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Preface

The purpose of these notes is to provide an introduction to to stochastic differential
equations (SDEs) from applied point of view. Because the aim is in applications,
much more emphasis is put into solution methods than to analysis of the theoretical
properties of the equations. From pedagogical point of view the purpose of these
notes is to provide an intuitive understanding in what SDEs are all about, and if
the reader wishes to learn the formal theory later, he/she can read, for example, the
brilliant books of Øksendal (2003) and Karatzas and Shreve (1991).

The pedagogical aim is also to overcome one slight disadvantage in many SDE
books (e.g., the above-mentioned ones), which is that they lean heavily on measure
theory, rigorous probability theory, and to the theory martingales. There is nothing
wrong in these theories—they are very powerful theories and everyone should in-
deed master them. However, when these theories are explicitly used in explaining
SDEs, a lot of technical details need to be taken care of. When studying SDEs
for the first time this tends to blur the basic ideas and intuition behind the theory.
In this book, with no shame, we trade rigour to readability when treating SDEs
completely without measure theory.

In this book, we also aim to present a unified overview of numerical approxima-
tion methods for SDEs. Along with the Itô–Taylor series based simulation methods
(Kloeden and Platen, 1999; Kloeden et al., 1994) we also present Gaussian approx-
imation based methods which have and are still used a lot in the context of optimal
filtering (Jazwinski, 1970; Maybeck, 1982; Särkkä, 2007; Särkkä and Sarmavuori,
2013). We also discuss Fourier domain and basis function based methods which
have commonly been used in the context of telecommunication (Van Trees, 1968;
Papoulis, 1984).
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Chapter 1

Some Background on Ordinary
Differential Equations

1.1 What is an ordinary differential equation?

An ordinary differential equation (ODE) is an equation, where the unknown quan-
tity is a function, and the equation involves derivatives of the unknown function.
For example, the second order differential equation for a forced spring (or, e.g.,
resonator circuit in telecommunications) can be generally expressed as

d2x.t/

dt2
C !

dx.t/

dt
C "2 x.t/ D w.t/: (1.1)

where " and ! are constants which determine the resonant angular velocity and
damping of the spring. The force w.t/ is some given function which may or may
not depend on time. In this equation the position variable x is called the dependent
variable and time t is the independent variable. The equation is of second or-
der, because it contains the second derivative and it is linear, because x.t/ appears
linearly in the equation. The equation is inhomogeneous, because it contains the
forcing term w.t/. This inhomogeneous term will become essential in later chap-
ters, because replacing it with a random process leads to a stochastic differential
equation.

To actually solve the differential equation it is necessary to know the initial con-
ditions of the differential equation. In this case it means that we need to know the
spring position x.t0/ and velocity dx.t0/=dt at some fixed initial time t0. Given
these initial values, there is a unique solution to the equation (provided that w.t/ is
continuous). Instead of initial conditions, we could also fix some other (boundary)
conditions of the differential equation to get a unique solution, but here we shall
only consider differential equations with given initial conditions.

Note that it is common not to write the dependencies of x and w on t explicitly,
and write the equation as

d2x

dt2
C !

dx

dt
C "2 x D w: (1.2)
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Although this sometimes is misleading, this “ink saving” notation is very com-
monly used and we shall also employ it here whenever there is no risk of confusion.
Furthermore, because in these notes we only consider ordinary differential equa-
tions, we often drop the word “ordinary” and just talk about differential equations.

Time derivatives are also sometimes denoted with dots over the variable such
as Px D dx=dt , Rx D d2x

ı
dt2 , and so on. In this Newtonian notation the above

differential equation would be written as

Rx C ! Px C "2 x D w: (1.3)

Differential equations of an arbitrary order n can (almost) always be converted into
vector differential equations of order one. For example, in the spring model above,
if we define a state variable as x.t/ D .x1; x2/ D .x.t/; dx.t/=dt /, we can rewrite
the above differential equation as first order vector differential equation as follows:

!
dx1.t/= dt

dx2.t/= dt

"

„ ƒ‚ …
dx.t/=dt

D
!

0 1

!"2 !!

" !
x1.t/

x2.t/

"

„ ƒ‚ …
f .x.t//

C
!

0

1

"

„ƒ‚…
L

w.t/: (1.4)

The above equation can be seen to be a special case of models of the form

dx.t/

dt
D f .x.t/; t/ C L.x.t/; t/ w.t/; (1.5)

where the vector valued function x.t/ 2 Rn is generally called the state of the
system, and w.t/ 2 Rs is some (vector valued) forcing function, driving function
or input to the system. Note that we can absorb the second term on the right to the
first term to yield

dx.t/

dt
D f .x.t/; t/; (1.6)

and in that sense Equation (1.5) is slightly redundant. However, the form (1.5)
turns out to be useful in the context of stochastic differential equations and thus it
is useful to consider it explicitly.

The first order vector differential equation representation of an nth differential
equation is often called state-space form of the differential equation. Because nth
order differential equations can always be converted into equivalent vector valued
first order differential equations, it is convenient to just consider such first order
equations instead of considering nth order equations explicitly. Thus in these notes
we develop the theory and solution methods only for first order vector differen-
tial equations and assume that nth order equations are always first converted into
equations of this class.

The spring model in Equation (1.4) is also a special case of linear differential
equations of the form

dx.t/

dt
D F.t/ x.t/ C L.t/ w.t/; (1.7)
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which is a very useful class of differential equations often arising in applications.
The usefulness of linear equations is that we can actually solve these equations
unlike general non-linear differential equations. This kind of equations will be
analyzed in the next section.

1.2 Solutions of linear time-invariant differential equations

Consider the following scalar linear homogeneous differential equation with a fixed
initial condition at t D 0:

dx

dt
D f x; x.0/ D given; (1.8)

where f is a constant. This equation can now be solved, for example, via sepa-
ration of variables, which in this case means that we formally multiply by dt and
divide by x to yield

dx

x
D f dt: (1.9)

If we now integrate left hand side from x.0/ to x.t/ and right hand side from 0 to
t , we get

ln x.t/ ! ln x.0/ D f t; (1.10)

or

x.t/ D exp.f t/ x.0/: (1.11)

Another way of arriving to the same solution is by integrating both sides of the
original differential equation from 0 to t . Because

R t
0 dx=dt dt D x.t/ ! x.0/, we

can then express the solution x.t/ as

x.t/ D x.0/ C
Z t

0
f x.#/ d#: (1.12)

We can now substitute the right hand side of the equation for x inside the integral,
which gives:

x.t/ D x.0/ C
Z t

0
f

#
x.0/ C

Z !

0
f x.#/ d#

$
d#

D x.0/ C f x.0/

Z t

0
d# C

“ t

0

f 2 x.#/ d#2

D x.0/ C f x.0/ t C
“ t

0

f 2 x.#/ d#2:

(1.13)
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Doing the same substitution for x.t/ inside the last integral further yields

x.t/ D x.0/ C f x.t0/ t C
“ t

0

f 2 Œx.0/ C
Z !

0
f x.#/ d#$ d#2

D x.0/ C f x.0/ t C f 2 x.0/

“ t

0

d#2 C
• t

0

f 3 x.#/ d#3

D x.0/ C f x.0/ t C f 2 x.0/
t2

2
C
• t

0

f 3 x.#/ d#3:

(1.14)

It is easy to see that repeating this procedure yields to the solution of the form

x.t/ D x.0/ C f x.0/ t C f 2 x.0/
t2

2
C f 3 x.0/

t3

6
C : : :

D
!

1 C f t C f 2 t2

2Š
C f 3 t3

3Š
C : : :

"
x.0/:

(1.15)

The series in the parentheses can be recognized to be the Taylor series for exp.f t/.
Thus, provided that the series actually converges (it does), we again arrive at the
solution

x.t/ D exp.f t/ x.0/ (1.16)

The multidimensional generalization of the homogeneous linear differential equa-
tion (1.8) is an equation of the form

dx

dt
D F x; x.0/ D given; (1.17)

where F is a constant (time-independent) matrix. For this multidimensional equa-
tion we cannot use the separation of variables method, because it only works for
scalar equations. However, the second series based approach indeed works and
yields to a solution of the form

x.t/ D
!

I C F t C F2 t2

2Š
C F3 t3

3Š
C : : :

"
x.0/: (1.18)

The series in the parentheses now can be seen to be a matrix generalization of the
exponential function. This series indeed is the definition of the matrix exponential:

exp.F t / D I C F t C F2 t2

2Š
C F3 t3

3Š
C : : : (1.19)

and thus the solution to Equation (1.17) can be written as

x.t/ D exp.F t / x.0/: (1.20)

Note that the matrix exponential cannot be computed by computing scalar expo-
nentials of the individual elements in matrix F t , but it is a completely different
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function. Sometimes the matrix exponential is written as expm.F t / to distinguish
it from the elementwise computation definition, but here we shall use the common
convention to simply write it as exp.F t /. The matrix exponential function can
be found as a built-in function in most commercial and open source mathematical
software packages. In addition to this kind of numerical solution, the exponential
can be evaluated analytically, for example, by directly using the Taylor series ex-
pansion, by using the Laplace or Fourier transform, or via the Cayley–Hamilton
theorem (Åström and Wittenmark, 1996).

Example 1.1 (Matrix exponential). To illustrate the difference of the matrix expo-
nential and elementwise exponential, consider the equation

d2x

dt2
D 0; x.0/ D given; .dx=dt /.0/ D given; (1.21)

which in state space form can be written as

dx

dt
D
!

0 1

0 0

"

„ ƒ‚ …
F

x; x.0/ D given; (1.22)

where x D .x; dx= dt /. Because Fn D 0 for n > 1, the matrix exponential is
simply

exp.F t / D I C F t D
!

1 t

0 1

"
(1.23)

which is completely different from the elementwise matrix:
!

1 t

0 1

"
¤
!

exp.0/ exp.1/

exp.0/ exp.0/

"
D
!

1 e

1 1

"
(1.24)

Let’s now consider the following linear differential equation with inhomoge-
neous term on the right hand side:

dx.t/

dt
D F x.t/ C L w.t/; (1.25)

and where the matrices F and L are constant. For inhomogeneous equations the
solution methods are quite few especially if we do not want to restrict ourselves to
specific kinds of forcing functions w.t/. However, the integrating factor method
can be used for solving generic inhomogeneous equations.

Let’s now move the term F x to the left hand side and multiply with a magical
term called integrating factor exp.!F t / which results in the following:

exp.!F t /
dx.t/

dt
! exp.!F t / F x.t/ D exp.!F t / L.t/ w.t/: (1.26)

From the definition of the matrix exponential we can derive the following property:

d
dt

Œexp.!F t /$ D ! exp.!F t / F : (1.27)
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The key things is now to observe that

d
dt

Œexp.!F t / x.t/$ D exp.!F t /
dx.t/

dt
! exp.!F t / F x.t/; (1.28)

which is exactly the left hand side of Equation (1.26). Thus we can rewrite the
equation as

d
dt

Œexp.!F t / x.t/$ D exp.!F t / L.t/ w.t/: (1.29)

Integrating from 0 to t then gives

exp.!F t / x.t/ ! exp.!F 0/ x.0/ D
Z t

0
exp.!F #/ L.#/ w.#/ d#; (1.30)

which further simplifies to

x.t/ D exp.F .t ! 0// x.0/ C
Z t

0
exp.F .t ! #// L.#/ w.#/ d#; (1.31)

The above expression is thus the complete solution to the Equation (1.25).

1.3 Solutions of general linear differential equations

In this section we consider solutions of more general, time-varying linear differ-
ential equations. The corresponding stochastic equations are a very useful class
of equations, because they can be solved in (semi-)closed form quite much analo-
gously to the deterministic case considered in this section.

The solution presented in the previous section in terms of matrix exponential
only works if the matrix F is constant. Thus for the time-varying homogeneous
equation of the form

dx

dt
D F.t/ x; x.t0/ D given; (1.32)

the matrix exponential solution does not work. However, we can implicitly express
the solution in form

x.t/ D ‰.t; t0/ x.t0/; (1.33)

where ‰.t; t0/ is the transition matrix which is defined via the properties

@‰.#; t/=@# D F.#/ ‰.#; t/

@‰.#; t/=@t D !‰.#; t/ F.t/

‰.#; t/ D ‰.#; s/ ‰.s; t/

‰.t; #/ D ‰!1.#; t/

‰.t; t/ D I:

(1.34)
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Given the transition matrix we can then construct the solution to the inhomoge-
neous equation

dx.t/

dt
D F.t/ x.t/ C L.t/ w.t/; x.t0/ D given; (1.35)

analogously to the time-invariant case. This time the integrating factor is ‰.t0; t /

and the resulting solution is:

x.t/ D ‰.t; t0/ x.t0/ C
Z t

t0

‰.t; #/ L.#/ w.#/ d#: (1.36)

1.4 Fourier transforms

One very useful method to solve inhomogeneous linear time invariant differential
equations is the Fourier transform. The Fourier transform of a function g.t/ is
defined as

G.i !/ D F Œg.t/$ D
Z 1

!1
g.t/ exp.!i ! t/ dt: (1.37)

and the corresponding inverse Fourier transform is

g.t/ D F !1ŒG.i !/$ D 1

2&

Z 1

!1
G.i !/ exp.!i ! t/ d!: (1.38)

The usefulness of the Fourier transform for solving differential equations arises
from the property

F Œdng.t/
ı

dtn $ D .i !/n F Œg.t/$; (1.39)

which transforms differentiation into multiplication by i !, and from the convolu-
tion theorem which says that convolution gets transformed into multiplication:

F Œg.t/ " h.t/$ D F Œg.t/$ F Œh.t/$; (1.40)

where the convolution is defined as

g.t/ " h.t/ D
Z 1

!1
g.t ! #/ h.#/ d#: (1.41)

In fact, the above properties require that the initial conditions are zero. However,
this is not a restriction in practice, because it is possible to tweak the inhomoge-
neous term such that its effect is equivalent to the given initial conditions.

To demonstrate the usefulness of Fourier transform, let’s consider the spring
model

d2x.t/

dt2
C !

dx.t/

dt
C "2 x.t/ D w.t/: (1.42)

Taking Fourier transform of the equation and using the derivative rule we get

.i !/2 X.i !/ C ! .i !/ X.i !/ C "2 X.i !/ D W.i !/; (1.43)
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where X.i !/ is the Fourier transform of x.t/, and W.i !/ is the Fourier transform
of w.t/. We can now solve for X.i !/ which gives

X.i !/ D W.i !/

.i !/2 C ! .i !/ C "2
(1.44)

The solution to the equation is then given by the inverse Fourier transform

x.t/ D F !1

#
W.i !/

.i !/2 C ! .i !/ C "2

$
: (1.45)

However, for general w.t/ it is useful to note that the term on the right hand side is
actually a product of the transfer function

H.i !/ D 1

.i !/2 C ! .i !/ C "2
(1.46)

and W.i !/. This product can now be converted into convolution if we start by
computing the impulse response function

h.t/ D F !1

#
1

.i !/2 C ! .i !/ C "2

$

D b!1 exp.!a t/ sin.b t/ u.t/;

(1.47)

where a D !=2 and b D
q

"2 ! !2
ı

4 , and u.t/ is the Heaviside step function,
which is zero for t < 0 and one for t # 0. Then the full solution can then expressed
as

x.t/ D
Z 1

!1
h.t ! #/ w.#/ d#; (1.48)

which can be interpreted such that we construct x.t/ by feeding the signal w.t/

though a linear system (filter) with impulse responses h.t/.
We can also use Fourier transform to solve general LTI equations

dx.t/

dt
D F x.t/ C L w.t/: (1.49)

Taking Fourier transform gives

.i !/ X.i !/ D F X.i !/ C L W .i !/; (1.50)

Solving for X.i !/ then gives

X.i !/ D ..i !/ I ! F/!1 L W .i !/; (1.51)

Comparing to Equation (1.36) now reveals that actually we have

F !1
h
..i !/ I ! F/!1

i
D exp.F t / u.t/; (1.52)

where u.t/ is the Heaviside step function. This identity also provides one useful
way to compute matrix exponentials.
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Example 1.2 (Matrix exponential via Fourier transform). The matrix exponential
considered in Example 1.1 can also be computed as

exp
!!

0 1

0 0

"
t

"
D F !1

"!!
.i !/ 0

0 .i !/

"
!
!

0 1

0 0

""!1
#

D
!

1 t

0 1

"
:

(1.53)

1.5 Numerical solutions of non-linear differential equa-
tions

For a generic non-linear differential equations of the form

dx.t/

dt
D f .x.t/; t/; x.t0/ D given; (1.54)

there is no general way to find an analytic solution. However, it is possible to
approximate the solution numerically.

If we integrate the equation from t to t C 't we get

x.t C 't/ D x.t/ C
Z tC"t

t
f .x.#/; #/ d#: (1.55)

If we knew how to compute the integral on the right hand side, we could generate
the solution at time steps t0, t1 D t0 C 't , t2 D t0 C 2' iterating the above
equation:

x.t0 C 't/ D x.t0/ C
Z t0C"t

t0

f .x.#/; #/ d#

x.t0 C 2't/ D x.t0 C 't/ C
Z tC2"t

t0C"t
f .x.#/; #/ d#

x.t0 C 3't/ D x.t0 C 2't/ C
Z tC3"t

t0C2"t
f .x.#/; #/ d#

:::

(1.56)

It is now possible to derive various numerical methods by constructing approxi-
mations to the integrals on the right hand side. In the Euler method we use the
approximation

Z tC"t

t
f .x.#/; #/ d# $ f .x.t/; t/ 't: (1.57)

which leads to the following:
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Algorithm 1.1 (Euler’s method). Start from Ox.t0/ D x.t0/ and divide the inte-
gration interval Œt0; t $ into n steps t0 < t1 < t2 < ::: < tn D t such that
't D tkC1 ! tk . At each step k approximate the solution as follows:

Ox.tkC1/ D Ox.tk/ C f .Ox.tk/; tk/ 't: (1.58)

The (global) order of a numerical integration methods can be defined to be the
smallest exponent p such that if we numerically solve an ODE using n D 1='t

steps of length 't , then there exists a constant K such that

j Ox.tn/ ! x.tn/j % K 'tp; (1.59)

where Ox.tn/ is the approximation and x.tn/ is the true solution. Because in Euler
method, the first discarded term is of order 't2, the error of integrating over 1='t

steps is proportional to 't . Thus Euler method has order p D 1.
We can also improve the approximation by using trapezoidal approximation
Z tC"t

t
f .x.#/; #/ d# $ 't

2
Œf .x.t/; t/ C f .x.t C 't/; t C 't/$ : (1.60)

which would lead to the approximate integration rule

x.tkC1/ $ x.tk/ C 't

2
Œf .x.tk/; tk/ C f .x.tkC1/; tkC1/$ : (1.61)

which is implicit rule in the sense that x.tkC1/ appears also on the right hand side.
To actually use such implicit rule, we would need to solve a non-linear equation
at each integration step which tends to be computationally too intensive when the
dimensionality of x is high. Thus here we consider explicit rules only, where the
next value x.tkC1/ does not appear on the right hand side. If we now replace the
term on the right hand side with its Euler approximation, we get the following
Heun’s method.

Algorithm 1.2 (Heun’s method). Start from Ox.t0/ D x.t0/ and divide the inte-
gration interval Œt0; t $ into n steps t0 < t1 < t2 < ::: < tn D t such that
't D tkC1 ! tk . At each step k approximate the solution as follows:

Qx.tkC1/ D Ox.tk/ C f .Ox.tk/; tk/ 't

Ox.tkC1/ D Ox.tk/ C 't

2
Œf .Ox.tk/; tk/ C f .Qx.tkC1/; tkC1/$ :

(1.62)

It can be shown that Heun’s method has global order p D 2.
Another useful class of methods are the Runge–Kutta methods. The classical

4th order Runge–Kutta method is the following.

Algorithm 1.3 (4th order Runge–Kutta method). Start from Ox.t0/ D x.t0/ and
divide the integration interval Œt0; t $ into n steps t0 < t1 < t2 < ::: < tn D t such
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that 't D tkC1 ! tk . At each step k approximate the solution as follows:

'x1
k D f .Ox.tk/; tk/ 't

'x2
k D f .Ox.tk/ C 'x1

k=2; tk C 't=2/ 't

'x3
k D f .Ox.tk/ C 'x2

k=2; tk C 't=2/ 't

'x4
k D f .Ox.tk/ C 'x3

k; tk C 't/ 't

Ox.tkC1/ D Ox.tk/ C 1

6
.'x1

k C 2'x2
k C 2'x3

k C 'x4
k/:

(1.63)

The above Runge–Kutta method can be derived by writing down the Taylor
series expansion for the solution and by selecting coefficient such that many of the
lower order terms cancel out. The order of this method is p D 4.

In fact, all the above integration methods are based on the Taylor series expan-
sions of the solution. This is slightly problematic, because what happens in the case
of SDEs is that the Taylor series expansion does not exists and all of the methods
need to be modified at least to some extent. However, it is possible to replace Taylor
series with so called Itô–Taylor series and then work out the analogous algorithms.
The resulting algorithms are more complicated than the deterministic counterparts,
because Itô–Taylor series is considerably more complicated than Taylor series. But
we shall come back to this issue in Chapter 5.

There exists a wide class of other numerical ODE solvers as well. For ex-
ample, all the above mentioned methods have a fixed step length, but there exists
various variable step size methods which automatically adapt the step size. How-
ever, constructing variable step size methods for stochastic differential equations is
much more involved than for deterministic equations and thus we shall not consider
them here.

1.6 Picard–Lindelöf theorem

One important issue in differential equations is the question if the solution exists
and whether it is unique. To analyze this questions, let’s consider a generic equa-
tion of the form

dx.t/

dt
D f .x.t/; t/; x.t0/ D x0; (1.64)

where f .x; t / is some given function. If the function t 7! f .x.t/; t/ happens to be
Riemann integrable, then we can integrate both sides from t0 to t to yield

x.t/ D x0 C
Z t

t0

f .x.#/; #/ d#: (1.65)

We can now use this identity to find an approximate solution to the differential
equation by the following Picard’s iteration.
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Algorithm 1.4 (Picard’s iteration). Start from the initial guess '0.t/ D x0. Then
compute approximations '1.t/; '2.t/; '3.t/; : : : via the following recursion:

'nC1.t/ D x0 C
Z t

t0

f .'n.#/; #/ d# (1.66)

The above iteration, which we already used for finding the solution to linear
differential equations in Section 1.2, can be shown to converge to the unique solu-
tion

lim
n!1 'n.t/ D x.t/; (1.67)

provided that f .x; t / is continuous in both arguments and Lipschitz continuous in
the first argument.

The implication of the above is the Picard–Lindelöf theorem, which says that
under the above continuity conditions the differential equation has a solution and it
is unique at a certain interval around t D t0. We emphasis the innocent looking but
important issue in the theorem: the function f .x; t / needs to be continuous. This
important, because in the case of stochastic differential equations the correspond-
ing function will be discontinuous everywhere and thus we need a completely new
existence theory for them.



Chapter 2

Pragmatic Introduction to
Stochastic Differential Equations

2.1 Stochastic processes in physics, engineering, and other
fields

The history of stochastic differential equations (SDEs) can be seen to have started
form the classic paper of Einstein (1905), where he presented a mathematical con-
nection between microscopic random motion of particles and the macroscopic dif-
fusion equation. This is one of the results that proved the existence of atom. Ein-
stein’s reasoning was roughly the following.

Example 2.1 (Microscopic motion of Brownian particles). Let # be a small time
interval and consider n particles suspended in liquid. During the time interval
# the x-coordinates of particles will change by displacement '. The number of
particles with displacement between ' and ' C d' is then

dn D n (.'/ d'; (2.1)

where (.'/ is the probability density of ', which can be assume to be symmetric
(.'/ D (.!'/ and differ from zero only for very small values of '.

'
„ƒ‚…

(.'/

Figure 2.1: Illustration of Einstein’s model of Brownian motion.
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Let u.x; t/ be the number of particles per unit volume. Then the number of
particles at time t C # located at x C dx is given as

u.x; t C #/ dx D
Z 1

!1
u.x C '; t/ (.'/ d' dx: (2.2)

Because # is very small, we can put

u.x; t C #/ D u.x; t/ C #
@u.x; t/

@t
: (2.3)

We can expand u.x C '; t/ in powers of ':

u.x C '; t/ D u.x; t/ C '
@u.x; t/

@x
C '2

2

@2u.x; t/

@x2
C : : : (2.4)

Substituting into (2.3) and (2.4) into (2.2) gives

u.x; t/ C #
@u.x; t/

@t
D u.x; t/

Z 1

!1
(.'/ d' C @u.x; t/

@x

Z 1

!1
' (.'/ d'

C @2u.x; t/

@x2

Z 1

!1

'2

2
(.'/ d' C : : :

(2.5)

where all the odd order terms vanish. If we recall that
R1

!1 (.'/ d' D 1 and we
put Z 1

!1

'2

2
(.'/ d' D D; (2.6)

we get the diffusion equation

@u.x; t/

@t
D D

@2u.x; t/

@x2
: (2.7)

This connection was significant during the time, because diffusion equation was
only known as a macroscopic equation. Einstein was also able to derive a formula
for D in terms of microscopic quantities. From this, Einstein was able to compute
the prediction for mean squared displacement of the particles as function of time:

z.t/ D R T

N

1

3 & ) r
t; (2.8)

where ) is the viscosity of liquid, r is the diameter of the particles, T is the tem-
perature, R is the gas constant, and N is the Avogadro constant.

In modern terms, Brownian motion1 (see Fig. 3.1) is an abstraction of random
walk process which has the property that each increment of it is independent. That
is, direction and magnitude of each change of the process is completely random and

1The mathematical Brownian motion is also often called the Wiener process.
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Figure 2.2: Brownian motion. Left: sample path and 95% quantiles. Right: Evolution of
the probability density.

independent of the previous changes. One way to think about Brownian motion is
that it is the solution to the following stochastic differential equation

dˇ.t/

dt
D w.t/; (2.9)

where w.t/ is a white random process. The term white here means that each the
values w.t/ and w.t 0/ are independent whenever t ¤ t 0. We will later see that the
probability density of the solution of this equation will solve the diffusion equation.
However, at Einstein’s time the theory of stochastic differential equations did not
exists and therefore the reasoning was completely different.

A couple of years after Einstein’s contribution Langevin (1908) presented an
alternative construction of Brownian motion which leads to the same macroscopic
properties. The reasoning in the article, which is outlined in the following, was
more mechanical than in Einstein’s derivation.

Random force
from collisions Movement is slowed

down by friction

Figure 2.3: Illustration of Langevin’s model of Brownian motion.
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Example 2.2 (Langevin’s model of Brownian motion). Consider a small parti-
cle suspended in liquid. Assume that there are two kinds of forces acting on the
particle:

1. Friction force Ff , which by the Stokes law has the form:

Ff D !6 & ) r v; (2.10)

where ) is the viscosity, r is the diameter of particle and v is its velocity.

2. Random force Fr caused by random collisions of the particles.

Newton’s law then gives

m
d2x

dt2
D !6 & ) r

dx

dt
C Fr ; (2.11)

where m is the mass of the particle. Recall that

1

2

d.x2/

dt
D dx

dt
x

1

2

d2.x2/

dt2
D d2x

dt2
x C

!
dx

dt

"2

:

(2.12)

Thus if we multiply Equation (2.11) with x, substitute the above identities, and take
expectation we get

m

2
E
#

d2.x2/

dt2

$
! m E

"!
dx

dt

"2
#

D !3 & ) r E
#

d.x2/

dt

$
C EŒFr x$: (2.13)

From statistical physics we know the relationship between the average kinetic en-
ergy and temperature:

m E

"!
dx

dt

"2
#

D R T

N
: (2.14)

If we then assume that the random force and the position are uncorrelated, EŒFr x$ D
0 and define a new variable Pz D d EŒx2$

ı
dt we get the differential equation

m

2

d Pz
dt

! R T

N
D !3 & ) r Pz (2.15)

which has the general solution

Pz.t/ D R T

N

1

3 & ) r

#
1 ! exp

!
6 & ) r

m
t

"$
(2.16)

The exponential above goes to zero very quickly and thus the resulting mean squared
displacement is nominally just the resulting constant multiplied with time:

z.t/ D R T

N

1

3 & ) r
t; (2.17)

which is exactly the same what Einstein obtained.
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In the above model, Brownian motion is not actually seen as a solution to the
white noise driven differential equation

dˇ.t/

dt
D w.t/; (2.18)

but instead, as the solution to equation of the form

d2 Q̌.t/
dt2

D !c
d Q̌.t/

dt
C w.t/ (2.19)

in the limit of vanishing time constant. The latter (Langevin’s version) is some-
times called the physical Brownian motion and the former (Einstein’s version) the
mathematical Brownian motion. In these notes the term Brownian motion always
means the mathematical Brownian motion.

Stochastic differential equations also arise other contexts. For example, the
effect of thermal noise in electrical circuits and various kind of disturbances in
telecommunications systems can be modeled as SDEs. In the following we present
two such examples.

w.t/

R

C v.t/

A

B

Figure 2.4: Example RC-circuit

Example 2.3 (RC Circuit). Consider the simple RC circuit shown in Figure 2.4.
In Laplace domain, the output voltage V.s/ can be expressed in terms of the input
voltage W.s/ as follows:

V.s/ D 1

1 C R C s
W.s/: (2.20)

Inverse Laplace transform then gives the differential equation

dv.t/

dt
D ! 1

R C
v.t/ C 1

R C
w.t/: (2.21)

For the purposes of studying the response of the circuit to noise, we can now re-
place the input voltage with a white noise process w.t/ and analyze the properties
of the resulting equation.

Example 2.4 (Phase locked loop (PLL)). Phase locked loops (PLLs) are telecom-
munications system devices, which can be used to automatically synchronize a de-
modulator with a carrier signal. A simple mathematical model of PLL is shown
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A sin. /

w.t/

K Loop filter

R t
0

*1.t/ (.t/

!
*2.t/

Figure 2.5: Simple phase locked loop (PLL) model.

in Figure 2.5 (see, Viterbi, 1966), where w.t/ models disturbances (noise) in the
system. In the case that there is no loop filter at all and when the input is a constant-
frequency sinusoid *1.t/ D .! ! !0/ t C * , the differential equation for the system
becomes

d(

dt
D .! ! !0/ ! A K sin (.t/ ! K w.t/: (2.22)

It is now possible to analyze the properties of PLL in the presence of noise by
analyzing the properties of this stochastic differential equation (Viterbi, 1966).

Stochastic differential equations can also be used for modeling dynamic phe-
nomena, where the exact dynamics of the system are uncertain. For example, the
motion model of a car cannot be exactly written down if we do not know all the
external forces affecting the car and the acts of the driver. However, the unknown
sub-phenomena can be modeled as stochastic processes, which leads to stochastic
differential equations. This kind of modeling principle of representing uncertain-
ties as random variables is sometimes called Bayesian modeling. Stochastic differ-
ential equation models of this kind and commonly used in navigation and control
systems (see, e.g., Jazwinski, 1970; Bar-Shalom et al., 2001; Grewal and Andrews,
2001). Stock prices can also be modeled using stochastic differential equations and
this kind of models are indeed commonly used in analysis and pricing of stocks and
related quantities (Øksendal, 2003).

Example 2.5 (Dynamic model of a car). The dynamics of the car in 2d .x1; x2/

are governed by the Newton’s law (see Fig. 2.6):

f .t/ D m a.t/; (2.23)

where a.t/ is the acceleration, m is the mass of the car, and f .t/ is a vector of
(unknown) forces acting the car. Let’s now model f .t/=m as a two-dimensional
white random process:

d2x1

dt2
D w1.t/

d2x2

dt2
D w2.t/:

(2.24)
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w1.t/

w2.t/

Figure 2.6: Illustration of car’s dynamic model example

If we define x3.t/ D dx1=dt , x4.t/ D dx2=dt , then the model can be written as a
first order system of differential equations:

d
dt

0
BB@

x1

x2

x3

x4

1
CCA D

0
BB@

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

1
CCA

„ ƒ‚ …
F

0
BB@

x1

x2

x3

x4

1
CCAC

0
BB@

0 0

0 0

1 0

0 1

1
CCA

„ ƒ‚ …
L

!
w1

w2

"
: (2.25)

In shorter matrix form this can be written as a linear differential equation model:

dx

dt
D F x C L w :

Example 2.6 (Noisy pendulum). The differential equation for a simple pendulum
(see Fig. 2.7) with unit length and mass can be written as:

R* D !g sin.*/ C w.t/; (2.26)

where * is the angle, g is the gravitational acceleration and w.t/ is a random
noise process. This model can be converted converted into the following state
space model:

d
dt

!
*1

*2

"
D
!

*2

!g sin.*1/

"
C
!

0

1

"
w.t/: (2.27)

This can be seen to be a special case of equations of the form

dx

dt
D f .x/ C L w ; (2.28)

where f .x/ is a non-linear function.
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g

w.t/

*

Figure 2.7: Illustration of pendulum example

Example 2.7 (Black–Scholes model). In the Black–Scholes model the asset (e.g.,
stock price) x is assumed to follow geometric Brownian motion

dx D + x dt C , x dˇ: (2.29)

where dˇ is a Brownian motion increment, + is a drift constant and , is a volatility
constant. If we formally divide by dt , this equation can be heuristically interpreted
as a differential equation

dx

dt
D + x C , x w; (2.30)

where w.t/ is a white random process. This equation is now an example of more
general multiplicative noise models of the form

dx

dt
D f .x/ C L.x/ w : (2.31)

2.2 Differential equations with driving white noise

As discussed in the previous section, many time-varying phenomena in various
fields in science and engineering can be modeled as differential equations of the
form

dx

dt
D f .x; t / C L.x; t / w.t/: (2.32)

where w.t/ is some vector of forcing functions.
We can think a stochastic differential equation (SDE) as an equation of the

above form where the forcing function is a stochastic process. One motivation
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for studying such equations is that various physical phenomena can be modeled
as random processes (e.g., thermal motion) and when such a phenomenon enters a
physical system, we get a model of the above SDE form. Another motivation is that
in Bayesian statistical modeling unknown forces are naturally modeled as random
forces which again leads to SDE type of models. Because the forcing function is
random, the solution to the stochastic differential equation is a random process as
well. With a different realization of the noise process we get a different solution.
For this reason the particular solutions of the equations are not often of interest, but
instead, we aim to determine the statistics of the solutions over all realizations. An
example of SDE solution is given in Figure 2.8.
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Realizations of SDE

Figure 2.8: Solutions of the spring model in Equation (1.1) when the input is white noise.
The solution of the SDE is different for each realization of noise process. We can also
compute the mean of the solutions, which in the case of linear SDE corresponds to the
deterministic solution with zero noise.

In the context of SDEs, the term f .x; t / in Equation (2.32) is called the drift
function which determines the nominal dynamics of the system, and L.x; t / is the
dispersion matrix which determines how the noise w.t/ enters the system. This
indeed is the most general form of SDE that we discuss in the document. Although
it would be tempting to generalize these equations to dx=dt D f .x; w ; t /, it is
not possible in the present theory. We shall discuss the reason for this later in this
document.

The unknown function usually modeled as Gaussian and “white” in the sense
that w.t/ and w.#/ are uncorrelated (and independent) for all t ¤ s. The term
white arises from the property that the power spectrum (or actually, the spectral
density) of white noise is constant (flat) over all frequencies. White light is another
phenomenon which has this same property and hence the name.

In mathematical sense white noise process can be defined as follows:
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Definition 2.1 (White noise). White noise process w.t/ 2 Rs is a random function
with the following properties:

1. w.t1/ and w.t2/ are independent if t1 ¤ t2.

2. t 7! w.t/ is a Gaussian process with zero mean and Dirac-delta-correlation:

mw.t/ D EŒw.t/$ D 0
Cw.t; s/ D EŒw.t/ wT.s/$ D ı.t ! s/ Q;

(2.33)

where Q is the spectral density of the process.

From the above properties we can also deduce the following somewhat peculiar
properties of white noise:

& The sample path t 7! w.t/ is discontinuous almost everywhere.

& White noise is unbounded and it takes arbitrarily large positive and negative
values at any finite interval.

An example of a scalar white noise process realization is shown in Figure 2.9.
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Figure 2.9: White noise

It is also possible to use non-Gaussian driving functions in SDEs such as Pois-
son processes or more general Lévy processes (see, e.g., Applebaum, 2004), but
here we will always assume that the driving function is Gaussian.

2.3 Heuristic solutions of linear SDEs

Let’s first consider linear time-invariant stochastic differential equations (LTI SDEs)
of the form

dx.t/

dt
D F x.t/ C L w.t/; x.0/ ' N.m0; P0/; (2.34)
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where F and L are some constant matrices the white noise process w.t/ has zero
mean and a given spectral density Q. Above, we have specified a random initial
condition for the equation such that at initial time t D 0 the solutions should be
Gaussian with a given mean m0 and covariance P0.

If we pretend for a while that the driving process w.t/ is deterministic and
continuous, we can form the general solution to the differential equation as follows:

x.t/ D exp .F t / x.0/ C
Z t

0
exp .F .t ! #// L w.#/ d#; (2.35)

where exp .F t / is the matrix exponential function.
We can now take a “leap of faith” and hope that this solutions is valid also

when w.t/ is a white noise process. It turns out that it indeed is, but just because
the differential equation happens to be linear (we’ll come back to this issue in next
chapter). However, it is enough for our purposes for now. The solution also turns
out to be Gaussian, because the noise process is Gaussian and a linear differential
equation can be considered as a linear operator acting on the noise process (and the
initial condition).

Because white noise process has zero mean, taking expectations from the both
sides of Equation (2.35) gives

EŒx.t/$ D exp .F t / m0; (2.36)

which is thus the expected value of the SDE solutions over all realizations of noise.
The mean function is here denoted as m.t/ D EŒx.t/$.

The covariance of the solution can be derived by substituting the solution into
the definition of covariance and by using the delta-correlation property of white
noise, which results in

E
h
.x.t/ ! m.t// .x.t/ ! m/T

i

D exp .F t / P0 exp .F t /T C
Z t

0
exp .F .t ! #// L Q LT exp .F .t ! #//T d#:

(2.37)

In this document we denote the covariance as P .t/ D E
%
.x.t/ ! m.t// .x.t/ ! m/T&.

By differentiating the mean and covariance solutions and collecting the terms
we can also derive the following differential equations for the mean and covariance:

dm.t/

dt
D F m.t/

dP .t/

dt
D F P .t/ C P .t/ FT C L Q LT;

(2.38)
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Example 2.8 (Stochastic Spring model). If in the spring model of Equation (1.4),
we replace the input force with a white noise with spectral density q, we get the
following LTI SDE:

 
dx1.t/

dt
dx2.t/

dt

!

„ ƒ‚ …
dx.t/=dt

D
!

0 1

!"2 !!

"

„ ƒ‚ …
F

!
x1.t/

x2.t/

"

„ ƒ‚ …
x

C
!

0

1

"

„ƒ‚…
L

w.t/: (2.39)

The equations for the mean and covariance are thus given as
!dm1

dt
dm2

dt

"
D
!

0 1

!"2 !!

"!
m1

m2

"

 
dP11

dt
dP12

dt
dP21

dt
dP22

dt

!
D
!

0 1

!"2 !!

"!
P11 P12

P21 P22

"

C
!

P11 P12

P21 P22

"!
0 1

!"2 !!

"T

C
!

0 0

0 q

"
(2.40)

Figure 2.10 shows the theoretical mean and the 95% quantiles computed from the
variances P11.t/ along with trajectories from the stochastic spring model.
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Figure 2.10: Solutions, theoretical mean, and the 95% quantiles for the spring model in
Equation (1.1) when the input is white noise.

Despite the heuristic derivation, Equations (2.38) are indeed the correct differ-
ential equations for the mean and covariance. But it is easy to demonstrate that one
has to be extremely careful in extrapolation of deterministic differential equation
results to stochastic setting.
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Note that we can indeed derive the first of the above equations simply by taking
the expectations from both sides of Equation (2.34):

E
#

dx.t/

dt

$
D E ŒF x.t/$ C E ŒL w.t/$ ; (2.41)

Exchanging the order of expectation and differentiation, using the linearity of ex-
pectation and recalling that white noise has zero mean then results in correct mean
differential equation. We can now attempt to do the same for the covariance. By
the chain rule of ordinary calculus we get

d
dt

h
.x ! m/ .x ! m/T

i
D
!

dx

dt
! dm

dt

"
.x ! m/T C .x ! m/

!
dx

dt
! dm

dt

"T
;

(2.42)
Substituting the time derivatives to the right hand side and taking expectation then
results in

d
dt

E
h
.x ! m/ .x ! m/T

i
D F E

h
.x.t/ ! m.t// .x.t/ ! m.t//T

i

C E
h
.x.t/ ! m.t// .x.t/ ! m.t//T

i
FT;

(2.43)

which implies the covariance differential equation

dP .t/

dt
D F P .t/ C P .t/ FT: (2.44)

But this equation is wrong, because the term L.t/ Q LT.t/ is missing from the right
hand side. Our mistake was to assume that we can use the product rule in Equation
(2.42), but in fact we cannot. This is one of the peculiar features of stochastic
calculus and it is also a warning sign that we should not take our “leap of faith” too
far when analyzing solutions of SDEs via formal extensions of deterministic ODE
solutions.

2.4 Fourier Analysis of LTI SDEs

One way to study LTI SDE is in Fourier domain. In that case a useful quantity is
the spectral density, which is the squared absolute value of the Fourier transform
of the process. For example, if the Fourier transform of a scalar process x.t/ is
X.i !/, then its spectral density is

Sx.!/ D jX.i !/j2 D X.i !/ X.!i !/; (2.45)

In the case of vector process x.t/ we have the spectral density matrix

Sx.!/ D X.i !/ XT.!i !/; (2.46)
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Now if w.t/ is a white noise process with spectral density Q, it really means that
the squared absolute value of the Fourier transform is Q:

Sw.!/ D W .i !/ W T.!i !/ D Q: (2.47)

However, one needs to be extra careful when using this, because the Fourier trans-
form of white noise process is defined only as a kind of limit of smooth pro-
cesses. Fortunately, as long as we only work with linear systems this definition
indeed works. And it provides a useful tool for determining covariance functions
of stochastic differential equations.

The covariance function of a zero mean stationary stochastic process x.t/ can
be defined as

Cx.#/ D EŒx.t/ xT.t C #/$: (2.48)

This function is independent of t , because we have assumed that the process is
stationary. This means that formally we think that the process has been started at
time t0 D !1 and it has reached its stationary stage such that its statistic no longer
depend on the absolute time t , but only the difference of time steps # .

The celebrated Wiener–Khinchin theorem says that the covariance function is
the inverse Fourier transform of spectral density:

Cx.#/ D F !1ŒSx.!/$: (2.49)

For the white noise process we get

Cw.#/ D F !1ŒQ$ D Q F !1Œ1$ D Q ı.#/ (2.50)

as expected.
Let’s now consider the stochastic differential equation

dx.t/

dt
D F x.t/ C L w.t/; (2.51)

and assume that it has already reached its stationary stage and hence it also has zero
mean. Note that the stationary stage can only exist of the matrix F corresponds to
a stable system, which means that all its eigenvalues have negative real parts. Let’s
now assume that it is indeed the case.

Similarly as in Section 1.4 we get the following solution for the Fourier trans-
form X.i !/ of x.t/:

X.i !/ D ..i !/ I ! F/!1 L W .i !/; (2.52)

where W .i !/ is the formal Fourier transform of white noise w.t/. Note that
this transform does not strictly exist, because white noise process is not square-
integrable, but let’s now pretend that it does. We will come back to this problem
later in Chapter 4.
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The spectral density of x.t/ is now given by the matrix

Sx.!/ D .F ! .i !/ I/!1 L W .i !/ W T.!i !/ LT .F C .i !/ I/!T

D .F ! .i !/ I/!1 L Q LT .F C .i !/ I/!T (2.53)

Thus the covariance function is

Cx.#/ D F !1Œ.F ! .i !/ I/!1 L Q LT .F C .i !/ I/!T$: (2.54)

Although this looks complicated, it provides useful means to compute the covari-
ance function of a solution to stochastic differential equation without first explicitly
solving the equation.

To illustrate this, let’s consider the following scalar SDE (Ornstein–Uhlenbeck
process):

dx.t/

dt
D !- x.t/ C w.t/; (2.55)

where - >0 . Taking formal Fourier transform from both sides yields

.i !/ X.i !/ D !- X.i !/ C W.i !/; (2.56)

and solving for X.i !/ gives

X.i !/ D W.i !/

.i !/ C -
: (2.57)

Thus we get the following spectral density

Sx.!/ D jW.i !/j2
j.i !/ C -j2 D q

!2 C -2
; (2.58)

where q is the spectral density of the white noise input process w.t/. The Fourier
transform then leads to the covariance function

C.#/ D q

2-
exp.!- j# j/: (2.59)

2.5 Heuristic solutions of non-linear SDEs

We could now attempt to analyze differential equations of the form

dx

dt
D f .x; t / C L.x; t / w.t/; (2.60)

where f .x; t / and L.x; t / are non-linear functions and w.t/ is a white noise process
with a spectral density Q. Unfortunately, we cannot take the same kind of “leap
of faith” from deterministic solutions as in the case of linear differential equations,
because we could not solve even the deterministic differential equation.
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An attempt to generalize the numerical methods for deterministic differential
equations discussed in previous chapter will fail as well, because the basic require-
ment in almost all of those methods is continuity of the right hand side, and in
fact, even differentiability of several orders. Because white noise is discontinuous
everywhere, the right hand side is discontinuous everywhere, and is certainly not
differentiable anywhere either. Thus we are in trouble.

We can, however, generalize the Euler method (leading to Euler–Maruyama
method) to the present stochastic setting, because it does not explicitly require
continuity. From that, we get an iteration of the form

Ox.tkC1/ D Ox.tk/ C f .Ox.tk/; tk/ 't C L.Ox.tk/; tk/ 'ˇk; (2.61)

where 'ˇk is a Gaussian random variable with distribution N.0; Q 't/. Note that
it is indeed the variance which is proportional to 't , not the standard derivation as
we might expect. This results from the peculiar properties of stochastic differential
equations. Anyway, we can use the above method to simulate trajectories from
stochastic differential equations and the result converges to the true solution in the
limit 't ! 0. However, the convergence is quite slow as the order of convergence
is only p D 1=2 .

In the case of SDEs, the convergence order definition is a bit more compli-
cated, because we can talk about path-wise approximations, which corresponds to
approximating the solution with fixed w.t/. These are also called strong solution
and give rise to strong order of convergence. But we can also think of approxi-
mating the probability density or the moments of the solutions. These give rise to
weak solutions and weak order of convergence. We will come back to these later.

2.6 The problem of solution existence and uniqueness

Let’s now attempt to analyze the uniqueness and existence of the equation

dx

dt
D f .x; t / C L.x; t / w.t/; (2.62)

using the Picard–Lindelöf theorem presented in the previous chapter. The basic
assumption in the theorem for the right hand side of the differential equation were:

& Continuity in both arguments.

& Lipschitz continuity in the first argument.

Unfortunately, the first of these fails miserably, because white noise is discontinu-
ous everywhere. However, a small blink of hope is implied by that f .x; t / might
indeed be Lipschitz continuous in the first argument, as well as L.x; t /. How-
ever, without extending the Pickard–Lindelöf theorem we cannot determine the
existence or uniqueness of stochastic differential equations.
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It turns out that a stochastic analog of Picard iteration will indeed lead to the
solution to the existence and uniqueness problem also in the stochastic case. But
before going into that we need to make the theory of stochastic differential equa-
tions mathematically meaningful.
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Chapter 3

Itô Calculus and Stochastic
Differential Equations

3.1 The Stochastic Integral of Itô

As discussed in the previous chapter, a stochastic differential equation can be
heuristically considered as a vector differential equation of the form

dx

dt
D f .x; t / C L.x; t / w.t/; (3.1)

where w.t/ is a zero mean white Gaussian process. However, although this is
sometimes true, it is not the complete truth. The aim of this section is to clarify
what really is going on with stochastic differential equations and how we should
treat them.

The problem in the above equation is that it cannot be a differential equation
in traditional sense, because the ordinary theory of differential equations does not
permit discontinuous functions such as w.t/ in differential equations (recall the
problem with Picard–Lindelöf theorem). And the problem is not purely theoret-
ical, because the solution actually turns out to depend on infinitesimally small
differences in mathematical definitions of the noise and thus without further re-
strictions the solution would not be unique even with a given realization of white
noise w.t/.

Fortunately, there is a solution to this problem, but in order to find it we need
to reduce the problem to definition of a new kind of integral called Itô integral,
which is an integral with respect to a stochastic process. In order to do that, let’s
first formally integrate the differential equation from some initial time t0 to final
time t :

x.t/ ! x.t0/ D
Z t

t0

f .x.t/; t/ dt C
Z t

t0

L.x.t/; t/ w.t/ dt: (3.2)

The first integral on the right hand side is just a normal integral with respect to time
and can be defined a Riemann integral of t 7! f .x.t/; t/ or as a Lebesgue integral
with respect to the Lebesgue measure, if more generality is desired.
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The second integral is the problematic one. First of all, it cannot be defined as
Riemann integral due to the unboundedness and discontinuity of the white noise
process. Recall that in the Riemannian sense the integral would be defined as the
following kind of limit:

Z t

t0

L.x.t/; t/ w.t/ dt D lim
n!1

X
k

L.x.t"
k /; t"

k / w.t"
k / .tkC1 ! tk/; (3.3)

where t0 < t1 < : : : < tn D t and t"
k

2 Œtk; tkC1$. In the context of Riemann
integrals so called upper and lower sums are defined as the selections of t"

k
such

that the integrand L.x.t"
k

/; t"
k

/ w.t"
k

/ has its maximum and minimum values, re-
spectively. The Riemann integral is defined if the upper and lower sums converge
to the same value, which is then defined to be the value of the integral. In the
case of white noise it happens that w.t"

k
/ it not bounded and takes arbitrarily small

and large values at every finite interval, and thus the Riemann integral does not
converge.

We could also attempt to define it as a Stieltjes integral which is more general
than the Riemann integral. For that definition we need to interpret the increment
w.t/ dt as increment of another process ˇ.t/ such that the integral becomes

Z t

t0

L.x.t/; t/ w.t/ dt D
Z t

t0

L.x.t/; t/ dˇ.t/: (3.4)

It turns out that a suitable process for this purpose is the Brownian motion which
we already discussed in the previous chapter:

Definition 3.1 (Brownian motion). Brownian motion ˇ.t/ is a process with the
following properties:

1. Any increment 'ˇk D ˇ.tkC1/ ! ˇ.tk/ is a zero mean Gaussian random
variable with covariance variance Q 'tk , where Q is the diffusion matrix of
the Brownian motion and 'tk D tkC1 ! tk .

2. When the time spans of increments do not overlap, the increments are inde-
pendent.

Some further properties of Brownian motion which result from the above are
the following:

1. Brownian motion t 7! ˇ.t/ has discontinuous derivative everywhere.

2. White noise can be considered as the formal derivative of Brownian motion
w.t/ D dˇ.t/=dt .

An example of a scalar Brownian motion realization is shown in Figure 3.1.
Unfortunately, the definition of the latter integral in Equation (3.2) in terms of

increments of Brownian motion as in Equation (3.4) does not solve our existence
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Figure 3.1: Brownian motion

problem. The problem is the everywhere discontinuous derivative of ˇ.t/ which
makes it too irregular for the defining sum of Stieltjes integral to converge. Unfor-
tunately, the same happens with Lebesgue integral. Recall that both Stieltjes and
Lebesgue integrals are essentially defined as limits of the form

Z t

t0

L.x.t/; t/ dˇ D lim
n!1

X
k

L.x.t"
k /; t"

k / Œˇ.tkC1/ ! ˇ.tk/$; (3.5)

where t0 < t1 < : : : < tn and t"
k

2 Œtk; tkC1$. The core problem in both of these
definitions is that they would require the limit to be independent of the position on
the interval t"

k
2 Œtk; tkC1$. But for integration with respect to Brownian motion

this is not the case. Thus, Stieltjes or Lebesgue integral definition does not work
either.

The solution to the problem is the Itô stochastic integral which is based on the
observation that if we fix the choice to t"

k
D tk , then the limit becomes unique.

The Itô integral can be thus defined as the limit
Z t

t0

L.x.t/; t/ dˇ.t/ D lim
n!1

X
k

L.x.tk/; tk/ Œˇ.tkC1/ ! ˇ.tk/$; (3.6)

which is a sensible definition of the stochastic integral required for the SDE.
The stochastic differential equation (2.32) can now be defined to actually mean

the corresponding (Itô) integral equation

x.t/ ! x.t0/ D
Z t

t0

f .x.t/; t/ dt C
Z t

t0

L.x.t/; t/ dˇ.t/; (3.7)

which should be true for arbitrary t0 and t .
We can now return from this stochastic integral equation to the differential

equation as follows. If we choose the integration limits in Equation (3.7) to be t

and t C dt , where dt is “small”, we can write the equation in the differential form

dx D f .x; t / dt C L.x; t / dˇ; (3.8)
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which should be interpreted as shorthand for the integral equation. The above is
the form which is most often used in literature on stochastic differential equations
(e.g., Øksendal, 2003; Karatzas and Shreve, 1991). We can now formally divide
by dt to obtain a differential equation:

dx

dt
D f .x; t / C L.x; t /

dˇ

dt
; (3.9)

which shows that also here white noise can be interpreted as the formal derivative
of Brownian motion. However, due to non-classical transformation properties of
the Itô differentials, one has to be very careful in working with such formal manip-
ulations.

It is now also easy to see why we are not permitted to consider more general
differential equations of the form

dx.t/

dt
D f .x.t/; w.t/; t/; (3.10)

where the white noise w.t/ enters the system through a non-linear transformation.
There is no way to rewrite this equation as a stochastic integral with respect to
a Brownian motion and thus we cannot define the mathematical meaning of this
equation. More generally, white noise should not be thought as an entity as such,
but it only exists as the formal derivative of Brownian motion. Therefore only
linear functions of white noise have a meaning whereas non-linear functions do
not.

Let’s now take a short excursion to how Itô integrals are often treated in stochas-
tic analysis. In the above treatment we have only considered stochastic integration
of the term L.x.t/; t/, but the definition can be extended to arbitrary Itô pro-
cesses ‚.t/, which are “adapted” to the Brownian motion ˇ.t/ to be integrated
over. Being “adapted” means that ˇ.t/ is the only stochastic "driving force" in
‚.t/ in the same sense that L.x.t/; t/ was generated as function of x.t/, which
in turn is generated though the differential equation, where the only stochastic
driver is the Brownian motion. This adaptation can also be denoted by including
the "event space element” ! as argument to the function ‚.t; !/ and Brownian
motion ˇ.t; !/. The resulting Itô integral is then defined as the limit

Z t

t0

‚.t; !/ dˇ.t; !/ D lim
n!1

X
k

‚.tk; !/ Œˇ.tkC1; !/ ! ˇ.tk; !/$: (3.11)

Actually, the definition is slightly more complicated (see Karatzas and Shreve,
1991; Øksendal, 2003), but the basic principle is the above. Furthermore, if ‚.t; !/

is such an adapted process, then according to the martingale representation theorem
it can always be represented as the solution to a suitable Itô stochastic differential
equation. The Malliavin calculus (Nualart, 2006) provides the tools for finding
such equation in practice. However, this kind of analysis would require us to use
the full measure theoretical formulation of Itô stochastic integral which we will not
do here.
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3.2 Itô Formula

Consider the stochastic integral
Z t

0
ˇ.t/ dˇ.t/ (3.12)

where ˇ.t/ is a standard Brownian motion, that is, scalar Brownian motion with
diffusion matrix Q D 1. Based on the ordinary calculus we would expect the value
of this integral to be ˇ2.t/=2, but it is a wrong answer. If we select a partition
0 D t0 < t1 < : : : < tn D t , we get by rearranging the terms
Z t

0
ˇ.t/ dˇ.t/ D lim

X
k

ˇ.tk/Œˇ.tkC1/ ! ˇ.tk/$

D lim
X

k

#
!1

2
.ˇ.tkC1/ ! ˇ.tk//2 C 1

2
.ˇ2.tkC1/ ! ˇ2.tk//

$

D !1

2
t C 1

2
ˇ2.t/;

(3.13)

where we have used the result that the limit of the first term is lim
P

k.ˇ.tkC1/ !
ˇ.tk//2 D t . The Itô differential of ˇ2.t/=2 is analogously

dŒ
1

2
ˇ2.t/$ D ˇ.t/ dˇ.t/ C 1

2
dt; (3.14)

not ˇ.t/ dˇ.t/ as we might expect. This a consequence and the also a drawback of
the selection of the fixed t"

k
D tk .

The general rule for calculating the Itô differentials and thus Itô integrals can
be summarized as the following Itô formula, which corresponds to chain rule in
ordinary calculus:

Theorem 3.1 (Itô formula). Assume that x.t/ is an Itô process, and consider arbi-
trary (scalar) function (.x.t/; t/ of the process. Then the Itô differential of (, that
is, the Itô SDE for ( is given as

d( D @(

@t
dt C

X
i

@(

@xi
dxi C 1

2

X
ij

!
@2(

@xi@xj

"
dxi dxj

D @(

@t
dt C .r(/T dx C 1

2
tr
n'

rrT(
(

dx dxT
o

;

(3.15)

provided that the required partial derivatives exists, where the mixed differentials
are combined according to the rules

dx dt D 0

dt dˇ D 0

dˇ dˇT D Q dt:

(3.16)
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Proof. See, for example, Øksendal (2003); Karatzas and Shreve (1991).

Although the Itô formula above is defined only for scalar (, it obviously works
for each of the components of a vector values function separately and thus includes
the vector case also. Also note that every Itô process has a representation as the
solution of a SDE of the form

dx D f .x; t / dt C L.x; t / dˇ; (3.17)

and the explicit expression for the differential in terms of the functions f .x; t /

and L.x; t / could be derived by substituting the above equation for dx in the Itô
formula.

The Itô formula can be conceptually derived by Taylor series expansion:

(.x C dx; t C dt / D (.x; t / C @(.x; t /

@t
dt C

X
i

@(.x; t /

@xi
dxi

C 1

2

X
ij

!
@2(

@xi@xj

"
dxj dxj C : : :

(3.18)

that is, to the first order in dt and second order in dx we have

d( D (.x C dx; t C dt / ! (.x; t /

$ @(.x; t /

@t
dt C

X
i

@(.x; t/

@xi
dxi C 1

2

X
ij

!
@2(

@xi@xj

"
dxi dxj :

(3.19)

In deterministic case we could ignore the second order and higher order terms, be-
cause dx dxT would already be of the order dt2. Thus the deterministic counterpart
is

d( D @(

@t
dt C @(

@x
dx: (3.20)

But in the stochastic case we know that dx dxT is potentially of the order dt , be-
cause dˇ dˇT is of the same order. Thus we need to retain the second order term
also.

Example 3.1 (Itô differential of ˇ2.t/=2). If we apply the Itô formula to (.x/ D
1
2x2.t/, with x.t/ D ˇ.t/, where ˇ.t/ is a standard Brownian motion, we get

d( D ˇ dˇ C 1

2
dˇ2

D ˇ dˇ C 1

2
dt;

(3.21)

as expected.
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Example 3.2 (Itô differential of sin.! x/). Assume that x.t/ is the solution to the
scalar SDE:

dx D f .x/ dt C dˇ; (3.22)

where ˇ.t/ is a Brownian motion with diffusion constant q and ! > 0. The Itô
differential of sin.! x.t// is then

dŒsin.x/$ D ! cos.! x/ dx ! 1

2
!2 sin.! x/ dx2

D ! cos.! x/ Œf .x/ dt C dˇ$ ! 1

2
!2 sin.! x/ Œf .x/ dt C dˇ$2

D ! cos.! x/ Œf .x/ dt C dˇ$ ! 1

2
!2 sin.! x/ q dt:

(3.23)

3.3 Explicit Solutions of Linear SDEs

In this section we derive the full solution to a general time-varying linear stochastic
differential equation. The time-varying multidimensional SDE is assumed to have
the form

dx D F.t/ x dt C u.t/ dt C L.t/ dˇ (3.24)

where x 2 Rn if the state and ˇ 2 Rs is a Brownian motion.
We can now proceed by defining a transition matrix ‰.#; t/ in the same way as

we did in Equation (1.34). Multiplying the above SDE with the integrating factor
‰.t0; t / and rearranging gives

‰.t0; t / dx ! ‰.t0; t / F.t/ x dt D ‰.t0; t / u.t/ dt C ‰.t0; t / L.t/ dˇ: (3.25)

Itô formula gives

dŒ‰.t0; t / x$ D !‰.t; t0/ F.t/ x dt C ‰.t; t0/ dx: (3.26)

Thus the SDE can be rewritten as

dŒ‰.t0; t / x$ D ‰.t0; t / u.t/ dt C ‰.t0; t / L.t/ dˇ: (3.27)

where the differential is a Itô differential. Integration (in Itô sense) from t0 to t

gives

‰.t0; t / x.t/ ! ‰.t0; t0/ x.t0/ D
Z t

t0

‰.t0; #/ u.#/ d# C
Z t

t0

‰.t0; #/ L.#/ dˇ.#/;

(3.28)
which can be further written in form

x.t/ D ‰.t; t0/ x.t0/ C
Z t

t0

‰.t; #/ u.#/ d# C
Z t

t0

‰.t; #/ L.#/ dˇ.#/; (3.29)
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which is thus the desired full solution.
In the case of LTI SDE

dx D F x dt C L dˇ; (3.30)

where F and L are constant, and ˇ has a constant diffusion matrix Q, the solution
simplifies to

x.t/ D exp .F .t ! t0// x.t0/ C
Z t

t0

exp .F .t ! #// L dˇ.#/; (3.31)

By comparing this to Equation (2.35) in Section 2.3, this solution is exactly what
we would have expected—it is what we would obtain if we formally replaced
w.#/ d# with dˇ.#/ in the deterministic solution. However, it is just because the
usage of Itô formula in Equation (3.26) above happened to result in the same result
as deterministic differentiation would. In non-linear case we cannot expect to get
the right result with this kind of formal replacement.

Example 3.3 (Solution of Ornstein–Uhlenbeck equation). The complete solution
to the scalar SDE

dx D !- x dt C dˇ; x.0/ D x0; (3.32)

where - >0 is a given constant and ˇ.t/ is a Brownian motion is

x.t/ D exp.!- t/ x0 C
Z t

0
exp.!- .t ! #// dˇ.#/: (3.33)

The solution, called the Ornstein–Uhlenbeck process, is illustrated in Figure 3.2.
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Figure 3.2: Realizations, mean, and 95% quantiles of Ornstein–Uhlenbeck process.
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3.4 Existence and uniqueness of solutions

A solution to a stochastic differential equation is called strong if for given Brow-
nian motion ˇ.t/, it is possible to construct a solution x.t/, which is unique for
that given Brownian motion. It means that the whole path of the process is unique
for a given Brownian motion. Hence strong uniqueness is also called path-wise
uniqueness.

The strong uniqueness of a solution to SDE of the general form

dx D f .x; t/ dt C L.x; t / dˇ; x.t0/ D x0; (3.34)

can be determined using stochastic Picard’s iteration which is a direct extension
of the deterministic Picard’s iteration. Thus we first rewrite the equation in integral
form

x.t/ D x0 C
Z t

t0

f .x.#/; #/ d# C
Z t

t0

L.x.#/; #/ dˇ.#/: (3.35)

Then the solution can be approximated with the following iteration.

Algorithm 3.1 (Stochastic Picard’s iteration). Start from the initial guess '0.t/ D
x0. With the given ˇ, compute approximations '1.t/; '2.t/; '3.t/; : : : via the fol-
lowing recursion:

'nC1.t/ D x0 C
Z t

t0

f .'n.#/; #/ d# C
Z t

t0

L.'n.#/; #/ dˇ.#/: (3.36)

It can be shown that this iteration converges to the exact solution in mean
squared sense if both of the functions f and L grow at most linearly in x, and
they are Lipschitz continuous in the same variable (see, e.g., Øksendal, 2003). If
these conditions are met, then there exists a unique strong solution to the SDE.

A solution is called weak if it is possible to construct some Brownian motion
Q̌.t/ and a stochastic process Qx.t/ such that the pair is a solution to the stochas-

tic differential equation. Weak uniqueness means that the probability law of the
solution is unique, that is, there cannot be two solutions with different finite-
dimensional distributions. An existence of strong solution always implies the ex-
istence of a weak solution (every strong solution is also a weak solution), but the
converse is not true. Determination if an equation has a unique weak solution when
it does not have a unique strong solution is considerably harder than the criterion
for the strong solution.

3.5 Stratonovich calculus

It is also possible to define stochastic integral in such way the chain rule of the
ordinary calculus is valid. The symmetrized stochastic integral or the Stratonovich
integral (Stratonovich, 1968) can be defined as follows:

Z t

t0

L.x.t/; t/ ı dˇ.t/ D lim
n!1

X
k

L.x.t"
k /; t"

k / Œˇ.tkC1/ ! ˇ.tk/$; (3.37)
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where t"
k

D .tk C tk/=2 . The difference is that we do not select the starting point
of the interval as the evaluation point, but the middle point. This ensures that the
calculation rules of ordinary calculus apply. The disadvantage of the Stratonovich
integral over Itô integral is that the Stratonovich integral is not a martingale which
makes its theoretical analysis harder.

The Stratonovich stochastic differential equations (Stratonovich, 1968; Øk-
sendal, 2003) are similar to Itô differential equations, but instead of Itô integrals
they involve stochastic integrals in the Stratonovich sense. To distinguish between
Itô and Stratonovich stochastic differential equations, the Stratonovich integral is
denoted by a small circle before the Brownian differential as follows:

dx D f .x; t / dt C L.x; t / ı dˇ: (3.38)

The white noise interpretation of SDEs naturally leads to stochastic differential
equations in Stratonovich sense. This is because, broadly speaking, discrete-time
and smooth approximations of white noise driven differential equations converge to
stochastic differential equations in Stratonovich sense, not in Itô sense. However,
this result of Wong and Zakai is strictly true only for scalar SDEs and thus this
result should not be extrapolated too far.

A Stratonovich stochastic differential equation can always be converted into
an equivalent Itô equation by using simple transformation formulas (Stratonovich,
1968; Øksendal, 2003). If the dispersion term is independent of the state L.x; t / D
L.t/ then the Itô and Stratonovich interpretations of the stochastic differential
equation are the same.

Algorithm 3.2 (Conversion of Stratonovich SDE into Itô SDE). The following
SDE in Stratonovich sense

dx D f .x; t / dt C L.x; t / ı dˇ; (3.39)

is equivalent to the following SDE in Itô sense

dx D Qf .x; t / dt C L.x; t / dˇ; (3.40)

where
Qfi .x; t / D fi .x; t / C 1

2

X
jk

@Lij .x/

@xk
Lkj .x/: (3.41)



Chapter 4

Probability Distributions and
Statistics of SDEs

4.1 Fokker-Planck-Kolmogorov Equation

In this section we derive the equation for the probability density of Itô process x.t/,
when the process is defined as the solution to the SDE

dx D f .x; t / dt C L.x; t / dˇ: (4.1)

The corresponding probability density is usually denoted as p.x.t//, but in this
section, to emphasize that the density is actually function of both x and t , we shall
occasionally write it as p.x; t /.

Theorem 4.1 (Fokker–Planck–Kolmogorov equation). The probability density p.x; t /

of the solution of the SDE in Equation (4.1) solves the partial differential equation

@p.x; t /

@t
D !

X
i

@

@xi
Œfi .x; t/ p.x; t /$

C 1

2

X
ij

@2

@xi @xj

n
ŒL.x; t / Q LT.x; t /$ij p.x; t /

o
:

(4.2)

This partial differential equation is here called the Fokker–Planck–Kolmogorov
equation. In physics literature it is often called the Fokker–Planck equation and in
stochastics it is the forward Kolmogorov equation, hence the name.

Proof. Let (.x/ be an arbitrary twice differentiable function. The Itô differential
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of (.x.t// is, by the Itô formula, given as follows:

d( D
X

i

@(

@xi
dxi C 1

2

X
ij

!
@2(

@xi@xj

"
dxi dxj

D
X

i

@(

@xi
fi .x; t / dt C

X
i

@(

@xi
ŒL.x; t / dˇ$i

C 1

2

X
ij

!
@2(

@xi@xj

"
ŒL.x; t / Q LT.x; t /$ij dt:

(4.3)

Taking expectation from the both sides with respect to x and formally dividing by
dt gives the following:

d EŒ($

dt
D
X

i

E
#

@(

@xi
fi .x; t /

$

C 1

2

X
ij

E
#!

@2(

@xi@xj

"
ŒL.x; t / Q LT.x; t /$ij

$
:

(4.4)

The left hand side can now be written as follows:

dEŒ($

dt
D d

dt

Z
(.x/ p.x; t / dx

D
Z

(.x/
@p.x; t/

@t
dx:

(4.5)

Recall the multidimensional integration by parts formula
Z

C

@u.x/

@xi
v.x/ dx D

Z
@C

u.x/ v.x/ ni dS !
Z

C
u.x/

@v.x/

@xi
dx; (4.6)

where n is the normal of the boundary @C of C and dS is its area element. If
the integration area is whole Rn and functions u.x/ and v.x/ vanish at infinity, as
is the case here, then the boundary term on the right hand side vanishes and the
formula becomes

Z
@u.x/

@xi
v.x/ dx D !

Z
u.x/

@v.x/

@xi
dx: (4.7)

The term inside the summation of the first term on the right hand side of Equation
(4.4) can now be written as

E
#

@(

@xi
fi .x; t /

$
D
Z

@(

@xi
fi .x; t / p.x; t / dx

D !
Z

(.x/
@

@xi
Œfi .x; t / p.x; t /$ dx;

(4.8)
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where we have used the integration by parts formula with u.x/ D (.x/ and v.x/ D
fi .x; t / p.x; t /. For the term inside the summation sign of the second term we get:

E
#!

@2(

@xi@xj

"
ŒL.x; t / Q LT.x; t /$ij

$

D
Z !

@2(

@xi@xj

"
ŒL.x; t / Q LT.x; t /$ij p.x; t / dx

D !
Z !

@(

@xj

"
@

@xi

n
ŒL.x; t / Q LT.x; t /$ij p.x; t /

o
dx

D
Z

(.x/
@2

@xi @xj

n
ŒL.x; t / Q LT.x; t /$ij p.x; t /

o
dx;

(4.9)

where we have first used the integration by parts formula with u.x/ D @(.x/=@xj ,
v.x/ D ŒL.x; t / Q LT.x; t /$ij p.x; t / and then again with u.x/ D (.x/, v.x/ D

@
@xi

fŒL.x; t / Q LT.x; t /$ij p.x; t /g.
If we substitute the Equations (4.5), (4.8), and (4.9) into (4.4) we get:
Z

(.x/
@p.x; t /

@t
dx

D !
X

i

Z
(.x/

@

@xi
Œfi .x; t / p.x; t /$ dx

C 1

2

X
ij

Z
(.x/

@2

@xi @xj
fŒL.x; t / Q LT.x; t /$ij p.x; t /g dx;

(4.10)

which can be also written asZ
(.x/

h@p.x; t /

@t
C
X

i

@

@xi
Œfi .x; t / p.x; t /$

! 1

2

X
ij

@2

@xi @xj
fŒL.x; t / Q LT.x; t /$ij p.x; t /g

i
dx D 0:

(4.11)

The only way that this equation can be true for an arbitrary (.x/ is that the term in
the brackets vanishes, which gives the FPK equation.

Example 4.1 (Diffusion equation). In Example 2.1 we derived the diffusion equa-
tion by considering random Brownian movement occurring during small time in-
tervals. Note that Brownian motion can be defined as solution to the SDE

dx D dˇ: (4.12)

If we set the diffusion constant of the Brownian motion to be q D 2 D, then the
FPK reduces to

@p

@t
D D

@2p

@x2
; (4.13)

which is the same result as in Equation (2.7).
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4.2 Mean and Covariance of SDE

In the previous section we derived the Fokker-Planck-Kolmogorov (FPK) equa-
tion which, in principle, is the complete probabilistic description of the state. The
mean, covariance and other moments of the state distribution can be derived from
its solution. However, we are often interested primarily on the mean and covari-
ance of the distribution and would like to avoid solving the FPK equation as an
intermediate step.

If we take a look at the Equation (4.4) in the previous section, we can see that
it can be interpreted as equation for the general moments of the state distribution.
This equation can be generalized to time dependent (.x; t / by including the time
derivative:

d EŒ($

dt
D E

#
@(

@t

$
C
X

i

E
#

@(

@xi
fi .x; t/

$

C 1

2

X
ij

E
#!

@2(

@xi@xj

"
ŒL.x; t / Q LT.x; t/$ij

$
:

(4.14)

If we select the function as (.x; t/ D xu, then the Equation (4.14) reduces to
d EŒxu$

dt
D E Œfu.x; t /$ ; (4.15)

which can be seen as the differential equation for the components of the mean of
the state. If we denote the mean function as m.t/ D EŒx.t/$ and select the function
as (.x; t / D xu xv ! mu.t/ mv.t/, then Equation (4.14) gives

d EŒxu xv ! mu.t/ mv.t/$

dt

D E Œ.xv ! mv.t// fu.x; t/$ C E Œ.xu ! mu.v// fv.x; t/$

C ŒL.x; t / Q LT.x; t /$uv:

(4.16)

If we denote the covariance as P .t/ D EŒ.x.t/ ! m.t// .x.t/ ! m.t//T$, then
Equations (4.15) and (4.16) can be written in the following matrix form:

dm

dt
D E Œf .x; t /$ (4.17)

dP

dt
D E

h
f .x; t / .x ! m/T

i
C E

h
.x ! m/ f T.x; t /

i

C E
h
L.x; t / Q LT.x; t /

i
; (4.18)

which are the differential equations for the mean and covariance of the state. How-
ever, these equations cannot be used in practice as such, because the expectations
should be taken with respect to the actual distribution of the state—which is the
solution to the FPK equation. Only in Gaussian case the first two moments ac-
tually characterize the solution. Even though in non-linear case we cannot use
these equations as such, they provide a useful starting point for forming Gaussian
approximations to SDEs.
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4.3 Higher Order Moments of SDEs

It is also possible to derive differential equations for the higher order moments of
SDEs. However, required number of equations quickly becomes huge, because if
the state dimension is n, the number of independent third moments is cubic n3 in
the number of state dimension, the number of fourth order moments is quartic n4

and so on. The general moments equations can be found, for example, in the book
of Socha (2008).

To illustrate the idea, let’s consider the scalar SDE

dx D f .x/ dt C L.x/ dˇ: (4.19)

Recall that the expectation of an arbitrary twice differentiable function (.x/ satis-
fies

d EŒ(.x/$

dt
D E

#
@(.x/

@x
f .x/

$
C q

2
E
#

@2(.x/

@x2
L2.x/

$
: (4.20)

If we apply this to (.x/ D xn, where n # 2, we get

d EŒxn$

dt
D n EŒxn!1 f .x; t/$ C q

2
n .n ! 1/ EŒxn!2 L2.x/$; (4.21)

which, in principle, gives the equations for third order moments, fourth order mo-
ments and so on. It is also possible to derive similar differential equations for the
central moments, cumulants, or quasi-moments.

However, unless f .x/ and L.x/ are linear (or affine) functions, the equation
for nth order moment depends on the moments of higher order > n. Thus in order
to actually compute the required expectations, we would need to integrate an infi-
nite number of moment equations, which is impossible in practice. This problem
can be solved by using moment closure methods which typically are based on re-
placing the higher order moments (or cumulants or quasi moments) with suitable
approximations. For example, it is possible to set the cumulants above a certain
order to zero, or to approximate the moments/cumulants/quasi-moments with their
steady state values (Socha, 2008).

In scalar case, given a set of moments, cumulants or quasi-moments, it is possi-
ble to form a distribution which has these moments/cumulants/quasi-moments, for
example, as the maximum entropy distribution. Unfortunately, in multidimensional
case the situation is much more complicated.

4.4 Mean and covariance of linear SDEs

Let’s now consider a linear stochastic differential equation of the general form

dx D F.t/ x.t/ dt C u.t/ dt C L.t/ dˇ.t/; (4.22)

where the initial conditions are x.t0/ ' N.m0; P0/, F.t/ and L.t/ are matrix
valued functions of time, u.t/ is a vector valued function of time and ˇ.t/ is a
Brownian motion with diffusion matrix Q.
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The mean and covariance can be solved from the Equations (4.17) and (4.18),
which in this case reduce to

dm.t/

dt
D F.t/ m.t/ C u.t/ (4.23)

dP .t/

dt
D F.t/ P .t/ C P .t/ FT.t/ C L.t/ Q LT.t/; (4.24)

with the initial conditions m0.t0/ D m0 and P .t0/ D P0. The general solutions to
these differential equations are

m.t/ D ‰.t; t0/ m.t0/ C
Z t

t0

‰.t; #/ u.#/ d# (4.25)

P .t/ D ‰.t; t0/ P .t0/ ‰T.t; t0/

C
Z t

t0

‰.t; #/ L.#/ Q LT.#/ ‰T.t; #/ d#; (4.26)

which could also be obtained by computing the mean and covariance of the explicit
solution in Equation (3.29).

Because the solution is a linear transformation of the Brownian motion, which
is a Gaussian process, the solution is Gaussian

p.x; t / D N.x.t/ j m.t/; P .t//; (4.27)

which can be verified by checking that this distribution indeed solves the corre-
sponding Fokker–Planck–Kolmogorov equation (4.2).

In the case of LTI SDE

dx D F x.t/ dt C L dˇ.t/; (4.28)

the mean and covariance are also given by the Equations (4.25) and (4.26). The
only difference is that the matrices F , L as well as the diffusion matrix of the
Brownian motion Q are constant. In this LTI SDE case the transition matrix is
the matrix exponential function ‰.t; #/ D exp.F .t ! #// and the solutions to the
differential equations reduce to

m.t/ D exp.F .t ! t0// m.t0/ (4.29)

P .t/ D exp.F .t ! t0// P .t0/ exp.F .t ! t0//T

C
Z t

t0

exp.F .t ! #// L Q LT exp.F .t ! #//T d#: (4.30)

The covariance above can also be solved by using matrix fractions (see, e.g., Sten-
gel, 1994; Grewal and Andrews, 2001; Särkkä, 2006). If we define matrices C.t/

and D.t/ such that P .t/ D C.t/ D!1.t/, it is easy to show that P solves the matrix
Riccati differential equation

dP .t/

dt
D F P .t/ C P .t/ FT C L Q LT; (4.31)
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if the matrices C.t/ and D.t/ solve the differential equation
!

dC.t/= dt

dD.t/= dt

"
D
!

F L Q LT

0 !FT

"!
C.t/

D.t/

"
; (4.32)

and P .t0/ D C.t0/ D.t0/!1. We can select, for example,

C.t0/ D P .t0/ (4.33)
D.t0/ D I: (4.34)

Because the differential equation (4.32) is linear and time invariant, it can be solved
using the matrix exponential function:

!
C.t/

D.t/

"
D exp

)!
F L Q LT

0 !FT

"
t

*!
C.t0/

D.t0/

"
: (4.35)

The final solution is then given as P .t/ D C.t/ D!1.t/. This is useful, because
now both the mean and covariance can be solved via simple matrix exponential
function computation, which allows for easy numerical treatment.

4.5 Steady State Solutions of Linear SDEs

In Section (2.4) we considered steady-state solutions of LTI SDEs of the form

dx D F x dt C L dˇ; (4.36)

via Fourier domain methods. However, another way of approaching steady state
solutions is to notice that at the steady state, the time derivatives of mean and
covariance should be zero:

dm.t/

dt
D F m.t/ D 0 (4.37)

dP .t/

dt
D F P .t/ C P .t/ FT C L Q LT D 0: (4.38)

The first equation implies that the stationary mean should be identically zero m1 D
0. Here we use the subscript 1 to mean the steady state value which in a sense
corresponds to the value after an infinite duration of time. The second equation
above leads to so called the Lyapunov equation, which is a special case of so called
algebraic Riccati equations (AREs):

F P1 C P1 FT C L Q LT D 0: (4.39)

The steady-state covariance P1 can be algebraically solved from the above equa-
tion. Note that although the equation is linear in P1 it cannot be solved via simple
matrix inversion, because the matrix F appears on the left and right hand sides of
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the covariance. Furthermore F is not usually invertible. However, most commer-
cial mathematics software (e.g., Matlab) have built-in routines for solving this type
of equations numerically.

Let’s now use this result to derive the equation for the steady state covariance
function of LTI SDE. The general solution of LTI SDE is

x.t/ D exp .F .t ! t0// x.t0/ C
Z t

t0

exp .F .t ! #// L dˇ.#/: (4.40)

If we let t0 ! !1 then this becomes (note that x.t/ becomes zero mean):

x.t/ D
Z t

!1
exp .F .t ! #// L dˇ.#/: (4.41)

The covariance function is now given as

EŒx.t/ xT.t 0/$

D E
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$ "Z t 0
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#T
9=
;

D
Z min.t 0;t/

!1
exp .F .t ! #// L Q LT exp

+
F .t 0 ! #/

,T d#:

(4.42)

But we already know the following:

P1 D
Z t

!1
exp .F .t ! #// L Q LT exp .F .t ! #//T d#; (4.43)

which, by definition, should be independent of t . We now get:

& If t % t 0, we have

EŒx.t/ xT.t 0/$

D
Z t

!1
exp .F .t ! #// L Q LT exp

+
F .t 0 ! #/

,T d#

D
Z t

!1
exp .F .t ! #// L Q LT exp

+
F .t 0 ! t C t ! #/

,T d#

D
Z t

!1
exp .F .t ! #// L Q LT exp .F .t ! #//T d# exp

+
F .t 0 ! t /

,T

D P1 exp
+
F .t 0 ! t /

,T
:

(4.44)
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& If t > t 0, we get similarly

EŒx.t/ xT.t 0/$

D
Z t 0

!1
exp .F .t ! #// L Q LT exp

+
F .t 0 ! #/

,T d#

D exp
+
F .t ! t 0/

, Z t 0

!1
exp .F .t ! #// L Q LT exp

+
F .t 0 ! #/

,T d#

D exp
+
F .t ! t 0/

,
P1:

(4.45)

Thus the stationary covariance function C.#/ D EŒx.t/ xT.tC#/$ can be expressed
as

C.#/ D
(

P1 exp .F #/T if # # 0

exp .!F #/ P1 if # < 0:
(4.46)

It is also possible to find an analogous representation for the covariance functions
of time-varying linear SDEs (Van Trees, 1971).

4.6 Fourier Analysis of LTI SDE Revisited

In Section 2.4 we considered Fourier domain solutions to LTI SDEs of the form

dx D F x.t/ dt C L dˇ.t/; (4.47)

in their white-noise form. However, as pointed out in the section, the analysis
was not entirely rigorous, because we had to resort to computation of the Fourier
transform of white noise

W.i !/ D
Z 1

!1
w.t/ exp.!i ! t/ dt; (4.48)

which is not well-defined as an ordinary integral. The obvious substitution dˇ D
w.t/ dt will not help us either, because we would still have trouble in defining
what is meant by this resulting highly oscillatory stochastic process.

The problem can be solved by using the integrated Fourier transform as fol-
lows. It can be shown (see, e.g., Van Trees, 1968) that every stationary Gaussian
process x.t/ has a representation of the form

x.t/ D
Z 1

0
exp.i ! t/ d..i !/; (4.49)

where ! 7! ..i !/ is some complex valued Gaussian process with independent
increments. Then the mean squared difference EŒj..!kC1/ ! ..!k/j2$ roughly
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corresponds to the mean power on the interval Œ!k; !kC1$. The spectral density
then corresponds to a function S.!/ such that

EŒj..!kC1/ ! ..!k/j2$ D 1

&

Z !kC1

!k

S.!/ d!; (4.50)

where the constant factor results from two-sidedness of S.!/ and from the constant
factor .2&/!1 in the inverse Fourier transform.

By replacing the Fourier transform in the analysis of Section 2.4 with the in-
tegrated Fourier transform, it is possible derive the spectral densities of covariance
functions of LTI SDEs without resorting to the formal Fourier transform of white
noise. However, the results remain exactly the same. For more information on this
procedure, see, for example, Van Trees (1968).

Another way to treat the problem is to recall that the solution of a LTI ODE of
the form

dx

dt
D F x.t/ C L u.t/; (4.51)

where u.t/ is a smooth process, approaches the solution of the corresponding LTI
SDE in Stratonovich sense when the correlation length of u.t/ goes to zero. Thus
we can start by replacing the formal white noise process with a Gaussian process
with covariance function

Cu.# I '/ D Q
1p

2& '2
exp

!
! 1

2 '2
#2

"
(4.52)

which in the limit ' ! 0 gives the white noise:

lim
"!0

Cu.# I '/ D Q ı.#/: (4.53)

If we now carry out the derivation in Section 2.4, we end up into the following
spectral density:

Sx.!I '/ D .F ! .i !/ I/!1 L Q exp
!

!'2

2
!2

"
LT .F C .i !/ I/!T : (4.54)

We can now compute the limit ' ! 0 to get the spectral density corresponding to
the white noise input:

Sx.!/ D lim
"!0

Sx.!I '/ D .F ! .i !/ I/!1 L Q LT .F C .i !/ I/!T ; (4.55)

which agrees with the result obtained in Section 2.4. This also implies that the
covariance function of x is indeed

Cx.#/ D F !1Œ.F ! .i !/ I/!1 L Q LT .F C .i !/ I/!T$: (4.56)

Note that because Cx.0/ D P1 by Equation (4.46), where P1 is the stationary
solution considered in the previous section, we also get the following interesting
identity:

P1 D 1

2&

Z 1

!1
.F ! .i !/ I/!1 L Q LT .F C .i !/ I/!T$ d!; (4.57)
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which can sometimes be used for computing solutions to algebraic Riccati equa-
tions (AREs).
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Chapter 5

Numerical Solution of SDEs

5.1 Gaussian process approximations

In the previous chapter we saw that the differential equations for the mean and
covariance of the solution to SDE

dx D f .x; t / dt C L.x; t / dˇ; x.0/ ' p.x.0//; (5.1)

are

dm

dt
D E Œf .x; t /$ (5.2)

dP

dt
D E

h
f .x; t / .x ! m/T

i
C E

h
.x ! m/ f T.x; t /

i

C E
h
L.x; t / Q LT.x; t /

i
: (5.3)

If we write down the expectation integrals explicitly, these equations can be seen
to have the form

dm

dt
D
Z

f .x; t / p.x; t / dx (5.4)

dP

dt
D
Z

f .x; t / .x ! m/T p.x; t / dx (5.5)

C
Z

.x ! m/ f T.x; t / p.x; t / dx

C
Z

L.x; t / Q LT.x; t / p.x; t / dx: (5.6)

Because p.x; t / is the solution of the Fokker–Planck–Kolmogorov equation (4.2),
these equations cannot be solved in practice. However, one very useful class of
approximations can be obtained by replacing the FPK solution with a Gaussian
approximation as follows:

p.x; t / $ N.x j m.t/; P .t//; (5.7)
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where m.t/ and P .t/ are the mean and covariance of the state, respectively. This
approximation is referred to as the Gaussian assumed density approximation (Kush-
ner, 1967), because we do the computations under the assumption that the state
distribution is indeed Gaussian. It is also called Gaussian process approximation
(Archambeau and Opper, 2011). The approximation method can be written as the
following algorithm.

Algorithm 5.1 (Gaussian process approximation I). Gaussian process approxi-
mation to the SDE (5.1) can be obtained by integrating the following differential
equations from the initial conditions m.0/ D EŒx.0/$ and P .0/ D CovŒx.0/$ to
the target time t :

dm

dt
D
Z

f .x; t / N.x j m; P / dx

dP

dt
D
Z

f .x; t / .x ! m/T N.x j m; P / dx

C
Z

.x ! m/ f T.x; t / N.x j m; P / dx

C
Z

L.x; t / Q LT.x; t / N.x j m; P / dx;

(5.8)

or if we denote the Gaussian expectation as

ENŒg.x/$ D
Z

g.x/ N.x j m; P / dx; (5.9)

the equations can be written as

dm

dt
D ENŒf .x; t /$

dP

dt
D ENŒ.x ! m/ f T.x; t /$ C ENŒf .x; t / .x ! m/T$

C ENŒL.x; t / Q LT.x; t /$;

(5.10)

If the function x 7! f .x; t / is differentiable, the covariance differential equa-
tion can be simplified by using the following well known property of Gaussian
random variables:

Theorem 5.1. Let f .x; t / be differentiable with respect to x and let x ' N.m; P /.
Then the following identity holds (see, e.g., Papoulis, 1984; Särkkä and Sarmavuori,
2013):

Z
f .x; t / .x ! m/T N.x j m; P / dx

D
#Z

Fx.x; t / N.x j m; P / dx

$
P ;

(5.11)

where Fx.x; t / is the Jacobian matrix of f .x; t / with respect to x.



5.2 Linearization and sigma-point approximations 55

Using the theorem, the mean and covariance Equations (5.10) can be equiva-
lently written as follows.

Algorithm 5.2 (Gaussian process approximation II). Gaussian process approxi-
mation to the SDE (5.1) can be obtained by integrating the following differential
equations from the initial conditions m.0/ D EŒx.0/$ and P .0/ D CovŒx.0/$ to
the target time t :

dm

dt
D ENŒf .x; t /$

dP

dt
D P ENŒFx.x; t /$T C ENŒFx.x; t /$ P C ENŒL.x; t / Q LT.x; t /$;

(5.12)

where ENŒ($ denotes the expectation with respect to x ' N.m; P /.

The approximations presented in this section are formally equivalent to so
called statistical linearization approximations (Gelb, 1974; Socha, 2008) and they
are also closely related to the variational approximations of Archambeau and Op-
per (2011).

5.2 Linearization and sigma-point approximations

In the previous section we presented a method to form Gaussian approximations
of SDEs. However, to implement the method one is required to compute following
kind of Gaussian integrals:

ENŒg.x; t /$ D
Z

g.x; t / N.x j m; P / dx (5.13)

A classical approach which is very common in filtering theory (Jazwinski, 1970;
Maybeck, 1982) is to linearize the drift f .x; t / around the mean m as follows:

f .x; t / $ f .m; t / C Fx.m; t / .x ! m/; (5.14)

and to approximate the expectation of the diffusion part as

L.x; t / $ L.m; t /: (5.15)

This leads to the following approximation, which is commonly used in extended
Kalman filters (EKF).

Algorithm 5.3 (Linearization approximation of SDE). Linearization based ap-
proximation to the SDE (5.1) can be obtained by integrating the following differen-
tial equations from the initial conditions m.0/ D EŒx.0/$ and P .0/ D CovŒx.0/$

to the target time t :

dm

dt
D f .m; t /

dP

dt
D P FT

x .m; t / C Fx.m; t / P C L.m; t / Q LT.m; t /:

(5.16)
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Another general class of approximations are the Gauss–Hermite cubature type
of approximations where we approximate the integrals as weighted sums:

Z
f .x; t / N.x j m; P / dx $

X
i

W .i/ f .x.i/; t /; (5.17)

where x.i/ and W .i/ are the sigma points (abscissas) and weights, which have been
selected using a method specific deterministic rule. This kind of rules are com-
monly used in the context of filtering theory (cf. Särkkä and Sarmavuori, 2013). In
multidimensional Gauss-Hermite integration, unscented transform, and cubature
integration the sigma points are selected as follows:

x.i/ D m C
p

P !i ; (5.18)

where the matrix square root is defined by P D
p

P
p

P
T

(typically Cholesky
factorization), and the vectors !i and the weights W .i/ are selected as follows:

& Gauss–Hermite integration method (the product rule based method) uses
set of mn vectors !i , which have been formed as Cartesian product of ze-
ros of Hermite polynomials of order m. The weights W .i/ are formed as
products of the corresponding one-dimensional Gauss-Hermite integration
weights (see, Ito and Xiong, 2000; Wu et al., 2006, for details).

& Unscented transform uses zero vector and 2n scaled coordinate vectors ei as
follows (the method can also be generalized a bit):

!0 D 0

!i D
) p

- C n ei ; i D 1; : : : ; n

!
p

- C n ei!n ; i D n C 1; : : : ; 2n;

(5.19)

and the weights are defined as follows:

W .0/ D -

n C /

W .i/ D 1

2.n C //
; i D 1; : : : ; 2n;

(5.20)

where / is a parameter of the method.

& Cubature method (spherical 3rd degree) uses only 2n vectors as follows:

!i D
) p

n ei ; i D 1; : : : ; n

!p
n ei!n ; i D n C 1; : : : ; 2n;

(5.21)

and the weights are defined as W .i/ D 1=.2n/ for i D 1; : : : ; 2n.

The sigma point methods above lead to the following approximations to the pre-
diction differential equations.
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Algorithm 5.4 (Sigma-point approximation of SDE). Sigma-point based approx-
imation to the SDE (5.1) can be obtained by integrating the following differential
equations from the initial conditions m.0/ D EŒx.0/$ and P .0/ D CovŒx.0/$ to
the target time t :

dm

dt
D
X

i

W .i/ f .m C
p

P !i ; t /

dP

dt
D
X

i

W .i/ f .m C
p

P !i ; t / !T
i

p
P

T

C
X

i

W .i/
p

P !i f T.m C
p

P !i ; t /

C
X

i

W .i/ L.m C
p

P !i ; t / Q LT.m C
p

P !i ; t /:

(5.22)

Once the Gaussian integral approximation has been selected, the solutions to
the resulting ordinary differential equations (ODE) can be computed, for example,
by 4th order Runge–Kutta method or similar numerical ODE solution method. It
would also be possible to approximate the integrals using various other methods
from filtering theory (see, e.g., Jazwinski, 1970; Wu et al., 2006; Särkkä and Sar-
mavuori, 2013).

5.3 Taylor series of ODEs

One way to find approximate solutions of deterministic ordinary differential equa-
tions (ODEs) is by using Taylor series expansions (in time direction). Although
this method as a practical ODE numerical approximation method is quite much
superseded by Runge–Kutta type of derivative free methods, it still is an impor-
tant theoretical tool (e.g., the theory of Runge–Kutta methods is based on Taylor
series). In the case of SDE, the corresponding Itô-Taylor series solutions of SDEs
indeed provide a useful basis for numerical methods for SDEs. This is because in
the stochastic case, Runge–Kutta methods are not as easy to use as in the case of
ODEs.

In this section, we derive the Taylor series based solutions of ODEs in detail,
because the derivation of the Itô-Taylor series can be done in an analogous way.
As the idea is the same, by first going through the deterministic case it is easy to
see the essential things behind the technical details also in the SDE case.

Let’s start by considering the following differential equation:

dx.t/

dt
D f .x.t/; t/; x.t0/ D given; (5.23)

which can be integrated to give

x.t/ D x.t0/ C
Z t

t0

f .x.#/; #/ d#: (5.24)
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If the function f is differentiable, we can also write t 7! f .x.t/; t/ as the solution
to the differential equation

df .x.t/; t/

dt
D @f

@t
.x.t/; t/ C

X
i

fi .x.t/; t/
@f

@xi
.x.t/; t/; (5.25)

where f .x.t0/; t0/ is the given initial condition. The integral form of this is

f .x.t/; t/ D f .x.t0/; t0/C
Z t

t0

"
@f

@t
.x.#/; #/ C

X
i

fi .x.#/; #/
@f

@xi
.x.#/; #/

#
d#:

(5.26)
At this point it is convenient to define the linear operator

Lg D @g

@t
C
X

i

fi
@g

@xi
; (5.27)

and rewrite the integral equation as

f .x.t/; t/ D f .x.t0/; t0/ C
Z t

t0

L f .x.#/; #/ d#: (5.28)

Substituting this into Equation (5.24) gives

x.t/ D x.t0/ C
Z t

t0

Œf .x.t0/; t0/ C
Z !

t0

L f .x.#/; #/ d#$ d#

D x.t0/ C f .x.t0/; t0/ .t ! t0/ C
Z t

t0

Z !

t0

L f .x.#/; #/ d# d#:

(5.29)

The term in the integrand on the right can again be defined as solution to the dif-
ferential equation

dŒL f .x.t/; t/$

dt
D @ŒL f .x.t/; t/$

@t
C
X

i

fi .x.t/; t/
@ŒL f .x.t/; t/$

@xi

D L2 f .x.t/; t/:

(5.30)

which in integral form is

L f .x.t/; t/ D L f .x.t0/; t0/ C
Z t

t0

L2 f .x.#/; #/ d#: (5.31)

Substituting into the equation of x.t/ then gives

x.t/ D x.t0/ C f .x.t0/; t/ .t ! t0/

C
Z t

t0

Z !

t0

ŒL f .x.t0/; t0/ C
Z !

t0

L2 f .x.#/; #/ d#$ d# d#

D x.t0/ C f .x.t0/; t0/ .t ! t0/ C 1

2
L f .x.t0/; t0/ .t ! t0/2

C
Z t

t0

Z !

t0

Z !

t0

L2 f .x.#/; #/ d# d# d#

(5.32)
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If we continue this procedure ad infinitum, we obtain the following Taylor series
expansion for the solution of the ODE:

x.t/ D x.t0/ C f .x.t0/; t0/ .t ! t0/ C 1

2Š
L f .x.t0/; t0/ .t ! t0/2

C 1

3Š
L2 f .x.t0/; t0/ .t ! t0/3 C : : :

(5.33)

From the above derivation we also get the result that if we truncate the series at nth
term, the residual error is

rn.t/ D
Z t

t0

( ( (
Z !

t0

Ln f .x.#/; #/ d#nC1; (5.34)

which could be further simplified via integration by parts and using the mean value
theorem. To derive the series expansion for an arbitrary function x.t/, we can
define it as solution to the trivial differential equation

dx

dt
D f .t/; x.t0/ D given: (5.35)

where f .t/ D dx.t/=dt . Because f is independent of x, we have

Lnf D dnC1x.t/

dtnC1
: (5.36)

Thus the corresponding series and becomes the classical Taylor series:

x.t/ D x.t0/ C dx

dt
.t0/ .t ! t0/ C 1

2Š

d2x

dt2
.t0/ .t ! t0/2

C 1

3Š

d3x

dt3
.t0/ .t ! t0/3 C : : :

(5.37)

5.4 Itô-Taylor series of SDEs

Itô-Taylor series (Kloeden et al., 1994; Kloeden and Platen, 1999) is an extension
of the Taylor series of ODEs into SDEs. The derivation is identical to the Taylor
series solution in the previous section except that we replace the time derivative
computations with applications of Itô formula. Let’s consider the following SDE

dx D f .x.t/; t/ dt C L.x.t/; t/ dˇ; x.t0/ ' p.x.t0//: (5.38)

In integral form this equation can be expressed as

x.t/ D x.t0/ C
Z t

t0

f .x.#/; #/ d# C
Z t

t0

L.x.#/; #/ dˇ.#/: (5.39)



60 Numerical Solution of SDEs

Applying Itô formula to terms f .x.t/; t/ and L.x.t/; t/ gives

df .x.t/; t/ D @f .x.t/; t/

@t
dt C

X
u

@f .x.t/; t/

@xu
fu.x.t/; t/ dt

C
X

u

@f .x.t/; t/

@xu
ŒL.x.t/; t/ dˇ.#/$u

C 1

2

X
uv

@2f .x.t/; t/

@xu @xv
ŒL.x.t/; t/ Q LT.x.t/; t/$uv dt;

dL.x.t/; t/ D @L.x.t/; t/

@t
dt C

X
u

@L.x.t/; t/

@xu
fu.x.t/; t/ dt

C
X

u

@L.x.t/; t/

@xu
ŒL.x.t/; t/ dˇ.#/$u

C 1

2

X
uv

@2L.x.t/; t/

@xu @xv
ŒL.x.t/; t/ Q LT.x.t/; t/$uv dt:

(5.40)

In integral form these can be written as

f .x.t/; t/ D f .x.t0/; t0/ C
Z t

t0

@f .x.#/; #/

@t
d#

C
Z t

t0

X
u

@f .x.#/; #/

@xu
fu.x.#/; #/ d#

C
Z t

t0

X
u

@f .x.#/; #/

@xu
ŒL.x.#/; #/ dˇ.#/$u

C
Z t

t0

1

2

X
uv

@2f .x.#/; #/

@xu @xv
ŒL.x.#/; #/ Q LT.x.#/; #/$uv d#;

L.x.t/; t/ D L.x.t0/; t0/ C
Z t

t0

@L.x.#/; #/

@t
d#

C
Z t

t0

X
u

@L.x.#/; #/

@xu
fu.x.#/; #/ d#

C
Z t

t0

X
u

@L.x.#/; #/

@xu
ŒL.x.#/; #/ dˇ.#/$u

C
Z t

t0

1

2

X
uv

@2L.x.#/; #/

@xu @xv
ŒL.x.#/; #/ Q LT.x.#/; #/$uv d#:

(5.41)

If we define operators

Lt g D @g

@t
C
X

u

@g

@xu
fu C 1

2

X
uv

@2g

@xu @xv
ŒL Q LT$uv

Lˇ;v g D
X

u

@g

@xu
Luv; v D 1; : : : ; n:

(5.42)
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then we can conveniently write

f .x.t/; t/ D f .x.t0/; t0/ C
Z t

t0

Lt f .x.#/; #/ d#

C
X

v

Z t

t0

Lˇ;vf .x.#/; #/ dˇv.#/;

L.x.t/; t/ D L.x.t0/; t0/ C
Z t

t0

LtL.x.#/; #/ d#

C
X

v

Z t

t0

Lˇ;vL.x.#/; #/ dˇv.#/:

(5.43)

If we now substitute these into the expression of x.t/ in Equation (5.39), we get

x.t/ D x.t0/ C f .x.t0/; t0/ .t ! t0/ C L.x.t0/; t0/ .ˇ.t/ ! ˇ.t0//

C
Z t

t0

Z !

t0

Lt f .x.#/; #/ d# d# C
X

v

Z t

t0

Z !

t0

Lˇ;vf .x.#/; #/ dˇv.#/ d#

C
Z t

t0

Z !

t0

LtL.x.#/; #/ d# dˇ.#/

C
X

v

Z t

t0

Z !

t0

Lˇ;vL.x.#/; #/ dˇv.#/ dˇ.#/:

(5.44)

This can be seen to have the form

x.t/ D x.t0/ C f .x.t0/; t0/ .t ! t0/ C L.x.t0/; t0/ .ˇ.t/ ! ˇ.t0// C r.t/;

(5.45)

where the remainder is

r.t/ D
Z t

t0

Z !

t0

Lt f .x.#/; #/ d# d# C
X

v

Z t

t0

Z !

t0

Lˇ;vf .x.t/; t/ dˇv.#/ d#

C
Z t

t0

Z !

t0

LtL.x.#/; #/ d# dˇ.#/

C
X

v

Z t

t0

Z !

t0

Lˇ;vL.x.#/; #/ dˇv.#/ dˇ.#/:

(5.46)

We can now form a first order approximation to the solution by discarding the
remainder term:

x.t/ $ x.t0/ C f .x.t0/; t0/ .t ! t0/ C L.x.t0/; t0/ .ˇ.t/ ! ˇ.t0// (5.47)

This leads to the Euler-Maruyama method already discussed in Section 2.5.
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Algorithm 5.5 (Euler-Maruyama method). Draw Ox0 ' p.x0/ and divide time
Œ0; t $ interval into K steps of length 't . At each step k do the following:

1. Draw random variable 'ˇk from the distribution (where tk D k 't)

'ˇk ' N.0; Q 't/: (5.48)

2. Compute

Ox.tkC1/ D Ox.tk/ C f .Ox.tk/; tk/ 't C L.Ox.tk/; tk/ 'ˇk : (5.49)

The strong order of convergence of a stochastic numerical integration method
can be roughly defined to be the smallest exponent ! such that if we numerically
solve an SDE using n D 1='t steps of length ', then there exists a constant K

such that
E Œjx.tn/ ! Ox.tn/j$ % K 't# : (5.50)

The weak order of convergence can be defined to be the smallest exponent ˛ such
that

j E Œg.x.tn//$ ! E Œg.Ox.tn//$ j % K 't˛; (5.51)

for any function g.
It can be shown (Kloeden and Platen, 1999) that in the case of Euler–Maruyama

method above, the strong order of convergence is ! D 1=2 whereas the weak order
of convergence is ˛ D 1. The reason why the strong order of convergence is just
1=2 is that the term with dˇv.#/ dˇ.#/ in the residual, when integrated, leaves us
with a term with dˇ.#/ which is only of order dt1=2. Thus we can increase the
strong order to 1 by expanding that term.

We can now do the same kind of expansion for the term Lˇ;vL.x.#/; #/ as we
did in Equation (5.43), which leads to

Lˇ;vL.x.t/; t/ D Lˇ;vL.x.t0/; t0/ C
Z t

t0

LtLˇ;vL.x.t/; t/ dt

C
X

v

Z t

t0

L2
ˇ;vL.x.t/; t/ dˇv.#/:

(5.52)

Substituting this into the Equation (5.44) gives

x.t/ D x.t0/ C f .x.t0/; t0/ .t ! t0/ C L.x.t0/; t0/ .ˇ.t/ ! ˇ.t0//

C
X

v

Lˇ;vL.x.t0/; t0/

Z t

t0

Z !

t0

dˇv.#/ dˇ.#/ C remainder:
(5.53)

Now the important thing is to notice the iterated Itô integral appearing in the equa-
tion: Z t

t0

Z !

t0

dˇv.#/ dˇ.#/: (5.54)



5.4 Itô-Taylor series of SDEs 63

Computation of this kind of integrals and more general iterated Itô integrals turns
out to be quite non-trivial. However, assuming that we can indeed compute the
integral, as well as draw the corresponding Brownian increment (recall that the
terms are not independent), then we can form the following Milstein’s method.

Algorithm 5.6 (Milstein’s method). Draw Ox0 ' p.x0/ and divide time Œ0; t $ in-
terval into K steps of length 't . At each step k do the following:

1. Jointly draw a Brownian motion increment and the iterated Itô integral of it:

'ˇk D ˇ.tkC1/ ! ˇ.tk/

'"v;k D
Z tkC1

tk

Z !

tk

dˇv.#/ dˇ.#/:
(5.55)

2. Compute

Ox.tkC1/ D Ox.tk/ C f .Ox.tk/; tk/ 't C L.Ox.tk/; tk/ 'ˇk

C
X

v

"X
u

@L

@xu
.Ox.tk/; tk/ Luv.Ox.tk/; tk/

#
'"v;k :

(5.56)

The strong and weak orders of the above method are both 1. However, the
difficulty is that drawing the iterated stochastic integral jointly with the Brownian
motion is hard (cf. Kloeden and Platen, 1999). But if the noise is additive, that is,
L.x; t / D L.t/ then Milstein’s algorithm reduces to Euler–Maruyama. Thus in
additive noise case the strong order of Euler–Maruyama is 1 as well.

In scalar case we can compute the iterated stochastic integral:
Z t

t0

Z !

t0

dˇ.#/ dˇ.#/ D 1

2

%
.ˇ.t/ ! ˇ.t0//2 ! q .t ! t0/

&
(5.57)

Thus in the scalar case we can write down the Milstein’s method explicitly as
follows.

Algorithm 5.7 (Scalar Milstein’s method). Draw Ox0 ' p.x0/ and divide time
Œ0; t $ interval into K steps of length 't . At each step k do the following:

1. Draw random variable 'ˇk from the distribution (where tk D k 't)

'ˇk ' N.0; q 't/: (5.58)

2. Compute

Ox.tkC1/ D Ox.tk/ C f . Ox.tk/; tk/ 't C L. Ox.tk/; tk/ 'ˇk

C 1

2

@L

@x
. Ox.tk/; tk/ L. Ox.tk/; tk/ .'ˇ2

k ! q 't/:
(5.59)
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We could now form even higher order Itô-Taylor series expansions by including
more terms into the series. However, if we try to derive higher order methods than
Milstein’s method, we encounter higher order iterated Itô integrals which will turn
out to be very difficult to compute. Fortunately, the additive noise case is much
easier and often useful as well.

Let’s now consider the case that L is in fact constant, which implies that
LtL D Lˇ;vL D 0. Let’s also assume that Q is constant. In that case Equa-
tion (5.44) gives

x.t/ D x.t0/ C f .x.t0/; t0/ .t ! t0/ C L.x.t0/; t0/ .ˇ.t/ ! ˇ.t0//

C
Z t

t0

Z !

t0

Lt f .x.#/; #/ d# d# C
X

v

Z t

t0

Z !

t0

Lˇ;vf .x.t/; t/ dˇv d#
(5.60)

As the identities in Equation (5.43) are completely general, we can also apply them
to Lt f .x.t/; t/ and Lˇ;vf .x.t/; t/ which gives

Lt f .x.t/; t/ D Lt f .x.t0/; t0/ C
Z t

t0

L2
t f .x.t/; t/ dt

C
X

v

Z t

t0

Lˇ;vLt f .x.t/; t/ dˇv

Lˇ;vf .x.t/; t/ D Lˇ;vf .x.t0/; t0/ C
Z t

t0

LtLˇ;vf .x.t/; t/ dt

C
X

v

Z t

t0

L2
ˇ;vf .x.t/; t/ dˇv

(5.61)

By substituting these identities into Equation (5.60) gives

x.t/ D x.t0/ C f .x.t0/; t0/ .t ! t0/ C L.x.t0/; t0/ .ˇ.t/ ! ˇ.t0//

C Lt f .x.t0/; t0/
.t ! t0/2

2

C
X

v

Lˇ;vf .x.t0/; t0/

Z t

t0

Œˇv.#/ ! ˇv.t0/$ d# C remainder;

(5.62)

Thus the resulting approximation is thus

x.t/ $ x.t0/ C f .x.t0/; t0/ .t ! t0/ C L.x.t0/; t0/ .ˇ.t/ ! ˇ.t0//

C Lt f .x.t0/; t0/
.t ! t0/2

2
C
X

v

Lˇ;vf .x.t0/; t0/

Z t

t0

Œˇv.#/ ! ˇv.t0/$ d#:

(5.63)

Note that the term ˇ.t/ ! ˇ.t0/ and the integral
R t

t0
Œˇv.#/ ! ˇv.t0/$ d# really refer

to the same Brownian motion and thus the terms are correlated. Fortunately in this
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case both the terms are Gaussian and it is easy to compute their joint distribution:
 R t

t0
Œˇ.#/ ! ˇ.t0/

ˇ.t/ ! ˇ.t0/

!
' N

!!
0
0

"
;

!
Q .t ! t0/3=3 Q .t ! t0/2=2

Q .t ! t0/2=2 Q .t ! t0/

""
(5.64)

By neglecting the remainder term, we get a strong order 1.5 Itô–Taylor expansion
method, which has also been recently studied in the context of filtering theory
(Arasaratnam et al., 2010; Särkkä and Solin, 2012).

Algorithm 5.8 (Strong Order 1.5 Itô–Taylor Method). When L and Q are con-
stant, we get the following algorithm. Draw Ox0 ' p.x0/ and divide time Œ0; t $

interval into K steps of length 't . At each step k do the following:

1. Draw random variables '#k and 'ˇk from the joint distribution
!

'#k

'ˇk

"
' N

!!
0
0

"
;

!
Q 't3=3 Q 't2=2

Q 't2=2 Q 't

""
: (5.65)

2. Compute

Ox.tkC1/ D Ox.tk/ C f .Ox.tk/; tk/ 't C L 'ˇk

C ak
.t ! t0/2

2
C
X

v

bv;k '#k;
(5.66)

where

ak D @f

@t
.Ox.tk/; tk/ C

X
u

@f

@xu
.Ox.tk/; tk/ fu.Ox.tk/; tk/

C 1

2

X
uv

@2f

@xu @xv
.Ox.tk/; tk/ ŒL Q LT$uv

bv;k D
X

u

@f

@xu
.Ox.tk/; tk/ Luv:

(5.67)

5.5 Stochastic Runge-Kutta and related methods

Stochastic versions of Runge–Kutta methods are not as simple as in the case of de-
terministic equations. In practice, stochastic Runge–Kutta methods can be derived,
for example, by replacing the closed form derivatives in the Milstein’s method
(Algs. 5.6 or 5.7) with suitable finite differences (see Kloeden et al., 1994). How-
ever, we still cannot get rid of the iterated Itô integral occurring in Milstein’s
method. An important thing to note is that stochastic versions of Runge–Kutta
methods cannot be derived as simple extensions of the deterministic Runge–Kutta
methods—see Burrage et al. (2006) which is a response to the article by Wilkie
(2004).
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A number of stochastic Runge–Kutta methods have also been presented by
Kloeden et al. (1994); Kloeden and Platen (1999) as well as by Rößler (2006). If
the noise is additive, that is, then it is possible to derive a Runge–Kutta counterpart
of the method in Algorithm 5.8 which uses finite difference approximations instead
of the closed form derivatives (Kloeden et al., 1994).



Chapter 6

Further Topics

6.1 Series expansions

If we fix the time interval Œt0; t1$ then on that interval standard Brownian motion
has a Karhunen–Loeve series expansion of the form (see, e.g., Luo, 2006)

ˇ.t/ D
1X

iD1

zi

Z t

t0

(i .#/ d#; (6.1)

where zi ' N.0; 1/, i D 1; 2; 3; : : : are independent random variables and f(i .t/g
is an orthonormal basis of the Hilbert space with inner product

hf; gi D
Z t1

t0

f .#/ g.#/ d#: (6.2)

The Gaussian random variables are then just the projections of the Brownian mo-
tion onto the basis functions:

zi D
Z t

t0

(i .#/ dˇ.#/: (6.3)

The series expansion can be interpreted as the following representation for the
differential of Brownian motion:

dˇ.t/ D
1X

iD1

zi (i .t/ dt: (6.4)

We can now consider approximating the following equation by substituting a finite
number of terms from the above sum for the term dˇ.t/ into the scalar SDE

dx D f .x; t/ dt C L.x; t/ dˇ: (6.5)

In the limit N ! 1 we could then expect to get the exact solution. However, it has
been shown by Wong and Zakai (1965) that this approximation actually converges
to the Stratonovich SDE

dx D f .x; t/ dt C L.x; t/ ı dˇ: (6.6)
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That is, we can approximate the above Stratonovich SDE with an equation of the
form

dx D f .x; t/ dt C L.x; t/

NX
iD1

zi (i .t/ dt; (6.7)

which actually is just an ordinary differential equation

dx

dt
D f .x; t/ C L.x; t/

NX
iD1

zi (i .t/; (6.8)

and the solution converges to the exact solution when N ! 1. The solution
of an Itô SDE can be approximated by first converting it into the corresponding
Stratonovich equation and then approximating the resulting equation.

Now an obvious extension would be to consider a multivariate version of this
approximation. Because any multivariate Brownian motion can be formed as a lin-
ear combination of independent standard Brownian motions, it is possible to form
analogous multivariate approximations. Unfortunately, in multivariate case the ap-
proximation does not generally converge to the Stratonovich solution. There exists
basis functions for which this is true (e.g., Haar wavelets), but the convergence is
not generally guaranteed.

Another type of series expansion is so called Wiener chaos expansion (see, e.g.,
Cameron and Martin, 1947; Luo, 2006). Assume that we indeed are able to solve
the Equation (6.8) with any given countably infinite number of values fz1; z2; : : :g.
Then we can see the solution as a function (or functional) of the form

x.t/ D U.t I z1; z2; : : :/: (6.9)

The Wiener chaos expansion is the multivariate Fourier–Hermite series for the right
hand side above. That is, it is a polynomial expansion of a generic functional of
Brownian motion in terms of Gaussian random variables. Hence the expansion is
also called polynomial chaos.

6.2 Feynman–Kac formulae and parabolic PDEs

Feynman–Kac formula (see, e.g., Øksendal, 2003) gives a link between solutions
of parabolic partial differential equations (PDEs) and certain expected values of
SDE solutions. In this section we shall present the general idea by deriving the
scalar Feynman–Kac equation. The multidimensional version could be obtained in
an analogous way.

Let’s start by considering the following PDE for function u.x; t/:

@u

@t
C f .x/

@u

@x
C 1

2
,2.x/

@2u

@x2
D 0

u.x; T / D ‰.x/;

(6.10)
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where f .x/, ,.x/ and ‰.x/ are some given functions and T is a fixed time instant.
Let’s define a process x.t/ on the interval Œt 0; T $ as follows:

dx D f .x/ dt C ,.x/ dˇ; x.t 0/ D x0; (6.11)

that is, the process starts from a given x0 at time t 0. Let’s now use Itô formula for
u.x; t/, and recall that it solves the PDE (6.10) which gives:

du D @u

@t
dt C @u

@x
dx C 1

2

@2u

@x2
dx2

D @u

@t
dt C @u

@x
f .x/ dt C @u

@x
,.x/ dˇ C 1

2

@2u

@x2
,2.x/ dt

D
#

@u

@t
C f .x/

@u

@x
C 1

2
,2.x/

@2u

@x2

$

„ ƒ‚ …
D0

dt C @u

@x
,.x/ dˇ

D @u

@x
,.x/ dˇ:

(6.12)

Integrating from t 0 to T now gives

u.x.T /; T / ! u.x.t 0/; t 0/ D
Z T

t 0

@u

@x
,.x/ dˇ; (6.13)

and by substituting the initial and terminal terms we get:

‰.x.T // ! u.x0; t 0/ D
Z T

t 0

@u

@x
,.x/ dˇ: (6.14)

We can now take expectations from both sides and recall that the expectation of
any Itô integral is zero. Thus after rearranging we get

u.x0; t 0/ D EŒ‰.x.T //$: (6.15)

This means that we can solve the value of u.x0; t 0/ for arbitrary x0 and t 0 by starting
the process in Equation (6.11) from x0 and time t 0 and letting it run until time T .
The solution is then the expected value of ‰.x.T // over the process realizations.

The above idea can also be generalized to equations of the form

@u

@t
C f .x/

@u

@x
C 1

2
,2.x/

@2u

@x2
! r u D 0

u.x; T / D ‰.x/;

(6.16)

where r is a positive constant. The corresponding SDE will be the same, but we
need to apply the Itô formula to exp.!r t/ u.x; t/ instead of u.x; t/. The resulting
Feynman–Kac equation is

u.x0; t 0/ D exp.!r .T ! t 0// EŒ‰.x.T //$ (6.17)

We can generalize even more and allow r to depend on x, include additional con-
stant term to the PDE and so on. But anyway the idea remains the same.
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6.3 Solving Boundary Value Problems with Feynman–Kac

The Feynman–Kac equation can also be used for computing solutions to boundary
value problems which do include time variables at all (see, e.g., Øksendal, 2003).
In this section we also only consider the scalar case, but analogous derivation works
for the multidimensional case. Furthermore, the derivation of the results in this
section properly would need us to define the concept of random stopping time,
which we have not done and thus in this sense the derivation is quite heuristic.

Let’s consider the following boundary value problem for a function u.x/ de-
fined on some finite domain 0 with boundary @0:

f .x/
@u

@x
C 1

2
,2.x/

@2u

@x2
D 0

u.x/ D ‰.x/; x 2 @0:

(6.18)

Again, let’s define a process x.t/ in the same way as in Equation (6.11). Further,
the application of Itô formula to u.x/ gives

du D @u

@x
dx C 1

2

@2u

@x2
dx2

D @u

@x
f .x/ dt C @u

@x
,.x/ dˇ C 1

2

@2u

@x2
,2.x/ dt

D
#
f .x/

@u

@x
C 1

2
,2.x/

@2u

@x2

$

„ ƒ‚ …
D0

dt C @u

@x
,.x/ dˇ

D @u

@x
,.x/ dˇ:

(6.19)

Let Te be the first exit time of the process x.t/ from the domain 0. Integration
from t 0 to Te gives

u.x.Te// ! u.x.t 0// D
Z Te

t 0

@u

@x
,.x/ dˇ: (6.20)

But the value of u.x/ on the boundary is ‰.x/ and x.t 0/ D x0 thus we have

‰.x.Te// ! u.x0/ D
Z Te

t 0

@u

@x
,.x/ dˇ: (6.21)

Taking expectation and rearranging then gives

u.x0/ D EŒ‰.x.Te//$: (6.22)

That is, the value u.x0/ with arbitrary x0 can be obtained by starting the process
x.t/ from x.t 0/ D x0 in Equation (6.11) at arbitrary time t 0 and computing the
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expectation of ‰.x.Te// over the first exit points of the process x.t/ from the
domain 0.

Again, we can generalize the derivation to equations of the form

f .x/
@u

@x
C 1

2
,2.x/

@2u

@x2
! r u D 0

u.x/ D ‰.x/; x 2 @0;

(6.23)

which gives

u.x0/ D exp.!r .T ! t 0// EŒ‰.x.Te//$: (6.24)

6.4 Girsanov theorem

The purpose of this section is to present an intuitive derivation of the Girsanov
theorem, which is very useful theorem, but in its general form, slightly abstract.
The derivation should only be considered to be an attempt to reveal the intuition
behind the theorems, and not be considered to be an actual proof of the theorem.
The derivation is based on considering formal probability densities of paths of Itô
processes, which is intuitive, but not really the mathematically correct way to go.
To be rigorous, we should not attempt to consider probability densities of the paths
at all, but instead consider the probability measures of the processes (cf. Øksendal,
2003).

The Girsanov theorem (Theorem 6.3) is due to Girsanov (1960), and in ad-
dition to the original article, its proper derivation can be found, for example, in
Karatzas and Shreve (1991) (see also Øksendal, 2003). The derivation of Theorem
6.1 from the Girsanov theorem can be found in Särkkä and Sottinen (2008). Here
we proceed backwards from Theorem 6.1 to Theorem 6.3.

Let’s denote the whole path of the Itô process x.t/ on a time interval Œ0; t $ as
follows:

Xt D fx.#/ W 0 % # % tg: (6.25)

Let x.t/ be the solution to

dx D f .x; t / dt C dˇ: (6.26)

Here we have set L.x; t / D I for notational simplicity. In fact, Girsanov theorem
can be used for general time varying L.t/ provided that L.t/ is invertible for each
t . This invertibility requirement can also be relaxed in some situations (cf. Särkkä
and Sottinen, 2008).

For any finite N , the joint probability density p.x.t1/; : : : ; x.tN // exists (pro-
vided that certain technical conditions are met) for an arbitrary finite collection of
times t1; : : : ; tN . We will now formally define the probability density of the whole
path as

p.Xt / D lim
N !1

p.x.t1/; : : : ; x.tN //: (6.27)
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where the times t1; : : : ; tN need to selected such that they become dense in the
limit. In fact this density is not normalizable, but we can still define the density
though the ratio between the joint probability density of x and another process y :

p.Xt /

p.Yt /
D lim

N !1
p.x.t1/; : : : ; x.tN //

p.y.t1/; : : : ; y.tN //
: (6.28)

Which is a finite quantity with a suitable choice of y . We can also denote the
expectation of a functional h.Xt / of the path as follows:

EŒh.Xt /$ D
Z

h.Xt / p.Xt / dXt : (6.29)

In physics this kind of integrals are called path integrals (Chaichian and Demichev,
2001a,b). Note that this notation is purely formal, because the density p.Xt / is
actually an infinite quantity. However, the expectation is indeed finite. Let’s now
compute the ratio of probability densities for a pair of processes.

Theorem 6.1 (Likelihood ratio of Itô processes). Consider the Itô processes

dx D f .x; t / dt C dˇ; x.0/ D x0;

dy D g.y ; t / dt C dˇ; y.0/ D x0;
(6.30)

where the Brownian motion ˇ.t/ has a non-singular diffusion matrix Q. Then the
ratio of the probability laws of Xt and Yt is given as

p.Xt /

p.Yt /
D Z.t/; (6.31)

where

Z.t/ D exp

 
! 1

2

Z t

0
Œf .y ; #/ ! g.y ; #/$T Q!1 Œf .y ; #/ ! g.y ; #/$ d#

C
Z t

0
Œf .y ; #/ ! g.y ; #/$T Q!1 dˇ.#/

! (6.32)

in the sense that for an arbitrary functional h.&/ of the path from 0 to t we have

EŒh.Xt /$ D EŒZ.t/ h.Yt /$; (6.33)

where the expectation is over the randomness induced by the Brownian motion.
Furthermore, under the probability measure defined through the transformed prob-
ability density

Qp.Xt / D Z.t/ p.Xt / (6.34)

the process

Q̌ D ˇ !
Z t

0
Œf .y ; #/ ! g.y ; #/$ d#; (6.35)

is a Brownian motion with diffusion matrix Q.
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Derivation. Let’s discretize the time interval Œ0; t $ into N time steps 0 D t0 < t1 <

: : : < tN D t , where tiC1 ! ti D 't , and let’s denote xi D x.ti / and yi D y.ti /.
When 't is small, we have

p.xiC1 j xi / D N.xiC1 j xi C f .xi ; t / 't; Q 't/

q.yiC1 j yi / D N.yiC1 j yi C g.yi ; t / 't; Q 't/:
(6.36)

The joint density p of x1; : : : ; xN can then be written in the form

p.x1; : : : ; xN / D
Y

i

N.xiC1 j xi C f .xi ; t / 't; Q 't/

D j2& Q dt j!N=2 exp

 
! 1

2

X
i

.xiC1 ! xi /
T .Q 't/!1.xiC1 ! xi /

! 1

2

X
i

f T.xi ; ti / Q!1f .xi ; ti / 't C
X

i

f T.xi ; ti / Q!1.xiC1 ! xi /

!

(6.37)

For the joint density q of y1; : : : ; yN we similarly get

q.y1; : : : ; yN / D
Y

i

N.yiC1 j yi C g.yi ; t / 't; Q 't/

D j2& Q dt j!N=2 exp

 
! 1

2

X
i

.yiC1 ! yi /
T .Q 't/!1.yiC1 ! yi /

! 1

2

X
i

gT.yi ; ti / Q!1g.yi ; ti / 't C
X

i

gT.yi ; ti / Q!1.yiC1 ! yi /

!

(6.38)

For any function hN we haveZ
hN .x1; : : : ; xN / p.x1; : : : ; xN / d.x1; : : : ; xN /

D
Z

hN .x1; : : : ; xN /
p.x1; : : : ; xN /

q.x1; : : : ; xN /
q.x1; : : : ; xN / d.x1; : : : ; xN /

D
Z

hN .y1; : : : ; yN /
p.y1; : : : ; yN /

q.y1; : : : ; yN /
q.y1; : : : ; yN / d.y1; : : : ; yN /:

(6.39)

Thus we still only need to consider the following:
p.y1; : : : ; yN /

q.y1; : : : ; yN /

D exp

 
! 1

2

X
i

f T.yi ; ti / Q!1f .yi ; ti / 't C
X

i

f T.yi ; ti / Q!1.yiC1 ! yi /

C 1

2

X
i

gT.yi ; ti / Q!1g.yi ; ti / 't !
X

i

gT.yi ; ti / Q!1.yiC1 ! yi /

!

(6.40)
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In the limit N ! 1 the exponential becomes

! 1

2

X
i

f T.yi ; ti / Q!1f .yi ; ti / 't C
X

i

f T.yi ; ti / Q!1.yiC1 ! yi /

C 1

2

X
i

gT.yi ; ti / Q!1g.yi ; ti / 't !
X

i

gT.yi ; ti / Q!1.yiC1 ! yi /

! !1

2

Z t

0
f T.y ; #/ Q!1f .y ; #/ d# C

Z t

0
f T.y ; #/ Q!1 dy

C 1

2

Z t

0
gT.y ; #/ Q!1 g.y ; #/ d# !

Z t

0
gT.y ; #/ Q!1 dy

D !1

2

Z t

0
Œf .y ; #/ ! g.y ; #/$T Q!1 Œf .y ; #/ ! g.y ; #/$ d#

C
Z t

0
Œf .y ; #/ ! g.y ; #/$T Q!1 dˇ

(6.41)

where we have substituted dy D g.y ; t / dt C dˇ. Thus this gives the expression
for Z.t/. We can now solve the Brownian motion ˇ from the first SDE as

ˇ.t/ D x.t/ ! x0 !
Z t

0
f .x; #/ d#: (6.42)

The expectation of an arbitrary functional h of the Brownian motion can now be
expressed as

EŒh.Bt /$ D E
#
h

!)
x.s/ ! x0 !

Z s

0
f .x; #/ d# W 0 % s % t

*"$

D E
#
Z.t/ h

!)
y.s/ ! x0 !

Z s

0
f .y ; #/ d# W 0 % s % t

*"$

D E
#
Z.t/ h

!)Z s

0
g.y ; #/ C ˇ.t/ !

Z s

0
f .y ; #/ d# W 0 % s % t

*"$

D E
#
Z.t/ h

!)
ˇ.t/ !

Z s

0
Œf .y ; #/ ! g.y ; #/$ d# W 0 % s % t

*"$
;

(6.43)

which implies that ˇ.t/ !
R s

0 Œf .y ; #/ ! g.y ; #/$ d# has the statistics of Brownian
motion provided that we scale the probability density with Z.t/.

Remark 6.1. We need to have

E
#

exp
!Z t

0
f .y ; #/T Q!1 f .y ; #/ d#

"$
< 1

E
#

exp
!Z t

0
g.y ; #/T Q!1 g.y ; #/ d#

"$
< 1;

(6.44)

because otherwise Z.t/ will be zero.
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Let’s now write a slightly more abstract version of the above theorem which
is roughly equivalent to the actual Girsanov theorem in the form that it is usually
found in stochastics literature.

Theorem 6.2 (Girsanov I). Let $.t/ be a process which is driven by a standard
Brownian motion ˇ.t/ such that

E
#Z t

0
$T.#/ $.#/ d#

$
< 1; (6.45)

then under the measure defined by the formal probability density

Qp.‚t / D Z.t/ p.‚t /; (6.46)

where ‚t D f$.#/ W 0 % # % tg, and

Z.t/ D exp
!Z t

0
$T.#/ dˇ ! 1

2

Z t

0
$T.#/ $.#/ d#

"
; (6.47)

the following process is a standard Brownian motion:

Q̌.t/ D ˇ.t/ !
Z t

0
$.#/ d#: (6.48)

Derivation. Select $.t/ D f .y ; t / ! g.y ; t / and Q D I in the previous theorem.

In fact, the above derivation does not yet guarantee that any selected $.t/ can
be constructed like this. But anyway, it reveals the link between the likelihood
ratio and Girsanov theorem. Despite the limited derivation the above theorem is
generally true. The detailed technical conditions can be found in the original article
of Girsanov (1960).

However, the above theorem is still in the heuristic notation in terms of the
formal probability densities of paths. In the proper formulation of the theorem $

being “driven” by Brownian motion actually means that the process $ is adapted
to the Brownian motion. To be more explicit in notation, it is also usual to write
down the event space element ! 2 0 as the argument of ˇ.!; t/. The processes
$.!; t/ and Z.!; t/ should then be functions of the event space element as well. In
fact, $.!; t/ should be non-anticipative (not looking into the future) functional of
Brownian motion, that is, adapted to the natural filtration Ft of the Brownian mo-
tion. Furthermore, the ratio of probability densities in fact is the Radon–Nikodym
derivative of the measure QP.!/ with respect to the other measure P.!/. With these
notations the Girsanov theorem looks like the following which is roughly the for-
mat found in stochastic books.
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Theorem 6.3 (Girsanov II). Let ˇ.!; t/ be a standard n-dimensional Brownian
motion under the probability measure P. Let $ W 0 ) RC 7! Rn be an adapted
process such that the process Z defined as

Z.!; t/ D exp
)Z t

0
$T.!; t/ dˇ.!; t/ ! 1

2

Z t

0
$T.!; t/ $.!; t/ dt

*
; (6.49)

satisfies EŒZ.!; t/$ D 1. Then the process

Q̌.!; t/ D ˇ.!; t/ !
Z t

0
$.!; #/ d# (6.50)

is a standard Brownian motion under the probability measure QP defined via the
relation

E

"
d QP
dP

.!/

ˇ̌
ˇ̌Ft

#
D Z.!; t/; (6.51)

where Ft is the natural filtration of the Brownian motion ˇ.!; t/.

6.5 Applications of Girsanov theorem

The Girsanov theorem can be used for eliminating the drift functions and for find-
ing weak solutions to SDEs by changing the measure suitably (see, e.g., Øksendal,
2003; Särkkä, 2006). The basic idea in drift removal is to define $.t/ in terms of
the drift function suitably such that in the transformed SDE the drift cancels out.
Construction of weak solutions is based on the result the process Q̌.t/ is a Brow-
nian motion under the transformed measure. We can select $.t/ such that there
is another easily constructed process which then serves as the corresponding Qx.t/

which solves the SDE driven by this new Brownian motion.
Girsanov theorem is also important in stochastic filtering theory (see next sec-

tion). The theorem can be used as the starting point of deriving so called Kallianpur–
Striebel formula (Bayes’ rule in continuous time). From this we can derive the
whole stochastic filtering theory. The formula can also be used to form Monte
Carlo (particle) methods to approximate filtering solutions. For details, see Crisan
and Rozovskii (2011). In so called continuous-discrete filtering (continuous-time
dynamics, discrete-time measurements) the theorem has turned out to be useful
in constructing importance sampling and exact sampling methods for conditioned
SDEs (Beskos et al., 2006; Särkkä and Sottinen, 2008).

6.6 Continuous-Time Stochastic Filtering Theory

Filtering theory (e.g., Stratonovich, 1968; Jazwinski, 1970; Maybeck, 1979, 1982;
Särkkä, 2006; Crisan and Rozovskii, 2011) is consider with the following problem.
Assume that we have a pair of processes .x.t/; y.t// such that y.t/ is observed and
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x.t/ is hidden. Now the question is: given that we have observed y.t/, what can
we say (in statistical sense) about the hidden process x.t/? In mathematical terms
the model can be written as

dx.t/ D f .x.t/; t/ dt C L.x; t / dˇ.t/

dy.t/ D h.x.t/; t/ dt C d%.t/;
(6.52)

where the first equation is the dynamic model and second the measurement model.
In the equation we have the following:

& x.t/ 2 Rn is the state process,

& y.t/ 2 Rm is the measurement process,

& f is the drift function,

& h is the measurement model function,

& L.x; t / is the dispersion matrix,

& ˇ.t/ and %.t/ are independent Brownian motions with diffusion matrices Q
and R, respectively.

In physical sense the measurement model is easier to understand by writing it in
white noise form:

z.t/ D h.x.t/; t/ C &.t/; (6.53)

where we have defined the physical measurement as z.t/ D dy.t/= dt and &.t/ D
d%.t/= dt is the formal derivative of %.t/. That is, we measure the state through
the non-linear measurement model h.&/, and the measurement is corrupted with
continuous-time white noise &.t/. Typical applications of this kind of models are,
for example, tracking and navigation problems, where x.t/ is the dynamic state of
the target—say, the position and velocity of a car. The measurement can be, for
example, radar readings which contain some noise &.t/.

The most natural framework to formulate the problem of estimation of the state
from the measurement is in terms of Bayesian inference. This is indeed the clas-
sical formulation of non-linear filtering theory and was used already in the books
of Stratonovich (1968) and Jazwinski (1970). The purpose of the continuous-time
optimal (Bayesian) filter is to compute the posterior distribution (or the filtering
distribution) of the process x.t/ given the observed process (more precisely, the
sigma algebra generated by the observed process)

Yt D fy.#/ W 0 % # % tg D fz.#/ W 0 % # % tg; (6.54)

that is, we wish to compute
p.x.t/ j Yt /: (6.55)

In the following we present the general equations for computing these distribu-
tions, but let’s start with the following remark which will ease our notation in the
following.
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Remark 6.2. If we define a linear operator A" as

A".&/ D !
X

i

@

@xi
Œfi .x; t/ .&/$ C 1

2

X
ij

@2

@xi @xj
fŒL.x; t / Q LT.x; t /$ij .&/g:

(6.56)

Then the Fokker–Planck–Kolmogorov equation (4.2) can be written compactly as

@p

@t
D A"p: (6.57)

Actually the operator A" is the adjoint operator of the generator A of the diffusion
process (Øksendal, 2003) defined by the SDE, hence the notation.

The continuous-time optimal filtering equation, which computes p.x.t/ j Yt /

is called the Kushner–Stratonovich (KS) equation (Kushner, 1964; Bucy, 1965)
and can be derived as the continuous-time limits of the so called Bayesian filter-
ing equations (see, e.g., Särkkä, 2012). A Stratonovich calculus version of the
equation was studied by Stratonovich already in late 50’s (cf. Stratonovich, 1968).

Algorithm 6.1 (Kushner–Stratonovich equation). The stochastic partial differen-
tial equation for the filtering density p.x; t j Yt / , p.x.t/ j Yt / is

dp.x; t j Yt / D A" p.x; t j Yt / dt

C .h.x; t / ! EŒh.x; t / j Yt $/
T R!1.dy ! EŒh.x; t / j Yt $ dt / p.x; t j Yt /;

(6.58)

where dp.x; t j Yt / D p.x; t C dt j YtCdt / ! p.x; t j Yt / and

EŒh.x; t / j Yt $ D
Z

h.x; t / p.x; t j Yt / dx: (6.59)

This equation is only formal in the sense that as such it is quite much impossi-
ble to work with. However, it is possible derive all kinds of moment equations from
it, as well as form approximations to the solutions. What makes the equation diffi-
cult is that it is a non-linear stochastic partial differential equation—recall that the
operator A" contains partial derivatives. Furthermore the equation is non-linear,
as could be seen by expanding the expectation integrals in the equation (recall that
they are integrals over p.x; t j Yt /). The stochasticity is generated by the observa-
tion process y.t/.

The nonlinearity in the KS equation can be eliminated by deriving an equation
for an unnormalized filtering distribution instead of the normalized one. This leads
to so called Zakai equation (Zakai, 1969).

Algorithm 6.2 (Zakai equation). Let q.x; t j Yt / , q.x.t/ j Yt / be the solution
to Zakai’s stochastic partial differential equation

dq.x; t j Yt / D A" q.x; t j Yt / dt C hT.x; t / R!1 dy q.x; t j Yt /; (6.60)
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where dq.x; t j Yt / D q.x; t C dt j YtCdt / ! q.x; t j Yt / and A" is the Fokker–
Planck–Kolmogorov operator defined in Equation (6.56). Then we have

p.x.t/ j Yt / D q.x.t/ j Yt /R
q.x.t/ j Yt / dx.t/

: (6.61)

The Kalman–Bucy filter (Kalman and Bucy, 1961) is the exact solution to the
linear Gaussian filtering problem

dx D F.t/ x dt C L.t/ dˇ

dy D H.t/ x dt C d%;
(6.62)

where

& x.t/ 2 Rn is the state process,

& y.t/ 2 Rm is the measurement process,

& F.t/ is the dynamic model matrix,

& H.t/ is the measurement model matrix,

& L.t/ is an arbitrary time varying matrix, independent of x.t/ and y.t/,

& ˇ.t/ and %.t/ are independent Brownian motions with diffusion matrices Q
and R, respectively.

The solution is given as follows:

Algorithm 6.3 (Kalman–Bucy filter). The Bayesian filter, which computes the pos-
terior distribution p.x.t/ j Yt / D N.x.t/ j m.t/; P .t// for the system (6.62) is

K.t/ D P .t/ HT.t/ R!1

dm.t/ D F.t/ m.t/ dt C K.t/ Œdy.t/ ! H.t/ m.t/ dt $

dP .t/

dt
D F.t/ P .t/ C P .t/ FT.t/ C L.t/ Q LT.t/ ! K.t/ R KT.t/:

(6.63)

There exists various approximation methods so cope with non-linear models,
for example, based on Monte Carlo approximations, series expansions of pro-
cesses and densities, Gaussian (process) approximations and many others (see,
e.g., Crisan and Rozovskii, 2011). One way which is utilized in many practical
applications is to use Gaussian process approximations outlined in the beginning
of Chapter 5. The classical filtering theory is indeed based on this idea and a typ-
ical approach is to use Taylor series expansions of the drift function (Jazwinski,
1970). The usage of sigma-point type of approximations in this context has been
recently studied in Särkkä (2007) and Särkkä and Sarmavuori (2013).
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