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Karhunen–Loeve expansions [1/2]

On a fixed time interval [t0, t1] the standard Brownian motion has a

Karhunen–Loeve series expansion

β(t) =

∞∑

i=1

zi

∫ t

t0

φi(τ) dτ.

zi ∼ N(0,1), i = 1,2,3, . . . are independent random variables.

{φi(t)} is an orthonormal basis of the Hilbert space with inner

product

〈f ,g〉 =

∫ t1

t0

f (τ)g(τ)dτ.

In fact, this is just a Fourier series and thus:

zi =

∫ t

t0

φi(τ) dβ(τ).
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Karhunen–Loeve expansions [2/2]

We could now consider approximating the SDE

dx = f (x , t) dt + L(x , t) dβ.

by using a finite expansion

dβ(t) =

N∑

i=1

zi φi(t) dt .

However, this converges to the Stratonovich SDE

dx = f (x , t) dt + L(x , t) ◦ dβ.

That is, we can approximate the Stratonovich SDE with

dx

dt
= f (x , t) + L(x , t)

N∑

i=1

zi φi(t).

A special case of Wong–Zakai approximations.
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Wiener Chaos Expansions

Let’s consider the infinite expansion

dx = f (x , t) dt + L(x , t)
∞∑

i=1

zi φi(t) dt ,

The solution can be seen as a function (or functional) of the form

x(t) = U(t ; z1, z2, . . .).

It is now possible to form a Fourier–Hermite series expansion of

RHS in the variables z1, z2, . . ..

Leads to a polynomial series expansion which is called Wiener

chaos expansion or polynomial chaos.
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Feynman–Kac formulae and parabolic PDEs [1/5]

Feynman–Kac formula gives a link between parabolic partial

differential equations (PDEs) and SDEs.

Consider the following PDE for function u(x , t):

∂u

∂t
+ f (x)

∂u

∂x
+

1

2
σ2(x)

∂2u

∂x2
= 0

u(x ,T ) = Ψ(x).

Let’s define a process x(t) on the interval [t ′,T ] as follows:

dx = f (x) dt + σ(x) dβ, x(t ′) = x ′.
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Feynman–Kac formulae and parabolic PDEs [2/5]

Using Itô formula for u(x , t) gives:

du =
∂u

∂t
dt +

∂u

∂x
dx +

1

2

∂2u

∂x2
dx2

=
∂u

∂t
dt +

∂u

∂x
f (x) dt +

∂u

∂x
σ(x) dβ +

1

2

∂2u

∂x2
σ2(x) dt

=

[
∂u

∂t
+ f (x)

∂u

∂x
+

1

2
σ2(x)

∂2u

∂x2

]

︸ ︷︷ ︸

=0

dt +
∂u

∂x
σ(x) dβ

=
∂u

∂x
σ(x) dβ.
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Feynman–Kac formulae and parabolic PDEs [3/5]

We now have

du =
∂u

∂x
σ(x) dβ.

Integrating from t ′ to T now gives

u(x(T ),T )− u(x(t ′), t ′) =

∫ T

t ′

∂u

∂x
σ(x) dβ,

Substituting the initial and terminal terms we get:

Ψ(x(T ))− u(x ′, t ′) =

∫ T

t ′

∂u

∂x
σ(x) dβ.
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Feynman–Kac formulae and parabolic PDEs [4/5]

Take expectations from both sides

E
[
Ψ(x(T ))− [u(x ′, t ′)

]
= E

[
∫ T

t ′

∂u

∂x
σ(x) dβ

]

︸ ︷︷ ︸

=0

leads to

u(x ′, t ′) = E[Ψ(x(T ))].

Thus we can solve the value of u(x ′, t ′) for arbitrary x ′ and t ′ as
follows:

1 Start the following process from x ′ and time t ′ and let it run until

time T :

dx = f (x) dt + σ(x) dβ

2 The value of u(x ′, t ′) is the expected value of Ψ(x(T )) over the
process realizations.
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Feynman–Kac formulae and parabolic PDEs [5/5]

Can be generalized to equations of the form

∂u

∂t
+ f (x)

∂u

∂x
+

1

2
σ2(x)

∂2u

∂x2
− r u = 0

u(x ,T ) = Ψ(x),

The SDE is the same and the corresponding solution is

u(x ′, t ′) = exp(−r (T − t ′)) E[Ψ(x(T ))]

Can be generalized in various ways: multiple dimensions, r(x),
constant terms, etc.
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Solving Boundary Value Problems with Feynman–Kac

[1/3]

Consider the following boundary value problem for u(x) on Ω:

f (x)
∂u

∂x
+

1

2
σ2(x)

∂2u

∂x2
= 0

u(x) = Ψ(x), x ∈ ∂Ω.

Again, define a process x(t) as follows:

dx = f (x) dt + σ(x) dβ, x(t ′) = x ′.

Application of Itô formula to u(x) gives

du =

[

f (x)
∂u

∂x
+

1

2
σ2(x)

∂2u

∂x2

]

︸ ︷︷ ︸

=0

dt +
∂u

∂x
σ(x) dβ

=
∂u

∂x
σ(x) dβ.
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Solving Boundary Value Problems with Feynman–Kac

[2/3]

Let Te be the first exit time of x(t) from Ω.

Integration from t ′ to Te gives

u(x(Te))− u(x(t ′)) =

∫ Te

t ′

∂u

∂x
σ(x) dβ.

But the value of u(x) on the boundary is Ψ(x) and x(t ′) = x ′,

which leads to:

Ψ(x(Te))− u(x ′) =

∫ Te

t ′

∂u

∂x
σ(x) dβ.

Taking expectation and rearranging then gives

u(x ′) = E[Ψ(x(Te))].
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Solving Boundary Value Problems with Feynman–Kac

[3/3]

Thus we can solve the boundary value problem

f (x)
∂u

∂x
+

1

2
σ2(x)

∂2u

∂x2
= 0

u(x) = Ψ(x), x ∈ ∂Ω.

at point x ′ as follows:
1 Start the following process from x ′:

dx = f (x) dt + σ(x) dβ.

2 Compute the following expectation at the positions x(Te) of the first

exit times from the domain Ω:

u(x ′) = E[Ψ(x(Te))].
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Girsanov theorem [1/6]

Let’s denote the whole path of the Itô process x(t) on a time

interval [0, t] as:

Xt = {x(τ) : 0 ≤ τ ≤ t}.

Let x(t) be the solution to

dx = f(x, t) dt + dβ.

Formally define the probability density of the whole path as

p(Xt) = lim
N→∞

p(x(t1), . . . ,x(tN)).

Not normalizable, but we can define the following for suitable y:

p(Xt)

p(Yt)
= lim

N→∞

p(x(t1), . . . ,x(tN))

p(y(t1), . . . ,y(tN))
.
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Girsanov theorem [2/6]

The Girsanov theorem is a way to make this kind of analysis

rigorous.

Connected to path integrals which can be considered as

expectations of the form

E[h(Xt)] =

∫

h(Xt)p(Xt) dXt .

This notation is purely formal, because the density p(Xt) is

actually an infinite quantity.

But the expectation (path integral) is indeed finite.
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Girsanov theorem [3/6]

Likelihood ratio of Itô processes

Consider the Itô processes

dx = f(x, t) dt + dβ, x(0) = x0,

dy = g(y, t) dt + dβ, y(0) = x0,

where the Brownian motion β(t) has a non-singular diffusion matrix Q.

The ratio of the probability laws of Xt and Yt is given as

p(Xt)

p(Yt)
= Z (t)

Z (t) = exp

(

−
1

2

∫ t

0

[f(y, τ)− g(y, τ)]T Q−1 [f(y, τ)− g(y, τ)] dτ

+

∫ t

0

[f(y, τ)− g(y, τ)]T Q−1
dβ(τ)

)
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Girsanov theorem [4/6]

Likelihood ratio of Itô processes (cont.)

For an arbitrary functional h(•) of the path from 0 to t we have

E[h(Xt)] = E[Z (t)h(Yt)],

Under the probability measure defined through the transformed

probability density

p̃(Xt) = Z (t)p(Xt)

the process

β̃ = β −

∫ t

0

[f(y, τ) − g(y, τ)] dτ,

is a Brownian motion with diffusion matrix Q.

Derivation on the blackboard follows.
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Girsanov theorem [5/6]

Girsanov I

Let θ(t) be a process driven by a standard Brownian motion β(t) such

that E
[∫ t

0
θT(τ)θ(τ) dτ

]

< ∞, then under the measure defined by the

formal probability density

p̃(Θt) = Z (t)p(Θt),

where Θt = {θ(τ) : 0 ≤ τ ≤ t}, and

Z (t) = exp

(∫ t

0

θT(τ) dβ −
1

2

∫ t

0

θT(τ)θ(τ) dτ

)

,

the following process is a standard Brownian motion:

β̃(t) = β(t) −

∫ t

0

θ(τ) dτ.
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Girsanov theorem [6/6]

Girsanov II

Let β(ω, t) be a standard n-dimensional Brownian motion under the

probability measure P. Let θ : Ω× R+ 7→ R
n be an adapted process

such that the process Z defined as

Z (ω, t) = exp

{∫ t

0

θT(ω, t) dβ(ω, t) −
1

2

∫ t

0

θT(ω, t)θ(ω, t) dt

}

,

satisfies E[Z (ω, t)] = 1. Then the process

β̃(ω, t) = β(ω, t) −

∫ t

0

θ(ω, τ) dτ

is a standard Brownian motion under the probability measure P̃

defined via the relation E

[

dP̃

/

dP (ω)

∣
∣
∣
∣
Ft

]

= Z (ω, t), where Ft is the

natural filtration of the Brownian motion β(ω, t).
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Applications of Girsanov theorem

Removal of drift: define θ(t) in terms of the drift function suitably

such that in the transformed SDE the drift cancels out.

Weak solutions of SDEs: Select θ(t) such that an easy process

x̃(t) solves the SDE with the constructed β̃(t).

Kallianpur–Striebel formula (Bayes’ rule in continuous time) and

stochastic filtering theory.

Importance sampling and exact sampling of SDEs.
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Continuous-Time Stochastic Filtering Theory [1/3]

Consider the following filtering model:

dx(t) = f(x(t), t) dt + L(x, t) dβ(t)

dy(t) = h(x(t), t) dt + dη(t).

Given that we have observed y(t), what can we say (in statistical

sense) about the hidden process x(t)?

The first equation defines dynamics of the system state and the

second relates measurements to the state.

Physical interpretation of the measurement model:

z(t) = h(x(t), t) + ǫ(t),

where z(t) = dy(t)/ dt and ǫ(t) = dη(t)/ dt .

For example, x(t) may contain position and velocity of a car and

y(t) might be a radar measurement.
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Continuous-Time Stochastic Filtering Theory [2/3]

The solution can be solved using Bayesian inference.

This Bayesian solution is surpricingly old, as it dates back to work

of Stratonovich around 1950.

The aim is to compute the filtering (posterior) distribution

p(x(t) |Yt).

where Yt = {y(τ) : 0 ≤ τ ≤ t}.

The solutions are called the Kushner–Stratonovich equation and

the Zakai equation.

The solution to the linear Gaussian problem is called

Kalman–Bucy filter.
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Continuous-Time Stochastic Filtering Theory [3/3]

Remark on notation

If we define a linear operator A ∗ as

A
∗(•) = −

∑

i

∂

∂xi

[fi(x , t) (•)] +
1

2

∑

ij

∂2

∂xi ∂xj

{[L(x, t)Q LT(x, t)]ij (•)}.

Then the Fokker–Planck–Kolmogorov equation can be written

compactly as
∂p

∂t
= A

∗p.
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Kushner–Stratonovich equation

Kushner–Stratonovich equation

The stochastic partial differential equation for the filtering density

p(x, t | Yt) , p(x(t) | Yt) is

dp(x, t | Yt) = A
∗ p(x, t | Yt) dt

+ (h(x, t)− E[h(x, t) | Yt ])
T R−1(dy − E[h(x, t) | Yt ] dt)p(x, t | Yt),

where dp(x, t | Yt) = p(x, t + dt | Yt+dt)− p(x, t | Yt) and

E[h(x, t) | Yt ] =

∫

h(x, t)p(x, t | Yt) dx.
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Zakai equation

Zakai equation

Let q(x, t | Yt) , q(x(t) | Yt) be the solution to Zakai’s stochastic

partial differential equation

dq(x, t | Yt) = A
∗ q(x, t | Yt) dt + hT(x, t)R−1

dy q(x, t | Yt),

where dq(x, t | Yt) = q(x, t + dt | Yt+dt)− q(x, t | Yt). Then we have

p(x(t) |Yt) =
q(x(t) |Yt )

∫
q(x(t) |Yt) dx(t)

.
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Kalman–Bucy filter

The Kalman–Bucy filter is the exact solution to the linear Gaussian

filtering problem

dx = F(t)x dt + L(t) dβ

dy = H(t)x dt + dη.

Kalman–Bucy filter

The Bayesian filter, which computes the posterior distribution

p(x(t) |Yt) = N(x(t) |m(t),P(t)) for the above system is

K(t) = P(t)HT(t)R−1

dm(t) = F(t)m(t) dt + K(t) [dy(t)− H(t)m(t) dt]

dP(t)

dt
= F(t)P(t) + P(t)FT(t) + L(t)Q LT(t)− K(t)R KT(t).
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Approximations of nonlinear filters

Monte Carlo approximations (particle filters).

Series expansions of processes.

Series expansions of probability densities.

Gaussian process approximations (non-linear Kalman filters).
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Summary

Brownian motion can be expanded into Karhunen–Loeve series.

The series can be substituted into SDE leading to a class of

Wong–Zakai approximations or to Wiener Chaos Expansions.

Feynman–Kac formulae can be used to solve PDEs by simulating

solutions of SDEs.

Girsanov theorem is related to computation of likelihood ratios of

processes.

Applications of Girsanov theorem include removal drifts, solving

SDEs and deriving results and methods for stochastic filtering

theory.

Filtering theory is related to Bayesian reconstruction of a hidden

stochastic process x(t) from an observed stochastic process y(t).
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