ˇ2k � q �t/:
(5.62)

We could now form even higher order Itô–Taylor series expansions by includ-
ing more terms into the series. However, if we try to derive higher order methods
than Milstein’s method, we encounter higher order iterated Itô integrals which will
turn out to be very difficult to compute. Fortunately, the additive noise case is much
easier and often useful as well.

Let’s now consider the case that L is in fact constant, which implies that
LtL D Lˇ;vL D 0. Let’s also assume that Q is constant. In that case Equa-
tion (5.48) gives

x.t/ D x.t0/C f .x.t0/; t0/ .t � t0/C L.x.t0/; t0/ .ˇ.t/ � ˇ.t0//

C
Z t

t0

Z �

t0

Lt f .x.�/; �/ d� d� C
X
v

Z t

t0

Z �

t0

Lˇ;vf .x.t/; t/ dˇv d�:
(5.63)

As the identities in Equation (5.47) are completely general, we can also apply them
to Lt f .x.t/; t/ and Lˇ;vf .x.t/; t/ which gives

Lt f .x.t/; t/ D Lt f .x.t0/; t0/C
Z t

t0

L2
t f .x.t/; t/ dt

C
X
v

Z t

t0

Lˇ;vLt f .x.t/; t/ dˇv;

Lˇ;vf .x.t/; t/ D Lˇ;vf .x.t0/; t0/C
Z t

t0

LtLˇ;vf .x.t/; t/ dt

C
X
v

Z t

t0

L2
ˇ;vf .x.t/; t/ dˇv:

(5.64)



66 Linearization and Itô–Taylor series of SDEs

By substituting these identities into Equation (5.63) gives

x.t/ D x.t0/C f .x.t0/; t0/ .t � t0/C L.x.t0/; t0/ .ˇ.t/ � ˇ.t0//

CLt f .x.t0/; t0/
.t � t0/2

2

C
X
v

Lˇ;vf .x.t0/; t0/

Z t

t0

Œˇv.�/ � ˇv.t0/� d� C remainder:

(5.65)

Thus the resulting approximation is

x.t/ � x.t0/C f .x.t0/; t0/ .t � t0/C L.x.t0/; t0/ .ˇ.t/ � ˇ.t0//

CLt f .x.t0/; t0/
.t � t0/2

2
C
X
v

Lˇ;vf .x.t0/; t0/

Z t

t0

Œˇv.�/ � ˇv.t0/� d�:

(5.66)

Note that the term ˇ.t/�ˇ.t0/ and the integral
R t
t0
Œˇv.�/� ˇv.t0/� d� really refer

to the same Brownian motion and thus the terms are correlated. Fortunately in this
case both the terms are Gaussian and it is easy to compute their joint distribution: R t

t0
Œˇ.�/ � ˇ.t0/
ˇ.t/ � ˇ.t0/

!
� N

��
0
0

�
;

�
Q .t � t0/3=3 Q .t � t0/2=2
Q .t � t0/2=2 Q .t � t0/

��
(5.67)

By neglecting the remainder term, we get a strong order 1.5 Itô–Taylor expansion
method, which has also been recently studied in the context of filtering theory
(Arasaratnam et al., 2010; Särkkä and Solin, 2012).

Algorithm 5.8 (Strong order 1.5 Itô–Taylor method for constant diffusion). When
L and Q are constant, we get the following algorithm. Draw Ox0 � p.x0/ and
divide time interval Œ0; t � intoK steps of length�t . At each step k do the following:

1. Draw random variables ��k and �ˇk from the joint distribution�
��k
�ˇk

�
� N

��
0
0

�
;

�
Q�t3=3 Q�t2=2

Q�t2=2 Q�t

��
: (5.68)

2. Compute

Ox.tkC1/ D Ox.tk/C f .Ox.tk/; tk/�t C L�ˇk

C ak
.t � t0/2

2
C
X
v

bv;k ��k;
(5.69)

where

ak D
@f .Ox.tk/; tk/

@t
C
X
u

@f .Ox.tk/; tk/
@xu

fu.Ox.tk/; tk/

C 1

2

X
uv

@2f .Ox.tk/; tk/
@xu @xv

ŒL Q LT�uv

bv;k D
X
u

@f .Ox.tk/; tk/
@xu

Luv:

(5.70)
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As an interesting note on higher order iterated Itô integrals, we point out the
recursive relation originally published by Itô himself. Applying the Itô formula for
n times iterated Itô integrals, leads to the following recursion:

nŠ

Z t

t0

Z �n

t0

: : :

Z �2

t0

dˇ.�1/ dˇ.�2/ : : : dˇ.�n/ D .t � t0/n=2 Hn

�
ˇ.t/ � ˇ.t0/p

t � t0

�
;

(5.71)
where Hn.t/ denotes the probabilists’ Hermite polynomials (H0.t/ D 1;H1.t/ D
t;H2.t/ D t2 � 1;H3.t/ D t3 � 3t; : : :). They are defined through the recursion
HnC1.t/ D t Hn.t/ � d=dt Hn.t/. The result in Equation (5.60) can easily be
verified from the formula above.

5.5 Weak approximations of Itô–Taylor series

The interest in solving the SDE is not always in the solution trajectories. Usu-
ally more interest is put into the distribution of the trajectories at a given time
point rather than their paths. Thus we might be interested in forming approxima-
tions that describe accurately enough the probability distribution of the trajectories.
Weak approximations of the Itô process, that is a process with approximately the
same probability distribution, provide much more freedom in forming the approx-
imations.

For instance, we can replace the initial value x0 with some appropriate proba-
bility distribution, or more importantly we can replace the random increments�ˇk
with more convenient approximations � Ǒk with similar moment properties.

The kind of approximations required here are much weaker than those required
by the strong convergence criterion. The weak order of convergence can be defined
to be the smallest exponent ˛ such that

jE Œg.x.tn//� � E Œg.Ox.tn//� j � K�t˛; (5.72)

for any polynomial function g. When the diffusion coefficient vanishes (L.x; t / �
0), this weak convergence criterion with g.x/ D x reduces to the usual determinis-
tic convergence criterion for ordinary differential equations—as does the criterion
for strong convergence.

For weak convergence, we only need to approximate the measure induced by
the Itô process x.t/, so we can replace the Gaussian increments by other random
variables with similar moment properties. Considering this, we can replace the
increments in Algorithm 5.5. This leads to the simplified weak Euler–Maruyama
scheme

Ox.tkC1/ D Ox.tk/C f .Ox.tk/; tk/�t C L.Ox.tk/; tk/� Ǒk; (5.73)

where the � Ǒj
k
; j D 1; 2; : : : ; m; must be independent random variables fulfilling

suitable moment conditions. For example, we could use the following two-point
distributed random variables (Kloeden and Platen, 1999)

P.� Ǒj
k
D ˙
p
�t/ D 1

2
: (5.74)
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As discussed earlier, the Euler–Maruyama scheme has strong convergence order
 D 0:5, but weak order ˛ D 1:0 (provided certain differentiability conditions are
met).

As we noticed in the previous section, multi-dimensional and higher order Itô–
Taylor approximations also involve additional random variables and iterated Itô
integrals, which make them difficult in practice. The same applies to weak Itô–
Taylor approximations, but handling these is much simpler than in the case of
strong approximations. As a rule of thumb, Kloeden and Platen (1999) state that an
Itô–Taylor approximation converges with any desired weak order ˛ D 1:0; 2:0; : : :,
when the number of stochastic integrals up to multiplicity ˛ are included in the
expansion. As an example they give the following scalar time-invariant weak order
˛ D 2:0 scheme:

Algorithm 5.9 (Scalar weak order 2.0 Itô–Taylor method). Draw Ox0 � p.x0/ and
divide the time interval Œ0; t � into K steps of length �t . At each step k do the
following:

Ox.tkC1/ D Ox.tk/C f . Ox.tk//�t C L. Ox.tk//� Ǒk
C 1

2
L. Ox.tk//

@L. Ox.tk//
@x

..� Ǒk/2 ��t/

C @f . Ox.tk//
@x

L. Ox.tk//� O�k

C 1

2

�
f . Ox.tk//

@f . Ox.tk//
@x

C 1

2

@2f . Ox.tk//
@x2

L2. Ox.tk//
�
.�t/2

C
�
f . Ox.tk//

@L. Ox.tk//
@x

C 1

2

@2L. Ox.tk//
@x2

L2. Ox.tk//
��
� Ǒk �t �� O�k

�
:

(5.75)

Here � Ǒk and � O�k approximates �ˇk and ��k . We can choose

� Ǒk D �ˇk and � O�k D
1

2
�ˇk �t (5.76)

with �ˇk � N.0;�t/, or instead of considering the normal increments, we could
use

� Ǒk D .�t/1=2 �k and � O�k D
1

2
.�t/3=2 �k; (5.77)

where �ks are independent three-point distributed random variables with

P.�k D ˙
p
3/ D 1

6
and P.�k D 0/ D

2

3
: (5.78)

As an example of an application of the above algorithm we provide the follow-
ing.
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0:4 0:6 0:8 1 1:2

x.10/

(a) Three-point increments

0:4 0:6 0:8 1 1:2

x.10/

Exact
Weak order 2:0

(b) Gaussian increments

Figure 5.2: The exact distribution at t D 10, and histograms of the 10,000 samples sim-
ulated by the weak order 2.0 scheme both using the three-point distributed and Gaussian
increments. Both solutions (a) and (b) have similar moment properties.

Example 5.2. We return to the non-linear SDE model considered earlier in this
chapter in Example 5.1. The first and second derivatives of the drift and diffusion
functions are:

df .x/
dx

D � 1

100
cos2.x/ .2 cos.2x/ � 1/; dL.x/

dx
D �1

5
sin.x/ cos.x/;

d2f .x/
dx2

D 1

100
.sin.2x/C 2 sin.4x//;

d2L.x/
dx2

D �1
5

cos.2x/:

We apply the weak order 2.0 scheme in Algorithm 5.9 to this problem, and char-
acterize the solution at t D 10. We use a large step size �t D 1 and simulate
10,000 trajectories. Figure 5.2 shows histograms of the values at Ox.10/ both using
the three-point distributed increments and Gaussian increments. Even though both
solutions have similar moment properties (mean, variance, skewness, kurtosis, ...),
the Gaussian increments appear nicer in the visualization.
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Chapter 6

Stochastic Runge–Kutta methods

This chapter is concerned with solving arbitrary stochastic differential equations by
numerical approximations. We will focus on Runge–Kutta methods which are an
important family of explicit and implicit iterative methods for numerical approx-
imative solving of differential equations. Their applicability is mostly motivated
by their plug-and-play formulations, which are typically derivative-free, and only
requires specification of the (stochastic) differential equation.

The field of solving ordinary differential equations by numerical approxima-
tions has been extensively studied during the past century, and for practical use
there exist highly optimized implementations in all major software packages. How-
ever, methods for solving stochastic differential equations are harder to find and not
too many implementations are readily available.

Even though we focus on Runge–Kutta methods, it is worth mentioning that
not all numerical methods fall under their formulation. Some other methods that
do not fit under the framework of Runge–Kutta schemes are (i) multistep methods
where the information form intermediate steps is not discarded, but rather re-used
(e.g., the family of Adams methods); (ii) multiderivative methods, that is, meth-
ods that use the derivatives (gradient) of the integrand in addition to the integrand
itself; (iii) higher-order methods, that is, methods where conversion of a higher-
order problem to a first-order differential equation is not desired (e.g., the Nyström
method fits well with second-order ODEs); (iv) tailored methods that use some
special properties of the particular differential equation. We will not discuss these
methods in detail, but the interested reader can read about them, for example, in the
book by Hairer et al. (2008). Many of these methods have some sort of stochastic
equivalent, but those are not discussed in this material either.

To ease the formulation of stochastic Runge–Kutta methods, we will first go
through some background on ordinary Runge–Kutta methods. After that we focus
on strong stochastic methods, and thereafter consider some weak methods. We will
try to provide general tools, but it is worth noting that often in the case of stochastic
differential equations special structure of the problem can have a large impact on
the complexity of the solution method.
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6.1 Runge–Kutta methods for ODEs

Runge–Kutta (RK) methods are an important family of iterative methods for the
approximation of solutions of ordinary differential equations. The name stems
from the German mathematicians Carl Runge and Martin Wilhelm Kutta, whose
work many of the modern-day methods build upon.

The simplest Runge–Kutta method we can think of is the (forward) Euler
scheme (see Alg. 1.1) which is based on sequential linearization of the ODE sys-
tem. This method is easy to understand and implement, but the global error of
the method depends linearly on the step size �t . The innovation Runge came up
with was that subdivision of the integration interval into intermediate steps (as had
earlier been done in quadrature methods, e.g. the midpoint rule, where the inte-
grand was independent of t ), can help build more efficient methods. Such higher
order methods can reach the same precision with fewer steps, which makes them
appealing.

Consider the first-order non-linear ODE from Chapter 1

dx.t/

dt
D f .x.t/; t/; x.t0/ D given; (6.1)

which can be integrated to give

x.t/ D x.t0/C
Z t

t0

f .x.�/; �/ d�: (6.2)

Recall from the previous chapter that we used a Taylor series expansion for the
solution of the ODE

x.t/ D x.t0/C f .x.t0/; t0/ .t � t0/
C 1

2Š
L f .x.t0/; t0/ .t � t0/2

C 1

3Š
L2 f .x.t0/; t0/ .t � t0/3

C � � � ; (6.3)

where we used the linear operator

L.�/ D @

@t
.�/C

X
i

fi
@

@xi
.�/ (6.4)

to come up with the convenient formulation of the series. Thus the series expansion
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is equal to

x.t/ D x.t0/C f .x.t0/; t0/ .t � t0/

C 1

2Š

�
@

@t
f .x.t0/; t0/C

X
i

fi .x.t0/; t0/
@

@xi
f .x.t0/; t0/

�
.t � t0/2

C 1

3Š

�
@ŒL f .x.t0/; t0/�

@t
C
X
i

fi .x.t0/; t0/
@ŒL f .x.t0/; t0/�

@xi

�
.t � t0/3

C � � � (6.5)

If we were only to consider the terms up to�t , we would recover the Euler method,
which clearly is a derivative-free Runge–Kutta scheme. However, here we wish to
get hold of higher-order methods. For the sake of simplicity we now stop at the
term .t � t0/2 D .�t/2, and write

x.t0 C�t/ � x.t0/C f .x.t0/; t0/�t

C 1

2

�
@

@t
f .x.t0/; t0/C

X
i

fi .x.t0/; t0/
@

@xi
f .x.t0/; t0/

�
.�t/2:

(6.6)

This equation still contains derivatives, and we aim to get rid of them and be able
to write the expression in terms of the function f .�; �/ evaluated at various points.
That is, we now seek a form:

x.t0 C�t/ � x.t0/C A f .x.t0/; t0/�t

C B f .x.t0/C C f .x.t0/; t0/�t; t0 CD�t/�t; (6.7)

where A;B;C; and D are unknown. In the last term, we can instead consider
the truncated Taylor expansion (linearization) around f .x.t0/; t0/ with the chosen
increments as follows:

f .x.t0/C C f .x.t0/; t0/�t; t0 CD�t/ D f .x.t0/; t0/

C C
�X

i

fi .x.t0/; t0/
@

@xi
f .x.t0/; t0/

�
�t CD @f .x.t0/; t0/

@t
�t C � � � (6.8)

Combining the above two equations gives:

x.t0 C�t/ � x.t0/C .AC B/ f .x.t0/; t0/�t

C B
�
C
X
i

fi .x.t0/; t0/
@

@xi
f .x.t0/; t0/CD @f .x.t0/; t0/

@t

�
.�t/2: (6.9)

If we now compare the above equation to the original truncated Taylor expansion
in Equation (6.6), we get the following conditions for our coefficients:

AC B D 1; B D 1

2
; C D 1; and D D 1: (6.10)
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We can now solve A D 1=2 . Thus the approximative step given by this method
can be written as

Ox.t0 C�t/ D x.t0/C 1

2

�
f .Qx1; t0/C f .Qx2; t0 C�t/

�
�t; (6.11)

where the supporting values are given by

Qx1 D x.t0/;

Qx2 D x.t0/C f .Qx1; t0/�t:
(6.12)

What we derived here is a two-stage method (actually the Heun’s method pre-
sented in Alg. 1.2) with the finite differences determined by the choices we did in
truncating the series expansion. The choices of how and what to truncate determine
the number of terms in the expansion, and thus also affects the number of equations
to solve. Coming up with higher-order methods becomes increasingly complicated
with the number of terms. The general principle however remains the same, and
Runge–Kutta methods are constructed by evaluating the model function (often re-
cursively) at a discrete number of step sizes, and weighting these evaluations.

We write down a general s-stage algorithm for Runge–Kutta methods:

Algorithm 6.1 (Runge–Kutta methods). Start from Ox.t0/ D x.t0/ and divide the
integration interval Œt0; t � into n steps t0 < t1 < t2 < : : : < tn D t such that
�t D tkC1 � tk . The integration method is defined by its Butcher tableau:

c A

˛T
(6.13)

On each step k approximate the solution as follows:

Ox.tkC1/ D Ox.tk/C
sX
iD1

˛i f .Qxi ; Qti /�t; (6.14)

where Qti D tk C ci�t and Qxi D Ox.tk/C
Ps
jD1Ai;j f .Qxj ; Qtj /�t .

As can be interpreted from above, ordinary Runge–Kutta methods are com-
monly expressed in terms of a table called the Butcher tableau:

c1 A1;1
c2 A2;1 A2;2
:::

:::
: : :

cs As;1 As;2 : : : As;s
˛1 ˛2 : : : ˛s

(6.15)

An explicit Runge–Kutta method is said to be consistent if
Pi�1
jD1Ai;j D ci , for

i D 2; 3; : : : ; s.
We present the Butcher tableau for two common Runge–Kutta methods.. The

first method is the forward Euler method (see Alg. 1.1) and the second the well-
known fourth order classical Runge–Kutta method (see Alg 1.3):
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Example 6.1 (Forward Euler). The forward Euler scheme in Algorithm 1.1 has the
Butcher tableau:

0 0

1
(6.16)

which gives the recursion Ox.tkC1/ D Ox.tk/C f .Ox.tk/; tk/�t .

Example 6.2 (The fourth-order Runge–Kutta method). The well-known RK4 method
in Algorithm 1.3 has the following Butcher tableau:

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

(6.17)

The Runge–Kutta schemes considered above, are all so-called explicit schemes.
Explicit schemes can suffer from numerical instability, when the solution includes
rapidly varying terms. Such problems are called stiff equations. Stiff equations re-
quire explicit schemes to use small step sizes in order to not diverge from a solution
path.

A better suited family for stiff problems are the so-called implicit Runge–Kutta
methods, which provide additional stability to the iterative solution. For implicit
methods, the Buther tableau is no longer lower-triangular, but the tableau can be
full. The consequence of using a full table is that at every step, a system of alge-
braic equations has to be solved. This increases the computational cost consider-
ably. The advantage of implicit Runge–Kutta methods over explicit ones is their
greater stability, especially when applied to stiff equations.

The simplest example of an implicit method is the backward Euler scheme:

Example 6.3 (Backward Euler). The implicit backward Euler scheme has the
Butcher tableau:

1 1

1
(6.18)

which gives the recursion Ox.tkC1/ D Ox.tk/C f .Ox.tkC1/; tk C�t/�t .

There are a lot of further topics to consider in Runge–Kutta methods, such as
stability analysis and adaptive step size methods. We, however, will not discuss
these, but try to move to the stochastic Runge–Kutta methods.

Example 6.4. We study the two-dimensional non-linear ordinary differential equa-
tion system

Px1 D x1 � x2 � x31 ;
Px2 D x1 C x2 � x32 ;

(6.19)
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Forward EulerHeun

Backward Euler RK4

�2 2

�2

2

x1

x2

Figure 6.1: Demonstration of four Runge–Kutta schemes for the same problem with a step
size of �t D 2�4.

This system has only one fixed point, x D .0; 0/ (an unstable spiral), but it also
has a limit cycle. We aim to test various Runge–Kutta methods by simulating tra-
jectories of this problem.

We use a time-span of Œ0; 10�, with a step size of �t D 2�4. The methods
demonstrated are the forward Euler method, Heun’s method, the backward (im-
plicit) Euler method, and the classical fourth-order Runge–Kutta method. Fig-
ure 6.1 shows six trajectories for each method, starting from respective quadrants.
The results should be symmetrical, but especially the forward Euler results do not
match the rest.

6.2 Strong stochastic Runge–Kutta methods

A practical disadvantage of the Taylor approximations considered in the previous
chapter is that the derivatives of various orders of the drift and diffusion functions
must be determined and evaluated at each step. However, there are discrete time
approximations which avoid the use of derivatives. They are in general referred
to as stochastic Runge–Kutta methods. Stochastic versions of the Runge–Kutta
methods are not as simple as in the case of deterministic equations.

As has been discussed earlier, the Euler–Maryama scheme can easily be con-
structed by discretizing the time interval and formulating the SDE as a recursive
algorithm. Thus the Euler–Maruyama scheme can be seen as the simplest stochas-
tic Runge–Kutta method—similarly as we interpreted the Euler method as a simple
ordinary Runge–Kutta scheme.

In practice, a higher-order stochastic Runge–Kutta method can be derived,
for example, by replacing the closed-form derivatives in the Milstein’s method
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(Algs. 5.6 or 5.7) with suitable finite differences (see Kloeden et al., 1994; Kloeden
and Platen, 1999). So, if we heuristically replace the partial differential in Algo-
rithm 5.7 with a finite difference, we can write a method for scalar time-invariant
models:

Ox.tkC1/ D Ox.tk/C f .x.tk//�t C L. Oxk/�ˇk
C 1

2
p
�t

�
L. Qx/ � L. Ox/��.�ˇk/2 ��t� (6.20)

with supporting value Qx D Oxk C L. Oxk/
p
�t . where we consider only standard

Brownian motions. This method is of strong order 1.0.
However, we still cannot get rid of the iterated Itô integral occurring in Mil-

stein’s method. An important thing to note is that stochastic versions of Runge–
Kutta methods cannot be derived as simple extensions of the deterministic Runge–
Kutta methods—see Burrage et al. (2006) which is a response to the article by
Wilkie (2004).

To provide a more widely applicable perspective on the methods, we follow
a similar derivation as we did for the ordinary Runge–Kutta methods. Recall the
following multi-dimensional SDE formulation

dx D f .x.t/; t/ dt C L.x.t/; t/ dˇ; x.t0/ � p.x.t0//; (6.21)

where the drift is defined by f W Rd � R ! Rd and the diffusion coeffi-
cients by L W Rd � R ! Rd � Rm, and the driving noise process ˇ.t/ D
.ˇ.1/.t/; ˇ.2/.t/; : : : ; ˇ.m/.t// is an m-dimensional standard Brownian motion. In
integral form the equation can be expressed as

x.t/ D x.t0/C
Z t

t0

f .x.�/; �/ d� C
Z t

t0

L.x.�/; �/ dˇ.�/: (6.22)

As we saw in the previous chapter, applying the Itô formula to the terms f .x.t/; t/

and L.x.t/; t/ and collecting the terms gives an Itô–Taylor series expansion of the
solution:

x.t/ D x.t0/C f .x.t0/; t0/ .t � t0/C L.x.t0/; t0/ .ˇ.t/ � ˇ.t0//

C
Z t

t0

Z �

t0

Lt f .x.�/; �/ d� d�

C
X
i

Z t

t0

Z �

t0

Lˇ;i f .x.�/; �/ dˇ.i/.�/ d�

C
Z t

t0

Z �

t0

LtL.x.�/; �/ d� dˇ.�/

C
X
i

Z t

t0

Z �

t0

Lˇ;iL.x.�/; �/ dˇ.i/.�/ dˇ.�/: (6.23)



78 Stochastic Runge–Kutta methods

Similarly as we did in the previous section, we can consider truncated series
expansions of various degrees for each of these terms. Collecting the terms can
give a similar kind of formulation in terms of tabulated values as we did for the
ordinary RK schemes. The extra terms involving the iterated and cross-term Itô
integrals complicate the formulation.

Rößler (2010) considers a general class of multi-dimensional strong order
1.0 stochastic Runge–Kutta schemes, where iterated integrals are avoided in the
scheme and they only appear in the supporting values. A more general formulation
is given in the next section, where weak order methods are considered. The general
multi-dimensional schemes by Rößler are as follows:

Algorithm 6.2 (A class of stochastic Runge–Kutta methods of strong order 1.0).
Start from Ox.t0/ D x.t0/ and divide the integration interval Œt0; t � into n steps
t0 < t1 < t2 < : : : < tn D t such that �t D tkC1 � tk . The integration method is
characterized by its extended Butcher tableau:

c.0/ A.0/ B.0/

c.1/ A.1/ B.1/

˛T �
.1/

�T �
.2/

�T
(6.24)

On each step k approximate the solution trajectory as follows:

Ox.tkC1/ D Ox.tk/C
sX
iD1

˛i f .Qx.0/i ; tk C c.0/i �t/�t

C
sX
iD1

mX
nD1

.
.1/
i �ˇ

.n/

k
C  .2/i

p
�t/Ln.Qx.n/i ; tk C c.1/i �t/

(6.25)

with the supporting values

Qx.0/i D Ox.tk/C
sX

jD1

A
.0/
i;j f .Qx.0/j ; tk C c.0/j �t/�t

C
sX

jD1

mX
lD1

B
.0/
i;j Ll.Qx.l/j ; tk C c.1/j �t/�ˇ

.l/

k
; (6.26)

Qx.n/i D Ox.tk/C
sX

jD1

A
.1/
i;j f .Qx.0/j ; tk C c.0/j �t/�t

C
sX

jD1

mX
lD1

B
.1/
i;j Ll.Qx.l/j ; tk C c.1/j �t/

�ˇ
.l;n/

kp
�t

; (6.27)

for i D 1; 2; : : : ; s and n D 1; 2; : : : ; m.
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The increments in the above algorithm are given by the Itô integrals:

�ˇ
.i/

k
D
Z tkC1

tk

dˇ.i/.�/ and (6.28)

�ˇ
.i;j /

k
D
Z tkC1

tk

Z �2

tk

dˇ.i/.�1/ dˇ.j /.�2/; (6.29)

for i; j D 1; 2; : : : ; m. The increments�ˇ.i/
k

are independent normally distributed

random variables, �ˇ.i/
k
� N.0;�t/. The iterated stochastic Itô integrals �ˇ.i;j /

k
are trickier. For these methods, when i D j , the multiple Itô integrals can be
rewritten as

�ˇ
.i;i/

k
D 1

2

��
�ˇ

.i/

k

�2 ��t
�
; (6.30)

which follows from the results given in Equation (5.71). This also generalizes
to higher orders. Exact simulation of the integrals �ˇ.i;j /

k
, when i ¤ j , is not

possible, but can be approximated. See Wiktorsson (2001) for an approximative
scheme, and Gilsing and Shardlow (2007) for implementation details.

Example 6.5 (Euler–Maruyama Butcher tableau). The Euler–Maruyama method
has the extended Butcher tableau:

0 0 0

0 0 0

1 1 0

(6.31)

and as we recall from the previous chapter, it is of strong order 0:5.

Coming up with useful and valid stochastic Runge–Kutta schemes is a delicate
process, which we will not consider here. Instead we go through a rather efficient
and general scheme proposed by Rößler (2010) and which can be formulated as
follows:

Algorithm 6.3 (Strong order 1.0 stochastic Runge–Kutta due to Rößler). Consider
a stochastic Runge–Kutta method with the following extended Butcher tableau:

0

1 1 0

0 0 0 0 0

0

1 1 1

1 1 0 �1 0

1
2

1
2

0 1 0 0 0 1
2
�1
2

(6.32)
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which corresponds to the following iterative scheme

Ox.tkC1/ D Ox.tk/C
1

2

˚
f .Ox.tk/; tk/C f .Qx.0/2 ; tk C�t/

	
�t

C
mX
nD1

˚
�ˇ

.n/

k
Ln.Ox.tk/; tk/

C 1

2

p
�t
�
Ln.Qx.n/2 ; tk C�t/ � Ln.Qx.n/3 ; tk C�t/

�	
(6.33)

with the supporting values Qx.0/2 D Ox.tk/C f .Ox.tk/; tk/�t , and

Qx.n/2 D Ox.tk/C f .Ox.tk/; tk/�t C
mX
lD1

Ll.Ox.tk/; tk/
�ˇ

.l;n/

kp
�t

; (6.34)

Qx.n/3 D Ox.tk/C f .Ox.tk/; tk/�t �
mX
lD1

Ll.Ox.tk/; tk/
�ˇ

.l;n/

kp
�t

: (6.35)

Higher-order methods can be formulated by considering more terms in the Itô–
Taylor expansion. This, however, might not be very practical, as the number of
required function evaluations grows, as does the complexity of the scheme. How-
ever, for models with some special structure this might still be feasible. Examples
of such cases are models with commutative noise, additive noise models, where
L.x; t / � L.t/, or diagonal noise models.

A number of stochastic Runge–Kutta methods have also been presented by
Kloeden et al. (1994); Kloeden and Platen (1999) as well as by Rößler (2006). If
the noise is additive, then it is possible to derive a Runge–Kutta counterpart of the
method in Algorithm 5.8 which uses finite difference approximations instead of the
closed-form derivatives (Kloeden et al., 1994).

Example 6.6 (Duffing van der Pol). Consider a simplified version of a Duffing van
der Pol oscillator

Rx C Px � .˛ � x2/ x D x w.t/; ˛ � 0; (6.36)

driven by multiplicative white noise w.t/ with spectral density q. The correspond-
ing two-dimensional, x.t/ D .x; Px/, Itô stochastic differential equation is

�
dx1
dx2

�
D
�

x2
x1 .˛ � x21/ � x2

�
dt C

�
0

x1

�
dˇ; (6.37)

where ˇ.t/ is a one-dimensional Brownian motion. The deterministic version
(when q D 0), has the steady states x D .0; 0/ and x D .˙p˛; 0/, the first of
which is also a degenerate stationary state of the stochastic differential equation.

Let ˛ D 1. First we study the deterministic solution with no diffusion (q D 0).
Figure 6.2 shows 10 trajectories, each with different initial values x1.0/. We use
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Figure 6.2: Trajectories simulated from the Duffing van der Pol oscillator model. The
deterministic solutions (q D 0) converge to either of the two steady states. The realizations
of the noise are identical for each of the stochastic (q D 0:52) trajectories.

a step size of �t D 2�5 and a time-span of Œ0; 20�. We then replicate the result,
but using the SDE model with q D 0:52 and identical realizations of noise in each
trajectory. We use the strong order 1.0 method in Algorithm 6.3 for simulating the
trajectories. Figure 6.3 shows the evolution of the trajectories.

6.3 Weak stochastic Runge–Kutta methods

In the previous chapter we saw that it is possible to form weak approximations to
SDEs, where the interest is not in the solution trajectories, but the distribution of
them. It is often computationally convenient to replace the weak Itô–Taylor ap-
proximations by Runge–Kutta style approximations which avoid the use of deriva-
tives of the drift and diffusion coefficients.

As an example of such a weak scheme, we consider the following scalar weak
order 2.0 Runge–Kutta scheme for time-invariant SDEs due to Platen (see Kloeden
and Platen, 1999), where the iteration takes the form:

Ox.tkC1/ D Ox.tk/C
1

2

�
f . Ox.tk//C f . Qx/

�
�t

C 1

4

�
L. QxC/C L. Qx�/C 2L. Oxk/

�
� Ǒk

C 1

4
p
�t

�
L. QxC/C L. Qx�/��.� Ǒk/2 C�t� (6.38)

with supporting values Qx D Oxk C f . Oxk/�t C L. Oxk/� Ǒk and Qx˙ D Oxk C
f . Oxk/�t ˙ L. Oxk/

p
�t .

Rößler (2009) considers a general class of multi-dimensional weak order 2.0
stochastic Runge–Kutta schemes. The general multi-dimensional schemes by
Rößler are as follows:
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Figure 6.3: Evolution of the trajectories in the stochastic Duffing van der Pol oscillator
model in Figure 6.2.

Algorithm 6.4 (A class of stochastic Runge–Kutta methods of weak order 2.0).
Start from Ox.t0/ D x.t0/ and divide the integration interval Œt0; t � into n steps
t0 < t1 < t2 < : : : < tn D t such that �t D tkC1 � tk . The integration method is
characterized by the following extended Butcher tableau:

c.0/ A.0/ B.0/

c.1/ A.1/ B.1/

c.2/ A.2/ B.2/

˛T �
.1/

�T �
.2/

�T
�
.3/

�T �
.4/

�T

(6.39)

On each step k approximate the solution by the following:

Ox.tkC1/ D Ox.tk/C
sX
iD1

˛i f .Qx.0/i ; tk C c.0/i �t/�t

C
sX
iD1

mX
nD1


.1/
i Ln.Qx.n/i ; tk C c.1/i �t/� Ǒ.n/

k

C
sX
iD1

mX
nD1


.2/
i Ln.Qx.n/i ; tk C c.1/i �t/

� Ǒ.n;n/
kp
�t

C
sX
iD1

mX
nD1


.3/
i Ln.Nx.n/i ; tk C c.2/i �t/� Ǒ.n/

k
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C
sX
iD1

mX
nD1


.4/
i Ln.Nx.n/i ; tk C c.2/i �t/

p
�t; (6.40)

with supporting values

Qx.0/i D Ox.tk/C
sX

jD1

A
.0/
i;j f .Qx.0/j ; tk C c.0/j �t/�t

C
sX

jD1

mX
lD1

B
.0/
i;j Ll.Qx.l/j ; tk C c.1/j �t/� Ǒ.l/

k
; (6.41)

Qx.n/i D Ox.tk/C
sX

jD1

A
.1/
i;j f .Qx.0/j ; tk C c.0/j �t/�t

C
sX

jD1

mX
lD1

B
.1/
i;j Ll.Qx.l/j ; tk C c.1/j �t/� Ǒ.l;n/

k
; (6.42)

Nx.n/i D Ox.tk/C
sX

jD1

A
.2/
i;j f .Qx.0/j ; tk C c.0/j �t/�t

C
sX

jD1

mX
lD1
l¤n

B
.2/
i;j Ll.Qx.l/j ; tk C c.1/j �t/

� Ǒ.l;n/
kp
�t

; (6.43)

for i D 1; 2; : : : ; s and n D 1; 2; : : : ; m.

The increments in the above algorithm are given by the double Itô integrals
(exactly as in the case of the strong stochastic Runge–Kutta schemes), but in the
weak schemes we can use the following approximations (see, e.g., Kloeden and
Platen, 1999; Rößler, 2009):

� Ǒ.i;j /
k
D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

1
2

�
� Ǒ.i/

k
� Ǒ.j /

k
�p�t O�.i/

k

�
; if i < j ;

1
2

�
� Ǒ.i/

k
� Ǒ.j /

k
Cp�t O�.j /

k

�
; if i > j ;

1
2

�
Œ� Ǒ.i/

k
�2 ��t�; if i D j ;

(6.44)

for i; j D 1; 2; : : : ; m. Here only 2m�1 independent random variables are needed,
and we do not anymore run into problems with the cross-term integrals as we did
in the strong stochastic Runge–Kutta schemes. For example, we can choose � Ǒ.i/

k
such that they are independent three-point distributed random variables

P
�
� Ǒ.i/

k
D ˙
p
3�t

� D 1

6
and P

�
� Ǒ.i/

k
D 0� D 2

3
; (6.45)
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and the supporting variables O�.i/
k

such that they are independent two-point dis-
tributed random variables

P
� O�.i/
k
D ˙
p
�t
� D 1

2
: (6.46)

Rößler (2009) proposes, for example, the following multi-dimensional weak
order 2.0 stochastic Runge–Kutta scheme, which only requires two evaluations of
f .�; �/ and only five evaluations of each Li .�; �/.

Algorithm 6.5 (Weak order 2.0 stochastic Runge–Kutta due to Rößler). Consider
a stochastic Runge–Kutta method with the following extended Butcher tableau:

0

1 1 1

0 0 0 0 0

0

1 1 1

1 1 0 �1 0

0

1 1 1

1 1 0 �1 0

1
2

1
2

0 1
2

1
4

1
4

0 1
2
�1
2

�1
2

1
4

1
4

0 1
2
�1
2

(6.47)

which corresponds to the following iterative scheme

Ox.tkC1/ D Ox.tk/C
�t

2

�
f .Ox.tk/; tk/C f .Qx.0/2 ; tk C�t/

�

C
mX
nD1

�
1

2
Ln.Ox.tk/; tk/C

1

4
Ln.Qx.n/2 ; tk C�t/C

1

4
Ln.Qx.n/3 ; tk C�t/

�
� Ǒ.n/

k

C
mX
nD1

�
1

2
Ln.Qx.n/2 ; tk C�t/ �

1

2
Ln.Qx.n/3 ; tk C�t/

�
� Ǒ.n;n/

kp
�t

C
mX
nD1

�
� 1
2

Ln.Ox.tk/; tk/C
1

4
Ln.Nx.n/2 ; tk C�t/C

1

4
Ln.Nx.n/3 ; tk C�t/

�
� Ǒ.n/

k

C
mX
nD1

�
1

2
Ln.Nx.n/2 ; tk C�t/ �

1

2
Ln.Nx.n/3 ; tk C�t/

�p
�t (6.48)
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Figure 6.4: A histogram of the state of the Duffing van der Pol oscillator values x1.t/
at t D 20 with 10,000 samples simulated by the weak order 2.0 stochastic Runge–Kutta
scheme.

with supporting values (note that Qx.0/1 D Qx.n/1 D Nx.n/1 D Ox.tk/)

Qx.0/2 D Ox.tk/C f .Ox.tk/; tk/�t C
mX
lD1

Ll.Ox.tk/; tk/� Ǒ.l/k ; (6.49)

Qx.n/2 D Ox.tk/C f .Ox.tk/; tk/�t C
mX
lD1

Ll.Ox.tk/; tk/� Ǒ.l;n/k
; (6.50)

Qx.n/3 D Ox.tk/C f .Ox.tk/; tk/�t �
mX
lD1

Ll.Ox.tk/; tk/� Ǒ.l;n/k
; (6.51)

Nx.n/2 D Ox.tk/C f .Ox.tk/; tk/�t C
mX
lD1
l¤n

Ll.Ox.tk/; tk/
� Ǒ.l;n/

kp
�t

; (6.52)

Nx.n/3 D Ox.tk/C f .Ox.tk/; tk/�t �
mX
lD1
l¤n

Ll.Ox.tk/; tk/
� Ǒ.l;n/

kp
�t

: (6.53)

Example 6.7 (Weak approximation of the Duffing van der Pol problem). In Exam-
ple 6.6 we considered a van der Pol oscillator with two steady states for the zero-
diffusion model. Now we are interested in characterizing the solution at t D 20 for
the initial condition of x.0/ D .�3; 0/. We use the stochastic Runge–Kutta method
in Algorithm 6.5 that is of weak order 2.0. We consider a time-span Œ0; 20� and
a discretization interval �t D 2�4. With a �t this large, the Euler–Maruyama
method does not provide plausible results. Figure 6.4 shows the histogram of the
values x1.20/.



86 Stochastic Runge–Kutta methods



Chapter 7

Bayesian estimation of SDEs

7.1 Bayesian filtering in SDE models

Filtering theory (e.g., Stratonovich, 1968; Jazwinski, 1970; Maybeck, 1979, 1982;
Särkkä, 2006; Crisan and Rozovskii, 2011; Särkkä, 2013) is introduced in this
material with the following problem. Assume that we have a pair of processes
.x.t/; y.t// such that y.t/ is observed and x.t/ is hidden. Now the question is:
Given that we have observed y.t/, what can we say (in statistical sense) about the
hidden process x.t/? In particular, the main question in Bayesian sense is what
is the conditional probability distribution of the hidden process x.t/ given the ob-
served process y.t/.

Example 7.1 (Continuous-time car tracking model). Recall that in Example 2.5
we modeled the dynamics of a car via the white-noise-force Newton’s law

d2x1
dt2
D w1.t/;

d2x2
dt2
D w2.t/:

(see Figure 7.1a) which then resulted in a SDE model of the form (in white noise
interpretation):

dx

dt
D F xC L w :

Let’s now assume that we use a radar to obtain noisy measurements .y1; y2/ of the
car’s position, which thus can be modeled as

y1.t/ D x1.t/C "1.t/;
y2.t/ D x2.t/C "2.t/;

where "1.t/ and "2.t/ are white noise processes (see Figure 7.1b). The measure-
ment model can now be written as

y.t/ D H x.t/C ".t/; H D
�
1 0 0 0

0 1 0 0

�
: (7.1)
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w1.t/

w2.t/

(a) Dynamic model

.y1; y2/

(b) Measurement model

Figure 7.1: Illustration of (a) a dynamic and (b) a measurement model of a car. In the
dynamic model, the unknown forces w1.t/ and w2.t/ are modeled as white noise pro-
cesses. The measurements .y1; y2/ are modeled as noise corrupted observations of the
car’s position.

If we now interpret both the dynamic model and measurement model as proper
SDEs, the resulting model can be written as

dx D F x dt C L dˇ;

dz D H x dt C d�;
(7.2)

where formally y D dz=dt and " D d�=dt .

The model in Equation (7.2) is a canonical example of a continuous-time fil-
tering model. The corresponding Bayesian filtering problem on this model is to
determine the conditional distribution of the “state” x.t/ given the history of mea-
surements fz.�/ j 0 � � � tg—or equivalently given fy.�/ j 0 � � � tg. In
the car example above this corresponds to determining the conditional distribution
car position and velocity given the history of observations obtained so far. Given
the conditional distribution, we can, for example, compute the conditional mean
of the state x.t/, which is also its minimum mean squared estimate, as well as its
variance, which measures the accuracy of the estimate.

The above problem is a continuous-time filtering problem, because both the
dynamics and measurements are modeled as continuous-time processes. How-
ever, from an applications point of view we often obtain measurements not as a
continuous function, but at certain sampling times t1; t2; : : : ; tk . In that case it is
more convenient to formulate the problem as a continuous/discrete-time filtering
problem, where the dynamics are continuous and the measurement process is in
discrete time. This kind of continuous/discrete-time filtering problem are closely
related to discrete-time filtering problems where both the dynamics are measure-
ments are modeled in discrete time. The classical reference of continuous and
continuous/discrete-time problems is the book of Jazwinski (1970) whereas a more
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modern treatment of the subject can be found in Särkkä (2006). A quite compre-
hensive introduction to discrete-time filtering can be found in Särkkä (2013).

In the following sections we start by introducing the continuous-time filtering
problem and then proceed to the discretely measured filtering problems.

7.2 Kushner–Stratonovich and Zakai equations, and
Kalman–Bucy filtering

In mathematical terms a continuous-time filtering model can be written as

dx.t/ D f .x.t/; t/ dt C L.x; t / dˇ.t/;

dz.t/ D h.x.t/; t/ dt C d�.t/;
(7.3)

where the first equation is the dynamic model and second the measurement model.
In the equation we have the following:

• x.t/ 2 Rn is the state process,

• z.t/ 2 Rm is the (integrated) measurement process,

• f is the drift function,

• h is the measurement model function,

• L.x; t / is the dispersion matrix,

• ˇ.t/ and �.t/ are independent Brownian motions with diffusion matrices Q

and R, respectively.

In physical sense the measurement model is easier to understand by writing it in
white noise form:

y.t/ D h.x.t/; t/C ".t/; (7.4)

where we have defined the physical measurement as y.t/ D dz.t/=dt , and ".t/ D
d�.t/=dt is the formal derivative of �.t/. That is, we measure the state through
the non-linear measurement model h.�/, and the measurement is corrupted with
continuous-time white noise ".t/. Typical applications of this kind of models are,
for example, tracking and navigation problems, where x.t/ is the dynamic state of
the target—say, the position and velocity of a car. The measurement can be, for
example, radar readings which contain some noise ".t/.

The most natural framework to formulate the problem of estimation of the state
from the measurement is in terms of Bayesian inference. This is indeed the clas-
sical formulation of non-linear filtering theory and was used already in the books
of Stratonovich (1968) and Jazwinski (1970). The purpose of the continuous-time
optimal (Bayesian) filter is to compute the posterior distribution (or the filtering
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distribution) of the process x.t/ given the observed process (more precisely, the
sigma algebra generated by the observed process)

Yt D fy.�/ W 0 � � � tg D fz.�/ W 0 � � � tg; (7.5)

that is, we wish to compute
p.x.t/ j Yt /: (7.6)

In the following we present the general equations for computing these distribu-
tions. To ease the notation let us recall the following definition of the operator
occurring in the Fokker–Planck–Kolmogorov equation, which was introduced in
Equation (4.14):

A�.�/ D �
X
i

@

@xi
Œfi .x; t/ .�/�

C 1

2

X
ij

@2

@xi @xj
fŒL.x; t /Q LT.x; t /�ij .�/g;

(7.7)

which thus allows us to write the Fokker–Planck–Kolmogorov equation (4.2) com-
pactly as

@p

@t
D A�p: (7.8)

The continuous-time optimal filtering equation, which computes p.x.t/ j Yt /
is called the Kushner–Stratonovich (KS) equation (Kushner, 1964; Bucy, 1965)
and can be derived as the continuous-time limits of the so called Bayesian filtering
equations (see, e.g., Särkkä, 2013). A Stratonovich calculus version of the equa-
tion was studied by Stratonovich already in late 1950’s (cf. Stratonovich, 1968).

Algorithm 7.1 (Kushner–Stratonovich equation). The stochastic partial differen-
tial equation for the filtering density p.x; t j Yt / , p.x.t/ j Yt / is

dp.x; t j Yt / D A� p.x; t j Yt / dt

C .h.x; t / � EŒh.x; t / j Yt �/T R�1.dz � EŒh.x; t / j Yt � dt / p.x; t j Yt /;
(7.9)

where dp.x; t j Yt / D p.x; t C dt j YtCdt / � p.x; t j Yt / and

EŒh.x; t / j Yt � D
Z

h.x; t / p.x; t j Yt / dx: (7.10)

This equation is only formal in the sense that as such it is quite much impossi-
ble to work with. However, it is possible derive all kinds of moment equations from
it, as well as form approximations to the solutions. What makes the equation diffi-
cult is that it is a non-linear stochastic partial differential equation—recall that the
operator A� contains partial derivatives. Furthermore the equation is non-linear,
as could be seen by expanding the expectation integrals in the equation (recall that
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they are integrals over p.x; t j Yt /). The stochasticity is generated by the observa-
tion process z.t/.

The nonlinearity in the KS equation can be eliminated by deriving an equation
for an unnormalized filtering distribution instead of the normalized one. This leads
to so called Zakai equation (Zakai, 1969).

Algorithm 7.2 (Zakai equation). Let q.x; t j Yt / , q.x.t/ j Yt / be the solution
to Zakai’s stochastic partial differential equation

dq.x; t j Yt / D A� q.x; t j Yt / dt C hT.x; t /R�1 dz q.x; t j Yt /; (7.11)

where dq.x; t j Yt / D q.x; t C dt j YtCdt / � q.x; t j Yt / and A� is the Fokker–
Planck–Kolmogorov operator defined in Equation (4.14). Then we have

p.x.t/ j Yt / D q.x.t/ j Yt /R
q.x.t/ j Yt / dx.t/

: (7.12)

The car model in Example 7.1 was actually a linear Gaussian filtering problem,
which refer to a problem where the functions f and h are linear in x. In that case
the filtering solution is Gaussian and we can solve the filtering equations in closed
form. The Kalman–Bucy filter (Kalman and Bucy, 1961) is the exact solution to
the linear Gaussian filtering problem

dx D F.t/x dt C L.t/ dˇ;

dz D H.t/x dt C d�;
(7.13)

where

• x.t/ 2 Rn is the state process,

• z.t/ 2 Rm is the (integrated) measurement process,

• F.t/ is the dynamic model matrix,

• H.t/ is the measurement model matrix,

• L.t/ is an arbitrary time varying matrix, independent of x.t/ and y.t/,

• ˇ.t/ and �.t/ are independent Brownian motions with diffusion matrices Q

and R, respectively.

The solution is given as follows:

Algorithm 7.3 (Kalman–Bucy filter). The Bayesian filter, which computes the pos-
terior distribution p.x.t/ j Yt / D N.x.t/ j m.t/;P .t// for the system (7.13) is

K.t/ D P .t/HT.t/R�1;

dm.t/ D F.t/m.t/ dt CK.t/ Œdz.t/ �H.t/m.t/ dt � ;
dP .t/

dt
D F.t/P .t/C P .t/FT.t/C L.t/Q LT.t/ �K.t/R KT.t/:

(7.14)
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7.3 Continuous-time approximate non-linear filtering

There exists various approximation methods so cope with non-linear models, for
example, based on Monte Carlo approximations, series expansions of processes
and densities, Gaussian (process) approximations and many others (see, e.g.,
Crisan and Rozovskii, 2011). One way which is utilized in many practical appli-
cations is to use Gaussian approximations outlined in the beginning of Chapter 5.
The classical filtering theory is very much based on this idea and a typical ap-
proach is to use Taylor series expansions of the drift function (Jazwinski, 1970).
The use of Gaussian sigma-point type of approximations in this context has been
recently studied in Särkkä (2007) and Särkkä and Sarmavuori (2013). In this sec-
tion we only outline Gaussian approximation based approximate filtering and for
other methods reader is referred to Crisan and Rozovskii (2011).

The extended Kalman–Bucy filter (see, e.g., Gelb, 1974) is perhaps the most
common and the simplest possible extension of the Kalman–Bucy filter to non-
linear models of the form (7.3). It can be derived by using a first order Taylor
series expansions on the functions f and h around the current mean estimate.

Algorithm 7.4 (Extended Kalman–Bucy filter). The equations of the extended
Kalman–Bucy filter (EKBF) are:

K.t/ D P .t/HT.m.t/; t/R�1

dm.t/ D f .m.t/; t/ dt CK.t/ Œdz.t/ � h.m.t/; t/ dt �
dP .t/

dt
D F.m.t/; t/P .t/C P .t/FT.m.t/; t/

C L.m.t/; t/Q LT.m.t/; t/ �K.t/R KT.t/;

(7.15)

where F is the Jacobian matrix of f with elements Fij D @fi=@xj , and H is the
Jacobian matrix of h with elements Hij D @hi=@xj .

It is now easy to see that we have actually employed the linearization approx-
imation from Algorithm 5.3 here. Taking a step backwards lets us now use Algo-
rithm 5.1 to formulate the following general Gaussian approximation to the non-
linear filtering problem (see, e.g., Särkkä and Sarmavuori, 2013).

Algorithm 7.5 (Continuous-time Gaussian filter). The equations of the
continuous-time Gaussian filter are:

K.t/ D ENŒ.x �m.t//hT.x.t/; t/�R�1;

dm D ENŒf .x; t /� dt CK.t/ .dz � ENŒh.x; t /� dt /;
dP

dt
D ENŒ.x �m.t// f T.x; t /�C ENŒf .x; t / .x �m.t//T�

C ENŒL.x; t /Q LT.x; t /� �K.t/R KT.t/;

(7.16)

where the expectations are taken with respect to x � N.m.t/;P .t//. Using the
integration by parts, we can write the above equations in an analogous form to
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Algorithm 5.2 as follows:

K.t/ D P .t/ ENŒH
T.x; t /�R�1;

dm D ENŒf .x; t /� dt CK.t/ .dz � ENŒh.x; t /� dt /;
dP

dt
D ENŒF.x; t /�P .t/C P .t/ ENŒF

T.x; t /�

C ENŒL.x; t /Q LT.x; t /� �K.t/R KT.t/:

(7.17)

Various sigma-point approximations to the continuous-time filtering problem
can now be generated by replacing the Gaussian expectations above with sigma-
point approximations analogously to Algorithm 5.4. The generic form resulting
from approximating Equations (7.16) is the following.

Algorithm 7.6 (Continuous-time sigma-point filter). The equations of a generic
continuous-time sigma-point filter are:

K.t/ D
X
i

W .i/
p

P �i hT.mC
p

P �i ; t /R�1;

dm D
X
i

W .i/ f .mC
p

P �i ; t / dt

CK.t/

�
dz �

X
i

W .i/ h.mC
p

P �i ; t / dt
�
;

dP

dt
D
X
i

W .i/ f .mC
p

P �i ; t / �
T
i

p
P

T

C
X
i

W .i/
p

P �i f T.mC
p

P �i ; t /

C
X
i

W .i/L.mC
p

P �i ; t /Q LT.mC
p

P �i ; t /

�K.t/R KT.t/:

(7.18)

For details on selection of sigma-points �i and weights W .i/, see Section 5.2.
For example, by selecting the unscented transform sigma-points and weights we
get the unscented Kalman–Bucy filter (Särkkä, 2007).

7.4 Continuous/discrete-time Bayesian and Kalman fil-
tering

In applications involving digital computers and computer controlled sensors we do
not usually obtain measurements in continuous-time, but we are only able to get
samples from the underlying process at discrete instants of time. For this kind of
models continuous/discrete-time formulation of the problem is more appropriate.
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A general continuous/discrete-time filtering problem can be formulated as

dx D f .x; t / dt C L.x; t / dˇ.t/;

yk � p.yk j x.tk//;
(7.19)

where

• x.t/ 2 Rn is the state,

• yk 2 Rm is the measurement obtained at time instance tk .

• f W Rn � RC ! Rn is the drift function,

• L.x; t / 2 Rn�s is the dispersion matrix,

• ˇ.t/ 2 Rs is Brownian motion with diffusion matrix, Q 2 Rs�s ,

• p.yk j x.tk// is the measurement model, which defines the distribution (or
likelihood) of the measurement yk given the state x.tk/.

In practice, we often construct the measurement model p.yk j x.tk// as a noise
corrupted measurement of the form

yk D hk.x.tk//C rk; (7.20)

where rk � N.0;Rk/ is a Gaussian measurement noise. This thus implies that our
measurement model is given as

p.yk j x.tk// D N.yk j hk.x.tk//;Rk/: (7.21)

The model function hk can, for example, map the state to a position measurement
or into distance and direction measurements, which is more typically the case in
radar applications.

The corresponding Bayesian filtering problem is now to determine the distri-
butions

p.x.tk/ j y1; : : : ; yk/; (7.22)

which are thus the posterior distributions of the states at the measurements times
tk given the measurements obtained so far. A bit more generally, we might be
interested in determining the distributions

p.x.t/ j y1; : : : ; yk/; t 2 Œtk; tkC1/; (7.23)

which also give the distributions of the state between the last and the next mea-
surement. However, here we will only consider the former distributions although
the latter can be easily obtained from continuous/discrete filters as well (Jazwinski,
1970; Särkkä, 2006).
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Example 7.2 (Continuous/discrete-time car tracking model). Assume that we are
tracking a car as in Example 7.1 except that we obtain measurements at discrete
time instants t1; t2; : : : The measurement model can now be written as

yk D H xk C rk; H D
�
1 0 0 0

0 1 0 0

�
: (7.24)

where rk � N.0;Rk/. The dynamic and measurement models now form a
continuous/discrete-time model

dx D F x dt C L dˇ;

yk D H x.tk/C rk;

and the car tracking problem reduces to computing the conditional distribution of
the state x.t/ given the measurements y1; y2; : : : obtained before the time t . These
distributions are exactly the distributions (7.23) above.

A conceptually simple way of dealing with the continuous/discrete-time fil-
tering problem is to solve the transition densities p.x.tkC1/ j x.tk// from the
Fokker–Planck–Kolmogorov forward partial differential equation (see Section 4.3,
Theorem 4.2). The filtering problem takes the form

x.tkC1/ � p.x.tkC1/ j x.tk//;
yk � p.yk j x.tk//;

(7.25)

which is a canonical discrete-time filtering problem (Särkkä, 2013)—provided that
we introduce the notation xk , x.tk/.

The filtering distributions at times t1; t2; : : : can now be computed by start-
ing from a prior distribution p.x.t0// and by using the following Bayesian filter
recursions (see Särkkä, 2013):

• Initialization. The recursion starts from the prior distribution p.x.t0//.

• Prediction step. The predictive distribution of the state x.tk/ at the time tk ,
given the dynamic model, can be computed by the Chapman–Kolmogorov
equation

p.x.tk/ j y1; : : : ; yk�1/ DZ
p.x.tk/ j x.tk�1// p.x.tk�1/ j y1; : : : ; yk�1/ dx.tk�1/: (7.26)

• Update step. Given the measurement yk at time tk the posterior distribution
of the state x.tk/ can be computed by Bayes’ rule

p.x.tk/ j y1; : : : ; yk/ D
1

Zk
p.yk j x.tk// p.x.tk/ j y1; : : : ; yk�1/;

(7.27)
where the normalization constant Zk is given by

Zk D
Z
p.yk j x.tk// p.x.tk/ j y1; : : : ; yk�1/ dx.tk/: (7.28)
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A linear Gaussian continuous/discrete-time filtering model has the general form

dx D F.t/x dt C L.t/ dˇ;

yk D Hk x.tk/C rk;
(7.29)

where rk � N.0;Rk/ and ˇ is a Brownian motion with diffusion matrix Q. This
model is of the type which we already encountered in Example 7.2. From Sec-
tions 4.6 and 4.7 we now deduce that the corresponding discrete-time model has
the form

x.tkC1/ D Ak x.tk/C qk;

yk D Hk x.tk/C rk;
(7.30)

where qk � N.0;†k/ with Ak and †k given by Equations (4.51) and (4.53) or
in the linear time-invariant (LTI) case by (4.57) and (4.58). This model is thus a
discrete-time version of the linear Gaussian model analogously to (7.25).

Assuming that p.x.0// D N.x.t0/ j m0;P0/, the corresponding filtering solu-
tion is now given by the following Kalman filter (Kalman, 1960; Särkkä, 2013).

• Initialization. The recursion is started from the prior mean m0 and covari-
ance P0.

• Prediction step.

m�k D Ak�1mk�1;

P�k D Ak�1 Pk�1AT
k�1 C†k�1:

(7.31)

• Update step.

vk D yk �Hk m�k ;

Sk D Hk P�k HT
k CRk;

Kk D P�k HT
k S�1k ;

mk D m�k CKk vk;

Pk D P�k �Kk Sk KT
k :

(7.32)

This procedure gives the following distributions:

p.x.tk/ j y1; : : : ; yk�1/ D N.x.tk/ j m�k ;P�k /;
p.x.tk/ j y1; : : : ; yk/ D N.x.tk/ j mk;Pk/;

p.yk j y1; : : : ; yk�1/ D N.yk j Hkm�k ;Sk/:

(7.33)

Instead of first forming the equivalent discrete-time system it is possible to
derive a Bayesian filter directly for the continuous-discrete filtering problem (7.19).
The result is the following algorithm.
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• Prediction step. Solve the predicted probability density at time of the
measurement p.x.tk/ j y1; : : : ; yk�1/ by integrating the Fokker–Planck–
Kolmogorov equation (see Theorem 4.1) from the filtering density at the
previous measurement time step tk�1 to the current time tk:

@p.x; t /

@t
D �

X
i

@

@xi
Œfi .x; t/ p.x; t /�

C 1

2

X
ij

@2

@xi @xj

n
ŒL.x; t /Q LT.x; t /�ij p.x; t /

o
;

(7.34)

where we have denoted the filtering distribution as p.x; t / , p.x.t/ j
y1; : : : ; yk�1/ and the initial condition is p.x; tk�1/ , p.x.tk/ j
y1; : : : ; yk�1/.

• Update step. Use Bayes’ rule (7.27) for calculating the conditional distribu-
tion p.x.tk/ j y1; : : : ; yk/, given the new measurement yk .

The corresponding continuous/discrete Kalman filter solution to the linear Gaus-
sian model (7.29) is the following.

• Prediction step. The differential equations

dm.t/

dt
D F.t/m.t/;

dP .t/

dt
D F.t/P .t/C P .t/FT .t/C L.t/Q.t/LT .t/;

(7.35)

are integrated from the initial conditions m.tk�1/ D mk�1, P .tk�1/ D
Pk�1 to time instance tk . The predicted mean and covariance are given as
m�
k
D m.tk/ and P�

k
D P .tk/, respectively.

• Update step. The update step is the same as the discrete-time Kalman filter
update step given in Equations (7.32).

7.5 Continuous/discrete-time approximate non-linear fil-
tering

One approach to approximate non-linear continuous/discrete filtering is to approxi-
mate the transition density using Itô–Taylor or stochastic Runge–Kutta approxima-
tions discussed in the previous chapters. For example, from the Euler–Maruyama
discretization in the model (7.19) we get the approximate model

x.tkC1/ D x.tk/C f .x.tk/; tk/�t C L.x.tk/; tk/�ˇk;

yk � p.yk j x.tk//;
(7.36)
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which corresponds to a discrete-time model (7.25) with

p.x.tkC1/ j x.tk// D N.x.tkC1/ j x.tk/
C f .x.tk/; tk/�t;L.x.tk/; tk/Q LT.x.tk/; tk/�t/: (7.37)

Weak Ito–Taylor series and Runge–Kutta approximations similarly correspond
to transition density approximations with either Gaussian or binomial/trinomial
noises.

Another classical approach (see, e.g., Jazwinski, 1970) is to replace the
Fokker–Planck–Kolmogorov equation solution in Equation (7.34) with lineariza-
tion and sigma-point approximations of SDEs presented in Section (5.2). This
approach was also more recently studied in Särkkä (2006); Särkkä and Sarmavuori
(2013) and a comparison to the discretization approach above was reported in
Särkkä and Solin (2012).

7.6 Bayesian smoothing

Solving a Bayesian smoothing problem means computation of the distributions

p.x.t/ j y1; : : : ; yT /; t 2 Œt0; tT �; (7.38)

or in continuous case

p.x.t/ j YT /; t 2 Œt0; T �; (7.39)

that is, computation of the posterior distributions of the states within the range
of all measurements. For example, in the car tracking problem this corresponds
to determination of the position and velocity of the car during some past points of
time, but still by using information from all the measurements obtained so far. That
is, the smoothing problem is roughly equivalent to batch estimation of the state
although the algorithms is formulated a bit differently to gain better computational
scaling.

The solutions to these problems are classical, and reviews of the classical and
more recent methods can be found, for example, in the references Särkkä (2013)
and Särkkä and Sarmavuori (2013).

7.7 Parameter estimation

Parameter estimation in the continuous/discrete-time case (we only consider that
here) is considered with models of the form

dx D f .x; t I�/ dt C L.x; t I�/ dˇ.t/;

yk � p.yk j x.tk/I�/;
(7.40)
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where � is now a vector of unknown parameters of the system. Luckily it turns
out that provided that we can solve the filtering problem, we can also solve the
corresponding parameter estimation problem.

The basic idea is to notice that the normalization constant Zk in Equa-
tion (7.28), which is a by-product of the filtering equations, is actually

Zk.�/ D
Z
p.yk j x.tk/I�/ p.x.tk/ j y1; : : : ; yk�1I�/ dx.tk/

D p.yk j y1; : : : ; yk�1I�/:
(7.41)

Thus we can express the marginal likelihood simply as

p.y1; : : : ; yk j �/ D
Y
k

p.yk j y1; : : : ; yk�1I�/ D
Y
k

Zk.�/: (7.42)

Given the marginal likelihood the posterior distribution is given as

p.� j y1; : : : ; yk/ / p.y1; : : : ; yk j �/ p.�/; (7.43)

which can further be optimized or sampled using methods like Markov chain
Monte Carlo (MCMC). For more information the reader is referred to Särkkä
(2013) and Särkkä et al. (2014).
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Chapter 8

Further topics

8.1 Martingale properties and generators of SDEs

In this section we discuss martingale properties and generators of Itô processes
which are important concepts in theoretical analysis of SDEs. The definition of a
martingale is the following.

Definition 8.1 (Martingale). A stochastic process x.t/ with bounded expectation
EŒx.t/� <1 is called a martingale if

EŒx.t/ j Xs� D x.s/; for all t � s: (8.1)

It turns out that all Itô integrals are martingales, and this follows from the fact
that Brownian motion is a martingale as well. However, solutions to SDEs are
martingales only if the drift f .x; t / D 0. For more information on martingales and
their role in stochastic calculus reader is referred to Øksendal (2003) and Karatzas
and Shreve (1991).

Yet another useful concept in the theory of Itô processes and more general
stochastic processes is the (infinitesimal) generator which in the case of (time-
invariant) Itô diffusions is the following.

Definition 8.2 (Generator). The generator of a time-invariant stochastic process is
defined as

A�.x/ D lim
t#0

EŒ�.x.t//� � �.x.0//
t

: (8.2)

For a time-invariant Itô process defined as the solution to the SDE

dx D f .x/ dt C L.x/ dˇ; (8.3)

the generator is given as

A.�/ D
X
i

E
�
@.�/
@xi

fi .x/

�
C 1

2

X
ij

E
��

@2.�/
@xi@xj

�
ŒL.x/Q LT.x/�ij

�
(8.4)

which we in fact already encountered in Equation (4.4).
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8.2 Girsanov theorem

The purpose of this section is to present an intuitive derivation of the Girsanov
theorem, which is a very useful theorem, but in its general form, slightly abstract.
The derivation should only be considered to be an attempt to reveal the intuition
behind the theorems, and not be considered an actual proof of the theorem. The
derivation is based on considering formal probability densities of paths of Itô pro-
cesses, which is intuitive, but not really the mathematically correct way to go. To
be rigorous, we should not attempt to consider probability densities of the paths at
all, but instead consider the probability measures of the processes (cf. Øksendal,
2003).

The Girsanov theorem (Theorem 8.3) is due to Girsanov (1960), and in ad-
dition to the original article, its proper derivation can be found, for example, in
Karatzas and Shreve (1991) (see also Øksendal, 2003). The derivation of Theo-
rem 8.1 from the Girsanov theorem can be found in Särkkä and Sottinen (2008).
Here we proceed backwards from Theorem 8.1 to Theorem 8.3.

Let’s denote the whole path of the Itô process x.t/ on a time interval Œ0; t � as
follows:

Xt D fx.�/ W 0 � � � tg: (8.5)

Let x.t/ be the solution to

dx D f .x; t / dt C dˇ: (8.6)

Here we have set L.x; t / D I for notational simplicity. In fact, Girsanov theorem
can be used for general time varying L.t/ provided that L.t/ is invertible for each
t . This invertibility requirement can also be relaxed in some situations (cf. Särkkä
and Sottinen, 2008).

For any finite N , the joint probability density p.x.t1/; : : : ;x.tN // exists (pro-
vided that certain technical conditions are met) for an arbitrary finite collection of
times t1; : : : ; tN . We will now formally define the probability density of the whole
path as

p.Xt / D lim
N!1

p.x.t1/; : : : ;x.tN //; (8.7)

where the times t1; : : : ; tN need to selected such that they become dense in the
limit. In fact this density is not normalizable, but we can still define the density
though the ratio between the joint probability density of x and another process y :

p.Xt /

p.Yt /
D lim
N!1

p.x.t1/; : : : ;x.tN //

p.y.t1/; : : : ; y.tN //
: (8.8)

This is a finite quantity with a suitable choice of y . We can also denote the expec-
tation of a functional h.Xt / of the path as follows:

EŒh.Xt /� D
Z
h.Xt / p.Xt / dXt : (8.9)
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In physics this kind of integrals are called path integrals (Chaichian and Demichev,
2001a,b). Note that this notation is purely formal, because the density p.Xt / is
actually an infinite quantity. However, the expectation is indeed finite. Let’s now
compute the ratio of probability densities for a pair of processes.

Theorem 8.1 (Likelihood ratio of Itô processes). Consider the Itô processes

dx D f .x; t / dt C dˇ; x.0/ D x0;

dy D g.y ; t / dt C dˇ; y.0/ D x0;
(8.10)

where the Brownian motion ˇ.t/ has a non-singular diffusion matrix Q. Then the
ratio of the probability laws of Xt and Yt is given as

p.Xt /

p.Yt /
D Z.t/; (8.11)

where

Z.t/ D exp

 
� 1
2

Z t

0

Œf .y ; �/ � g.y ; �/�T Q�1 Œf .y ; �/ � g.y ; �/� d�

C
Z t

0

Œf .y ; �/ � g.y ; �/�T Q�1 dˇ.�/

!
(8.12)

in the sense that for an arbitrary functional h.�/ of the path from 0 to t we have

EŒh.Xt /� D EŒZ.t/ h.Yt /�; (8.13)

where the expectation is over the randomness induced by the Brownian motion.
Furthermore, under the probability measure defined through the transformed prob-
ability density

Qp.Xt / D Z.t/ p.Xt / (8.14)

the process

Q̌ D ˇ �
Z t

0

Œf .y ; �/ � g.y ; �/� d� (8.15)

is a Brownian motion with diffusion matrix Q.

Derivation. Let’s discretize the time interval Œ0; t � intoN time steps 0 D t0 < t1 <
: : : < tN D t , where tiC1 � ti D �t , and let’s denote xi D x.ti / and yi D y.ti /.
When �t is small, we have

p.xiC1 j xi / D N.xiC1 j xi C f .xi ; t /�t;Q�t/;

q.yiC1 j yi / D N.yiC1 j yi C g.yi ; t /�t;Q�t/:
(8.16)
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The joint density p of x1; : : : ;xN can then be written in the form

p.x1; : : : ;xN / D
Y
i

N.xiC1 j xi C f .xi ; t /�t;Q�t/

D j2� Q dt j�N=2 exp

 
� 1
2

X
i

.xiC1 � xi /
T .Q�t/�1.xiC1 � xi /

� 1
2

X
i

f T.xi ; ti /Q�1f .xi ; ti /�t C
X
i

f T.xi ; ti /Q�1.xiC1 � xi /

!

(8.17)

For the joint density q of y1; : : : ; yN we similarly get

q.y1; : : : ; yN / D
Y
i

N.yiC1 j yi C g.yi ; t /�t;Q�t/

D j2� Q dt j�N=2 exp

 
� 1
2

X
i

.yiC1 � yi /
T .Q�t/�1.yiC1 � yi /

� 1
2

X
i

gT.yi ; ti /Q�1g.yi ; ti /�t C
X
i

gT.yi ; ti /Q�1.yiC1 � yi /

!

(8.18)

For any function hN we have

Z
hN .x1; : : : ;xN / p.x1; : : : ;xN / d.x1; : : : ;xN /

D
Z
hN .x1; : : : ;xN /

p.x1; : : : ;xN /

q.x1; : : : ;xN /
q.x1; : : : ;xN / d.x1; : : : ;xN /

D
Z
hN .y1; : : : ; yN /

p.y1; : : : ; yN /

q.y1; : : : ; yN /
q.y1; : : : ; yN / d.y1; : : : ; yN /:

(8.19)

Thus we still only need to consider the following:

p.y1; : : : ; yN /

q.y1; : : : ; yN /

D exp

 
� 1
2

X
i

f T.yi ; ti /Q�1f .yi ; ti /�t C
X
i

f T.yi ; ti /Q�1.yiC1 � yi /

C 1

2

X
i

gT.yi ; ti /Q�1g.yi ; ti /�t �
X
i

gT.yi ; ti /Q�1.yiC1 � yi /

!
:

(8.20)
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In the limit N !1 the exponential becomes

� 1
2

X
i

f T.yi ; ti /Q�1f .yi ; ti /�t C
X
i

f T.yi ; ti /Q�1.yiC1 � yi /

C 1

2

X
i

gT.yi ; ti /Q�1g.yi ; ti /�t �
X
i

gT.yi ; ti /Q�1.yiC1 � yi /

! �1
2

Z t

0

f T.y ; �/Q�1f .y ; �/ d� C
Z t

0

f T.y ; �/Q�1 dy

C 1

2

Z t

0

gT.y ; �/Q�1 g.y ; �/ d� �
Z t

0

gT.y ; �/Q�1 dy

D �1
2

Z t

0

Œf .y ; �/ � g.y ; �/�T Q�1 Œf .y ; �/ � g.y ; �/� d�

C
Z t

0

Œf .y ; �/ � g.y ; �/�T Q�1 dˇ;

(8.21)

where we have substituted dy D g.y ; t / dt C dˇ. Thus this gives the expression
for Z.t/. We can now solve the Brownian motion ˇ from the first SDE as

ˇ.t/ D x.t/ � x0 �
Z t

0

f .x; �/ d�: (8.22)

The expectation of an arbitrary functional h of the Brownian motion can now be
expressed as

EŒh.Bt /� D E
�
h

��
x.s/ � x0 �

Z s

0

f .x; �/ d� W 0 � s � t
���

D E
�
Z.t/ h

��
y.s/ � x0 �

Z s

0

f .y ; �/ d� W 0 � s � t
���

D E
�
Z.t/ h

��Z s

0

g.y ; �/C ˇ.t/ �
Z s

0

f .y ; �/ d� W 0 � s � t
���

D E
�
Z.t/ h

��
ˇ.t/ �

Z s

0

Œf .y ; �/ � g.y ; �/� d� W 0 � s � t
���

;

(8.23)

which implies that ˇ.t/ � R s0 Œf .y ; �/ � g.y ; �/� d� has the statistics of Brownian
motion provided that we scale the probability density with Z.t/.

Remark 8.1. We need to have

E
�

exp
�Z t

0

f .y ; �/T Q�1 f .y ; �/ d�
��

<1;

E
�

exp
�Z t

0

g.y ; �/T Q�1 g.y ; �/ d�
��

<1;
(8.24)

because otherwise Z.t/ will be zero.
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Let’s now write a slightly more abstract version of the above theorem which
is roughly equivalent to the actual Girsanov theorem in the form that it is usually
found in stochastics literature.

Theorem 8.2 (Girsanov I). Let �.t/ be a process which is driven by a standard
Brownian motion ˇ.t/ such that

E
�Z t

0

�T.�/�.�/ d�
�
<1; (8.25)

then under the measure defined by the formal probability density

Qp.‚t / D Z.t/ p.‚t /; (8.26)

where ‚t D f�.�/ W 0 � � � tg, and

Z.t/ D exp
�Z t

0

�T.�/ dˇ � 1
2

Z t

0

�T.�/�.�/ d�
�
; (8.27)

the following process is a standard Brownian motion:

Q̌.t/ D ˇ.t/ �
Z t

0

�.�/ d�: (8.28)

Derivation. Select �.t/ D f .y ; t / � g.y ; t / and Q D I in the previous theorem.

In fact, the above derivation does not yet guarantee that any selected �.t/ can
be constructed like this. But still, it reveals the link between the likelihood ratio
and the Girsanov theorem. Despite the limited derivation the above theorem is
generally true. The detailed technical conditions can be found in the original article
of Girsanov (1960).

However, the above theorem is still in the heuristic notation in terms of the
formal probability densities of paths. In the proper formulation of the theorem �

being “driven” by Brownian motion actually means that the process � is adapted
to the Brownian motion. To be more explicit in notation, it is also common to write
down the event space element ! 2 � as the argument of ˇ.!; t/. The processes
�.!; t/ andZ.!; t/ should then be functions of the event space element as well. In
fact, �.!; t/ should be non-anticipative (not looking into the future) functional of
Brownian motion, that is, adapted to the natural filtration Ft of the Brownian mo-
tion. Furthermore, the ratio of probability densities is in fact the Radon–Nikodym
derivative of the measure QP.!/ with respect to the other measure P.!/. With these
notations the Girsanov theorem looks like the following which is roughly the for-
mat found in stochastic books.



8.3 Applications of the Girsanov theorem 107

Theorem 8.3 (Girsanov II). Let ˇ.!; t/ be a standard n-dimensional Brownian
motion under the probability measure P. Let � W � � RC 7! Rn be an adapted
process such that the process Z defined as

Z.!; t/ D exp
�Z t

0

�T.!; t/ dˇ.!; t/ � 1
2

Z t

0

�T.!; t/�.!; t/ dt
�
; (8.29)

satisfies EŒZ.!; t/� D 1. Then the process

Q̌.!; t/ D ˇ.!; t/ �
Z t

0

�.!; �/ d� (8.30)

is a standard Brownian motion under the probability measure QP defined via the
relation

E

"
d QP
dP
.!/

ˇ̌
ˇ̌Ft

#
D Z.!; t/; (8.31)

where Ft is the natural filtration of the Brownian motion ˇ.!; t/.

8.3 Applications of the Girsanov theorem

The Girsanov theorem can be used for eliminating the drift functions and for find-
ing weak solutions to SDEs by changing the measure suitably (see, e.g., Øksendal,
2003; Särkkä, 2006). The basic idea in drift removal is to define �.t/ in terms of
the drift function suitably such that in the transformed SDE the drift cancels out.
Construction of weak solutions is based on the result the process Q̌.t/ is a Brow-
nian motion under the transformed measure. We can select �.t/ such that there
is another easily constructed process which then serves as the corresponding Qx.t/
which solves the SDE driven by this new Brownian motion.

The Girsanov theorem is also important in stochastic filtering theory (see
Ch. 7). The theorem can be used as the starting point of deriving the so-called
Kallianpur–Striebel formula (Bayes’ rule in continuous time). From this we can
derive the whole stochastic filtering theory. The formula can also be used to
form Monte Carlo (particle) methods to approximate filtering solutions. For de-
tails, see Crisan and Rozovskii (2011). In so called continuous-discrete filtering
(continuous-time dynamics, discrete-time measurements) the theorem has turned
out to be useful in constructing importance sampling and exact sampling methods
for conditioned SDEs (Beskos et al., 2006; Särkkä and Sottinen, 2008).

8.4 Feynman–Kac formulae and parabolic PDEs

Feynman–Kac formula (see, e.g., Øksendal, 2003) gives a link between solutions
of parabolic partial differential equations (PDEs) and certain expected values of
SDE solutions. In this section we shall present the general idea by deriving the
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scalar Feynman–Kac equation. The multidimensional version could be obtained in
an analogous way.

Let’s start by considering the following PDE for function u.x; t/:

@u

@t
C f .x/ @u

@x
C 1

2
�2.x/

@2u

@x2
D 0;

u.x; T / D ‰.x/;
(8.32)

where f .x/, �.x/ and‰.x/ are some given functions and T is a fixed time instant.
Let’s define a process x.t/ on the interval Œt 0; T � as follows:

dx D f .x/ dt C �.x/ dˇ; x.t 0/ D x0; (8.33)

that is, the process starts from a given x0 at time t 0. Let’s now use the Itô formula
for u.x; t/, and recall that it solves the PDE (8.32) which gives:

du D @u

@t
dt C @u

@x
dx C 1

2

@2u

@x2
dx2

D @u

@t
dt C @u

@x
f .x/ dt C @u

@x
�.x/ dˇ C 1

2

@2u

@x2
�2.x/ dt

D
�
@u

@t
C f .x/ @u

@x
C 1

2
�2.x/

@2u

@x2

�
„ ƒ‚ …

D0

dt C @u

@x
�.x/ dˇ

D @u

@x
�.x/ dˇ:

(8.34)

Integrating from t 0 to T now gives

u.x.T /; T / � u.x.t 0/; t 0/ D
Z T

t 0

@u

@x
�.x/ dˇ; (8.35)

and by substituting the initial and terminal terms we get:

‰.x.T // � u.x0; t 0/ D
Z T

t 0

@u

@x
�.x/ dˇ: (8.36)

We can now take expectations from both sides and recall that the expectation of
any Itô integral is zero. Thus after rearranging we get

u.x0; t 0/ D EŒ‰.x.T //�: (8.37)

This means that we can solve the value of u.x0; t 0/ for arbitrary x0 and t 0 by starting
the process in Equation (8.33) from x0 and time t 0 and letting it run until time T .
The solution is then the expected value of ‰.x.T // over the process realizations.

The above idea can also be generalized to equations of the form

@u

@t
C f .x/ @u

@x
C 1

2
�2.x/

@2u

@x2
� r u D 0;

u.x; T / D ‰.x/;
(8.38)
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where r is a positive constant. The corresponding SDE will be the same, but we
need to apply the Itô formula to exp.�r t/ u.x; t/ instead of u.x; t/. The resulting
Feynman–Kac equation is

u.x0; t 0/ D exp.�r .T � t 0// EŒ‰.x.T //�: (8.39)

We can generalize even more and allow r to depend on x, include additional con-
stant term to the PDE and so on. Anyway, the idea remains the same.

8.5 Solving boundary value problems with Feynman–Kac

The Feynman–Kac equation can also be used for computing solutions to bound-
ary value problems which do not include time variables at all (see, e.g., Øksendal,
2003). Also in this section we only consider the scalar case, but analogous deriva-
tion works for the multi-dimensional case as well. Furthermore, proper derivation
of the results in this section would need us to define the concept of random stop-
ping time, which we have not done and thus in this sense the derivation is quite
heuristic.

Let’s consider the following boundary value problem for a function u.x/ de-
fined on some finite domain � with boundary @�:

f .x/
@u

@x
C 1

2
�2.x/

@2u

@x2
D 0

u.x/ D ‰.x/; x 2 @�:
(8.40)

Again, let’s define a process x.t/ in the same way as in Equation (8.33). Further,
the application of the Itô formula to u.x/ gives

du D @u

@x
dx C 1

2

@2u

@x2
dx2

D @u

@x
f .x/ dt C @u

@x
�.x/ dˇ C 1

2

@2u

@x2
�2.x/ dt

D
�
f .x/

@u

@x
C 1

2
�2.x/

@2u

@x2

�
„ ƒ‚ …

D0

dt C @u

@x
�.x/ dˇ

D @u

@x
�.x/ dˇ:

(8.41)

Let Te be the first exit time of the process x.t/ from the domain �. Integration
from t 0 to Te gives

u.x.Te// � u.x.t 0// D
Z Te

t 0

@u

@x
�.x/ dˇ: (8.42)
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But the value of u.x/ on the boundary is ‰.x/ and x.t 0/ D x0 thus we have

‰.x.Te// � u.x0/ D
Z Te

t 0

@u

@x
�.x/ dˇ: (8.43)

Taking expectation and rearranging then gives

u.x0/ D EŒ‰.x.Te//�: (8.44)

That is, the value u.x0/ with arbitrary x0 can be obtained by starting the process
x.t/ from x.t 0/ D x0 in Equation (8.33) at arbitrary time t 0 and computing the
expectation of ‰.x.Te// over the first exit points of the process x.t/ from the
domain �.

Again, we can generalize the derivation to equations of the form

f .x/
@u

@x
C 1

2
�2.x/

@2u

@x2
� r u D 0;
u.x/ D ‰.x/; x 2 @�;

(8.45)

which gives

u.x0/ D exp.�r .T � t 0// EŒ‰.x.Te//�: (8.46)

8.6 Series expansions of Brownian motion

If we fix the time interval Œt0; t1� then on that interval standard Brownian motion
has a Karhunen–Loeve series expansion of the form (see, e.g., Luo, 2006)

ˇ.t/ D
1X
iD1

zi

Z t

t0

�i .�/ d�; (8.47)

where zi � N.0; 1/, i D 1; 2; : : : are independent random variables and f�i .t/g is
an orthonormal basis of the Hilbert space with inner product

hf; gi D
Z t1

t0

f .�/ g.�/ d�: (8.48)

The Gaussian random variables are then just the projections of the Brownian mo-
tion onto the basis functions:

zi D
Z t

t0

�i .�/ dˇ.�/: (8.49)

The series expansion can be interpreted as the following representation for the
differential of Brownian motion:

dˇ.t/ D
1X
iD1

zi �i .t/ dt: (8.50)
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We can now consider approximating the following equation by substituting a finite
number of terms from the above sum for the term dˇ.t/ into the scalar SDE

dx D f .x; t/ dt C L.x; t/ dˇ: (8.51)

In the limitN !1we could then expect to get the exact solution. However, it has
been shown by Wong and Zakai (1965) that this approximation actually converges
to the Stratonovich SDE

dx D f .x; t/ dt C L.x; t/ ı dˇ: (8.52)

That is, we can approximate the above Stratonovich SDE with an equation of the
form

dx D f .x; t/ dt C L.x; t/
NX
iD1

zi �i .t/ dt; (8.53)

which actually is just an ordinary differential equation

dx
dt
D f .x; t/C L.x; t/

NX
iD1

zi �i .t/; (8.54)

and the solution converges to the exact solution, when N ! 1. The solution
of an Itô SDE can be approximated by first converting it into the corresponding
Stratonovich equation and then approximating the resulting equation.

Now an obvious extension would be to consider a multivariate version of this
approximation. Because any multivariate Brownian motion can be formed as a
linear combination of independent standard Brownian motions, it is possible to
form analogous multivariate approximations. Unfortunately, in the multivariate
case the approximation does not generally converge to the Stratonovich solution.
There exists basis functions for which this is true (e.g., Haar wavelets), but the
convergence is not generally guaranteed.

Another type of series expansion is the so-called Wiener chaos expansion (see,
e.g., Cameron and Martin, 1947; Luo, 2006). Assume that we indeed are able
to solve the Equation (8.54) with any given countably infinite number of values
fz1; z2; : : :g. Then we can see the solution as a function (or functional) of the form

x.t/ D U.t I z1; z2; : : :/: (8.55)

The Wiener chaos expansion is the multivariate Fourier–Hermite series for the right
hand side above. That is, it is a polynomial expansion of a generic functional of
Brownian motion in terms of Gaussian random variables. Hence the expansion is
also called polynomial chaos.
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8.7 Fourier analysis of LTI SDEs

One way to study linear time-invariant SDEs is in Fourier domain. In that case a
useful quantity is the spectral density, which is the squared absolute value of the
Fourier transform of the process. For example, if the Fourier transform of a scalar
process x.t/ is X.i !/, then its spectral density is

Sx.!/ D jX.i !/j2 D X.i !/X.�i !/; (8.56)

In the case of a vector process x.t/ we have the spectral density matrix

Sx.!/ D X.i !/XT.�i !/: (8.57)

Now if w.t/ is a white noise process with spectral density Q, it really means that
the squared absolute value of the Fourier transform is Q:

Sw.!/ DW .i !/W T.�i !/ D Q: (8.58)

However, one needs to be extra careful when using this, because the Fourier trans-
form of a white noise process is defined only as a kind of limit of smooth pro-
cesses. Fortunately, as long as we only work with linear systems this definition
indeed works. And it provides a useful tool for determining covariance functions
of stochastic differential equations.

The covariance function of a zero mean stationary stochastic process x.t/ can
be defined as

Cx.�/ D EŒx.t/xT.t C �/�: (8.59)

This function is independent of t , because we have assumed that the process is
stationary. This means that formally we think that the process has been started at
time t0 D �1 and it has reached its stationary stage such that its statistic no longer
depend on the absolute time t , but only the difference of time steps � .

The celebrated Wiener–Khinchin theorem says that the covariance function is
the inverse Fourier transform of the spectral density:

Cx.�/ D F �1ŒSx.!/�: (8.60)

For the white noise process we get

Cw.�/ D F �1ŒQ� D Q F �1Œ1� D Q ı.�/ (8.61)

as expected.
Let’s now consider the stochastic differential equation

dx.t/

dt
D F x.t/C L w.t/; (8.62)

and assume that it has already reached its stationary stage and hence it also has zero
mean. Note that the stationary stage can only exist of the matrix F corresponds to
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a stable system, which means that all its eigenvalues have negative real parts. Let’s
now assume that it is indeed the case.

Similarly as in Section 1.4 we get the following solution for the Fourier trans-
form X.i !/ of x.t/:

X.i !/ D ..i !/ I � F/�1 L W .i !/; (8.63)

where W .i !/ is the formal Fourier transform of white noise w.t/. Note that
this transform does not strictly exist, because a white noise process is not square-
integrable, but let’s now pretend that it does. This problem was covered in more
detail in Chapter 4.

The spectral density of x.t/ is now given by the matrix

Sx.!/ D .F � .i !/ I/�1 L W .i !/W T.�i !/LT .F C .i !/ I/�T

D .F � .i !/ I/�1 L Q LT .F C .i !/ I/�T (8.64)

Thus the covariance function is

Cx.�/ D F �1Œ.F � .i !/ I/�1 L Q LT .F C .i !/ I/�T�: (8.65)

Although this looks complicated, it provides useful means to compute the covari-
ance function of a solution to stochastic differential equation without first explicitly
solving the equation.

Note that because Cx.0/ D P1 by Equation (8.93), where P1 is the stationary
solution considered in the previous section, we also get the following interesting
identity:

P1 D 1

2�

Z 1
�1

.F � .i !/ I/�1 L Q LT .F C .i !/ I/�T� d!; (8.66)

which can sometimes be used for computing solutions to stationary (algebraic)
Lyapunov equations.

Example 8.1 (Spectrum and covariance of Ornstein–Uhlenbeck). Let’s consider
the following scalar SDE (Ornstein–Uhlenbeck process):

dx.t/
dt
D ��x.t/C w.t/; (8.67)

where � > 0. Taking formal Fourier transform from both sides yields

.i !/X.i !/ D ��X.i !/CW.i !/; (8.68)

and solving for X.i !/ gives

X.i !/ D W.i !/

.i !/C �: (8.69)
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Thus we get the following spectral density

Sx.!/ D jW.i !/j2
j.i !/C �j2 D

q

!2 C �2 ; (8.70)

where q is the spectral density of the white noise input process w.t/. The Fourier
transform then leads to the covariance function

C.�/ D q

2�
exp.�� j� j/: (8.71)

Furthermore we get

P1 D 1

2�

Z 1
1

q

�2 C !2 d! D q

2 �
; (8.72)

which indeed is the solution to the stationary Lyapynov equation

dP
dt
D �2 �P C q D 0: (8.73)

As pointed out above, the analysis in this section has not been entirely rigorous,
because we had to resort to computation of the Fourier transform of white noise

W.i !/ D
Z 1
�1

w.t/ exp.�i ! t/ dt; (8.74)

which is not well-defined as an ordinary integral. The obvious substitution dˇ D
w.t/ dt will not help us either, because we would still have trouble in defining
what is meant by this resulting highly oscillatory stochastic process.

The problem can be solved by using the integrated Fourier transform as fol-
lows. It can be shown (see, e.g., Van Trees, 1968) that every stationary Gaussian
process x.t/ has a representation of the form

x.t/ D
Z 1
0

exp.i ! t/ d�.i !/; (8.75)

where ! 7! �.i !/ is some complex valued Gaussian process with independent
increments. Then the mean squared difference EŒj�.!kC1/ � �.!k/j2� roughly
corresponds to the mean power on the interval Œ!k; !kC1�. The spectral density
then corresponds to a function S.!/ such that

EŒj�.!kC1/ � �.!k/j2� D
1

�

Z !kC1

!k

S.!/ d!; (8.76)

where the constant factor results from two-sidedness of S.!/ and from the constant
factor .2�/�1 in the inverse Fourier transform.

By replacing the Fourier transform in the above analysis with the integrated
Fourier transform, it is possible derive the spectral densities of covariance func-
tions of LTI SDEs without resorting to the formal Fourier transform of white noise.
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However, the results remain exactly the same. For more information on this proce-
dure, see, for example, Van Trees (1968).

Another way to treat the problem is to recall that the solution of a LTI ODE of
the form

dx

dt
D F x.t/C L u.t/; (8.77)

where u.t/ is a smooth process, approaches the solution of the corresponding LTI
SDE in Stratonovich sense when the correlation length of u.t/ goes to zero. Thus
we can start by replacing the formal white noise process with a Gaussian process
with covariance function

Cu.� I�/ D Q
1p
2� �2

exp
�
� 1

2�2
�2
�

(8.78)

which in the limit �! 0 gives the white noise:

lim
�!0

Cu.� I�/ D Q ı.�/: (8.79)

If we now carry out the derivation in Section 8.7, we end up into the following
spectral density:

Sx.!I�/ D .F � .i !/ I/�1 L Q exp
�
��

2

2
!2
�

LT .F C .i !/ I/�T : (8.80)

We can now compute the limit �! 0 to get the spectral density corresponding to
the white noise input:

Sx.!/ D lim
�!0

Sx.!I�/ D .F � .i !/ I/�1 L Q LT .F C .i !/ I/�T ; (8.81)

which agrees with the result obtained in Section 8.7. This also implies that the
covariance function of x is indeed

Cx.�/ D F �1Œ.F � .i !/ I/�1 L Q LT .F C .i !/ I/�T�: (8.82)

8.8 Steady state solutions of linear SDEs

In Section (8.7) we considered steady-state solutions of LTI SDEs of the form

dx D F x dt C L dˇ; (8.83)

via Fourier domain methods. However, another way of approaching steady state
solutions is to notice that at the steady state, the time derivatives of mean and
covariance should be zero:

dm.t/

dt
D F m.t/ D 0; (8.84)

dP .t/

dt
D F P .t/C P .t/FT C L Q LT D 0: (8.85)
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The first equation implies that the stationary mean should be identically zero
m1 D 0. Here we use the subscript 1 to mean the steady state value which
in a sense corresponds to the value after an infinite duration of time. The second
equation above leads to so called the Lyapunov equation, which is a special case of
so called algebraic Riccati equations (AREs):

F P1 C P1 FT C L Q LT D 0: (8.86)

The steady-state covariance P1 can be algebraically solved from the above equa-
tion. Note that although the equation is linear in P1 it cannot be solved via simple
matrix inversion, because the matrix F appears on the left and right hand sides of
the covariance. Furthermore F is not usually invertible. However, most commer-
cial mathematics software (e.g., Matlab) have built-in routines for solving this type
of equations numerically.

Let’s now use this result to derive the equation for the steady state covariance
function of LTI SDE. The general solution of LTI SDE is

x.t/ D exp .F .t � t0// x.t0/C
Z t

t0

exp .F .t � �// L dˇ.�/: (8.87)

If we let t0 ! �1 then this becomes (note that x.t/ becomes zero mean):

x.t/ D
Z t

�1

exp .F .t � �// L dˇ.�/: (8.88)

The covariance function is now given as

EŒx.t/xT.t 0/�

D E

8<
:
�Z t

�1

exp .F .t � �// L dˇ.�/
� "Z t 0

�1

exp
�
F .t 0 � � 0/� L dˇ.� 0/

#T
9=
;

D
Z min.t 0;t/

�1

exp .F .t � �// L Q LT exp
�
F .t 0 � �/�T d�:

(8.89)

But we already know the following:

P1 D
Z t

�1

exp .F .t � �// L Q LT exp .F .t � �//T d�; (8.90)

which, by definition, should be independent of t . We now get:
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• If t � t 0, we have

EŒx.t/xT.t 0/�

D
Z t

�1

exp .F .t � �// L Q LT exp
�
F .t 0 � �/�T d�

D
Z t

�1

exp .F .t � �// L Q LT exp
�
F .t 0 � t C t � �/�T d�

D
Z t

�1

exp .F .t � �// L Q LT exp .F .t � �//T d� exp
�
F .t 0 � t /�T

D P1 exp
�
F .t 0 � t /�T : (8.91)

• If t > t 0, we get similarly

EŒx.t/xT.t 0/�

D
Z t 0

�1

exp .F .t � �// L Q LT exp
�
F .t 0 � �/�T d�

D exp
�
F .t � t 0/�

Z t 0

�1

exp .F .t � �// L Q LT exp
�
F .t 0 � �/�T d�

D exp
�
F .t � t 0/� P1: (8.92)

Thus the stationary covariance function C.�/ D EŒx.t/xT.tC�/� can be expressed
as

C.�/ D
(

P1 exp .F �/T ; if � � 0
exp .�F �/ P1; if � < 0:

(8.93)

It is also possible to find an analogous representation for the covariance functions
of time-varying linear SDEs (Van Trees, 1971).
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