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Karhunen—Loeve expansions [1/2]

@ On a fixed time interval [{y, t;] the standard Brownian motion has a
Karhunen—Loeve series expansion

o0 t
ﬁ(t)=§Zi /t oi(r) dr.

® z;~N(0,1),i=1,2,3,... are independent random variables.

@ {¢i(t)} is an orthonormal basis of the Hilbert space with inner
product

b
(f,9)= [ f(r)g(r)dr.

b
@ In fact, this is just a Fourier series and thus:

t
= /to $i(7) dB(r).
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Karhunen—Loeve expansions [2/2]

@ We could now consider approximating the SDE
dx = f(x,t) dt + L(x, t) dg.

by using a finite expansion

N
dB(t) =Y zi¢i(t) dt.
i—

@ However, this converges to the Stratonovich SDE
dx = f(x,t) dt + L(x, t) odp.
@ That is, we can approximate the Stratonovich SDE with
dx N
a7 = D+ L0 1) D zi0i(1).
i=1

@ A special case of Wong—Zakai approximations.
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Wiener Chaos Expansions

@ Let’s consider the infinite expansion

dx = f(x, 1) dt+ L(x, 1) >z ¢i(t) dt,

i=1

@ The solution can be seen as a function (or functional) of the form
X(t) = U(t; 21,22, .. )

@ It is now possible to form a Fourier—Hermite series expansion of
RHS in the variables zy, z, . . ..

@ Leads to a polynomial series expansion which is called Wiener
chaos expansion or polynomial chaos.
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Feynman—Kac formulae and parabolic PDEs [1/5]

@ Feynman—Kac formula gives a link between parabolic partial
differential equations (PDEs) and SDEs.

@ Consider the following PDE for function u(x, t):
ou ou 1 52
E+f( )8_+_ (x )— 0
u(x, T) = W(x).

@ Let’s define a process x(t) on the interval [t', T] as follows:

dx = f(x) dt + o(x) dB, x(t) = x.
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Feynman—Kac formulae and parabolic PDEs [2/5]

@ Using It6 formula for u(x, t) gives:

du:%d g dx +%gidx2
—%du%f( )dt+g— ( )dﬁ+%? o?(x) dt
thl f()—+—2() dt+%0()d5
=0
= % o(x) 48,
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Feynman—Kac formulae and parabolic PDEs [3/5]

@ We now have

du x) dg.

@ Integrating from ' to T now gives

i
u((T). T) = w0, ) = [ Gl ot) a5

@ Substituting the initial and terminal terms we get:

T

V(x(T))—u(x',t) = / % a(x) dj.

t/
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Feynman—Kac formulae and parabolic PDEs [4/5]

@ Take expectations from both sides

E[V(x(T)) - [ux,t)) =E

)
[ 5ot dﬁ]

@ leads to
u(x',t) = E[W(x(T))].

@ Thus we can solve the value of u(x’, t') for arbitrary x’ and t’ as
follows:
@ Start the following process from x” and time ' and let it run until
time T:

dx = f(x) dt 4+ o(x) d8

@ The value of u(x’, t') is the expected value of W(x(T)) over the
process realizations.
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Feynman—Kac formulae and parabolic PDEs [5/5]

@ Can be generalized to equations of the form

ou ou, 1, d?u B
ot TN g5 T 37 Wge —ru=0
u(x, T) =WV(x),

@ The SDE is the same and the corresponding solution is
u(x',t') = exp(—r (T — t')) E[W(x(T))]

@ Can be generalized in various ways: multiple dimensions, r(x),
constant terms, etc.
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Solving Boundary Value Problems with Feynman—Kac

[1/3]

@ Consider the following boundary value problem for u(x) on Q:

1024 102024 — 0

o u(x) = W(x),x € 09.

@ Again, define a process x(t) as follows:
dx = f(x) dt + o(x) dB, x(t) = x.

@ Application of It6 formula to u(x) gives

du = f(x)—+1 ()g‘; dt + za(x)dﬁ

-~

=0

)
= 8—)‘: o(X) d.

Simo Sarkka (Aalto/TUT/LUT) Lecture 5: Further Topics November 22, 2012



Solving Boundary Value Problems with Feynman—Kac

[2/3]

@ Let T, be the first exit time of x(t) from Q.
@ Integration from t' to T, gives

Te

u(x(T) — ulx(E) = [ G o) a5,

tl

@ But the value of u(x) on the boundary is W(x) and x(t') = x/,
which leads to:

Te gu

— 4 e _
V(x(Te)) — u(x) /t/ I o(x) dg.
@ Taking expectation and rearranging then gives

u(x") = E[V(x(Te))]-
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Solving Boundary Value Problems with Feynman—Kac

[3/3]

@ Thus we can solve the boundary value problem

d%u
2 _
f(X) — 4+ =0 (X)W = O
u(x) = V(x),x € 09.
at point x’ as follows:
@ Start the following process from x’:

dx = f(x) dt + o(x) dp.

@ Compute the following expectation at the positions x(Te) of the first
exit times from the domain Q:

u(x") = E[V(x(Te))].
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Girsanov theorem [1/6]

@ Let’s denote the whole path of the 1t6 process x(t) on a time
interval [0, t] as:

Zi={x(r) : 0< 7 <t}
@ Let x(t) be the solution to
dx = f(x, t) dt + dg.
@ Formally define the probability density of the whole path as
P(2) = fim p(x(tr), ... X(t)):

@ Not normalizable, but we can define the following for suitable y:
P2 _ o POX(h). - X(t))

p(%)  N—oo p(y(t), ..., y(tn))’
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Girsanov theorem [2/6]

@ The Girsanov theorem is a way to make this kind of analysis
rigorous.

@ Connected to path integrals which can be considered as
expectations of the form

E[h(27)] = / h(23) p(23) 424,

@ This notation is purely formal, because the density p(Z3) is
actually an infinite quantity.

@ But the expectation (path integral) is indeed finite.
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Girsanov theorem [3/6]

Likelihood ratio of 1t6 processes

Consider the It processes

dx = f(x, t) dt + dg, x(0) = Xo,
dy =g(y,t) dt+dB,  y(0) =xq,
where the Brownian motion 3(t) has a non-singular diffusion matrix Q.

@ The ratio of the probability laws of 2} and #; is given as

p(21)
p(%) Y

= exp ( - _/ [.f Yy, 7 yv ]TQ ! [f(yv ) (y7 T)] dr

/ [t(y, ) — g(y. )" Q" dﬁ(ﬂ)
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Girsanov theorem [4/6]

Likelihood ratio of 1t6 processes (cont.)
@ For an arbitrary functional h(e) of the path from 0 to t we have

E[h(21)] = E[Z(t) h(#4)],

@ Under the probability measure defined through the transformed
probability density
p(21) = Z(t) p(Z1)

the process t
B=5- [ 1y.n) - ay.7)l ar,
0

is a Brownian motion with diffusion matrix Q.

@ Derivation on the blackboard follows.
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Girsanov theorem [5/6]

Girsanov |

Let 6(t) be a process driven by a standard Brownian motion 3(t) such
that E [fot 07()6(r) dr] < o0, then under the measure defined by the
formal probability density

p(©1) = Z(1) p(©1),

where ©; = {6(7) : 0 <7 < t}, and

Z(t) = exp (/OteT(T) d8 — %/toT(T) o() dT) ,

0

the following process is a standard Brownian motion:

t
B(t) = B(1) - /O 6(r) dr.
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Girsanov theorem [6/6]

Girsanov Il

Let 3(w, t) be a standard n-dimensional Brownian motion under the
probability measure P. Let 8 : Q x R, — R"” be an adapted process
such that the process Z defined as

t t
Z(w, 1) = exp{ / 07 (w, £) dB(w, ) — % / 07 (w, 1) 0(w, 1) dt},
0 0
satisfies E[Z(w, t)] = 1. Then the process
t
Bl ) = Bwrt) ~ [ 6w, 7) dr
0

is a standard Brownian motion under the probability measure P
defined via the relation E [d]fl’/d]P’ (w) ﬁt] = Z(w, t), where .Z; is the

natural filtration of the Brownian motion 3(w, t).
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Applications of Girsanov theorem

@ Removal of drift: define @(t) in terms of the drift function suitably
such that in the transformed SDE the drift cancels out.

@ Weak solutions of SDEs: Select 6(t) such that an easy process
X(t) solves the SDE with the constructed 3(t).

@ Kallianpur—Striebel formula (Bayes’ rule in continuous time) and
stochastic filtering theory.

@ Importance sampling and exact sampling of SDEs.
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Continuous-Time Stochastic Filtering Theory [1/3]

@ Consider the following filtering model:

dx(t) = f(x(t), t) dt + L(x,t) d3(t)
dy(t) = h(x(t), t) dt + dn(t).
@ Given that we have observed y(t), what can we say (in statistical

sense) about the hidden process x(t)?

@ The first equation defines dynamics of the system state and the
second relates measurements to the state.

@ Physical interpretation of the measurement model:
z(t) = h(x(1), 1) + (1),

where z(t) = dy(t)/dt and e(t) = dn(t)/dt.
@ For example, x(t) may contain position and velocity of a car and
y(t) might be a radar measurement.
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Continuous-Time Stochastic Filtering Theory [2/3]

@ The solution can be solved using Bayesian inference.

@ This Bayesian solution is surpricingly old, as it dates back to work
of Stratonovich around 1950.

@ The aim is to compute the filtering (posterior) distribution

p(x(t) | %4).

where %; = {y(7) : 0 <7 <t}
@ The solutions are called the Kushner—Stratonovich equation and
the Zakai equation.

@ The solution to the linear Gaussian problem is called
Kalman—Bucy filter.
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Continuous-Time Stochastic Filtering Theory [3/3]

Remark on notation

If we define a linear operator «7* as

(o) = Z eAllCR) -)1+2 g L6 QLT 01 (0}

Then the Fokker—Planck—Kolmogorov equation can be written
compactly as
p _

ot p-
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Kushner—Stratonovich equation

Kushner—Stratonovich equation

The stochastic partial differential equation for the filtering density
p(x,t | %) = p(x(t) | %) is

dp(x,t | %) = &/" p(x,t | #) dt
+ (h(x,1) —Efh(x, ) | Z4])T R (dy — E[h(x, 1) | Z4]dt) p(x, t | %),

where dp(x, t| %) = p(x, t +dt | Ziyar) — p(X, t | #) and

Elh(x,1) | 21 = / h(x, £) p(x. t | ) dx.
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Zakai equation

Zakai equation

Let g(x,t | %) = q(x(t) | %) be the solution to Zakai’s stochastic
partial differential equation

dq(x, t| %) = o/ q(x.t| %) dt + hT(x, ) R™" dy q(x, t | %),

where dg(x, t | %) = q(x, t + dt | Zi1at) — g(X, t | ;). Then we have

 qx®)
P |90 = T 20 (B
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Kalman—Bucy filter

The Kalman—Bucy filter is the exact solution to the linear Gaussian
filtering problem

dx = F(t)x dt + L(t) dB

dy = H(t) x dt + dn.

Kalman—Bucy filter
The Bayesian filter, which computes the posterior distribution
p(x(t)]| %) = N(x(t) | m(t),P(t)) for the above system is

K(t) =P(t)HT ()R’

dm(t) = F(tym(t) dt + K(t) [dy(t) — H(t) m(t) di]
%f) =F(t)P(t) + P(t)FT(t) + L(t) QLT(t) — K(t) RKT(2).
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Approximations of nonlinear filters

@ Monte Carlo approximations (particle filters).

@ Series expansions of processes.

@ Series expansions of probability densities.

@ Gaussian process approximations (non-linear Kalman filters).
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@ Brownian motion can be expanded into Karhunen—Loeve series.

@ The series can be substituted into SDE leading to a class of
Wong—-Zakai approximations or to Wiener Chaos Expansions.

@ Feynman—Kac formulae can be used to solve PDEs by simulating
solutions of SDEs.

@ Girsanov theorem is related to computation of likelihood ratios of
processes.

@ Applications of Girsanov theorem include removal drifts, solving
SDEs and deriving results and methods for stochastic filtering
theory.

@ Filtering theory is related to Bayesian reconstruction of a hidden
stochastic process x(t) from an observed stochastic process y(t).
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