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Overview of Numerical Methods

Gaussian process approximations:

Approximations of mean and covariance equations.

Gaussian assumed density approximations.

Statistical linearization.

Numerical simulation of SDEs:

Itô–Taylor series.

Euler–Maruyama method and Milstein’s method.

Stochastic Runge–Kutta.

Other methods (not covered on this lecture):

Approximations of higher order moments.

Approximations of Fokker–Planck–Kolmogorov PDE.
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Theoretical mean and covariance equations

Consider the stochastic differential equation (SDE)

dx = f(x, t) dt + L(x, t) dβ.

The mean and covariance differential equations are

dm

dt
= E [f(x, t)]

dP

dt
= E

[

f(x, t) (x − m)T
]

+ E
[

(x − m) fT(x, t)
]

+ E
[

L(x, t)Q LT(x, t)
]

Note that the expectations are w.r.t. p(x, t)!
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Gaussian process approximations [1/5]

The mean and covariance equations explicitly:

dm

dt
=

∫

f(x, t)p(x, t) dx

dP

dt
=

∫

f(x, t) (x − m)T p(x, t) dx +

∫

(x − m) fT(x, t)p(x, t) dx

+

∫

L(x, t)Q LT(x, t)p(x, t) dx.

In Gaussian assumed density approximation we assume

p(x, t) ≈ N(x |m(t),P(t)).
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Gaussian process approximations [2/5]

Gaussian process approximation I

Gaussian process approximation to SDE can be obtained by

integrating the following differential equations from the initial conditions

m(0) = E[x(0)] and P(0) = Cov[x(0)] to the target time t :

dm

dt
=

∫

f(x, t) N(x |m,P) dx

dP

dt
=

∫

f(x, t) (x − m)T N(x |m,P) dx

+

∫

(x − m) fT(x, t) N(x |m,P) dx

+

∫

L(x, t)Q LT(x, t) N(x |m,P) dx.
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Gaussian process approximations [3/5]

Gaussian process approximation I (cont.)

If we denote the Gaussian expectation as

EN[g(x)] =

∫

g(x) N(x |m,P) dx

the mean and covariance equations can be written as

dm

dt
= EN[f(x, t)]

dP

dt
= EN[(x − m) fT(x, t)] + EN[f(x, t) (x − m)T]

+ EN[L(x, t)Q LT(x, t)].
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Gaussian process approximations [4/5]

Theorem

Let f(x, t) be differentiable with respect to x and let x ∼ N(m,P). Then

the following identity holds:

∫

f(x, t) (x − m)T N(x |m,P) dx

=

[
∫

Fx(x, t) N(x |m,P) dx

]

P,

where Fx(x, t) is the Jacobian matrix of f(x, t) with respect to x.
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Gaussian process approximations [5/5]

Gaussian process approximation II

Gaussian process approximation to SDE can be obtained by

integrating the following differential equations from the initial conditions

m(0) = E[x(0)] and P(0) = Cov[x(0)] to the target time t :

dm

dt
= EN[f(x, t)]

dP

dt
= P EN[Fx (x, t)]

T + EN[Fx(x, t)]P + EN[L(x, t)Q LT(x, t)],

where EN[·] denotes the expectation with respect to x ∼ N(m,P).
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Classical Linearization [1/2]

We need to compute following kind of Gaussian integrals:

EN[g(x, t)] =

∫

g(x, t) N(x |m,P) dx

We can borrow methods from filtering theory.

Linearize the drift f(x, t) around the mean m as follows:

f(x, t) ≈ f(m, t) + Fx (m, t) (x − m),

Approximate the expectation of the diffusion part as

L(x, t) ≈ L(m, t).
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Classical Linearization [2/2]

Linearization approximation of SDE

Linearization based approximation to SDE can be obtained by

integrating the following differential equations from the initial conditions

m(0) = E[x(0)] and P(0) = Cov[x(0)] to the target time t :

dm

dt
= f(m, t)

dP

dt
= P FT

x (m, t) + Fx(m, t)P + L(m, t)Q LT(m, t).

Used in extended Kalman filter (EKF).
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Cubature integration [1/3]

Gauss–Hermite cubatures:
∫

f(x, t) N(x |m,P) dx ≈
∑

i

W (i) f(x(i), t).

The sigma points (abscissas) x(i) and weights W (i) are

determined by the integration rule.

In multidimensional Gauss-Hermite integration, unscented

transform, and cubature integration we select:

x(i) = m +
√

P ξi .

The matrix square root is defined by P =
√

P
√

P
T

(typically

Cholesky factorization).

The vectors ξi are determined by the integration rule.
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Cubature integration [2/3]

In Gauss–Hermite integration the vectors and weights are

selected as cartesian products of 1d Gauss–Hermite integration.

Unscented transform uses:

ξ0 = 0

ξi =

{ √
λ+ n ei , i = 1, . . . ,n

−
√
λ+ n ei−n , i = n + 1, . . . ,2n,

and W (0) = λ/(n + κ), and W (i) = 1/[2(n + κ)] for i = 1, . . . ,2n.

Cubature method (spherical 3rd degree):

ξi =

{ √
n ei , i = 1, . . . ,n

−
√

n ei−n , i = n + 1, . . . ,2n,

and W (i) = 1/(2n) for i = 1, . . . ,2n.
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Cubature integration [3/3]

Sigma-point approximation of SDE

Sigma-point based approximation to SDE can be obtained by

integrating the following differential equations from the initial conditions

m(0) = E[x(0)] and P(0) = Cov[x(0)] to the target time t :

dm

dt
=

∑

i

W (i) f(m +
√

P ξi , t)

dP

dt
=

∑

i

W (i) f(m +
√

P ξi , t) ξ
T
i

√
P

T

+
∑

i

W (i)
√

P ξi fT(m +
√

P ξi , t)

+
∑

i

W (i) L(m +
√

P ξi , t)Q LT(m +
√

P ξi , t).
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Taylor series of ODEs vs. Itô-Taylor series of SDEs

Taylor series expansions (in time direction) are classical methods

for approximating solutions of deterministic ordinary differential

equations (ODEs).

Largely superseded by Runge–Kutta type of derivative free

methods (whose theory is based on Taylor series).

Itô-Taylor series can be used for approximating solutions of

SDEs—direct generalization of Taylor series for ODEs.

Stochastic Runge–Kutta methods are not as easy to use as their

deterministic counterparts

It is easier to understand Itô-Taylor series by understanding Taylor

series (for ODEs) first.
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Taylor series of ODEs [1/5]

Consider the following ordinary differential equation (ODE):

dx(t)

dt
= f(x(t), t), x(t0) = given,

Integrating both sides gives

x(t) = x(t0) +

∫ t

t0

f(x(τ), τ) dτ.

If the function f is differentiable, we can also write t 7→ f(x(t), t) as

the solution to the differential equation

df(x(t), t)

dt
=

∂f

∂t
(x(t), t) +

∑

i

fi(x(t), t)
∂f

∂xi
(x(t), t).
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Taylor series of ODEs [2/5]

The integral form of this is

f(x(t), t) = f(x(t0), t0)+

∫ t

t0

[

∂f

∂t
(x(τ), τ) +

∑

i

fi(x(τ), τ)
∂f

∂xi
(x(τ), τ)

]

d

Let’s define the linear operator

Lg =
∂g

∂t
+

∑

i

fi
∂g

∂xi

We can now rewrite the integral equation as

f(x(t), t) = f(x(t0), t0) +

∫ t

t0

L f(x(τ), τ) dτ.
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Taylor series of ODEs [3/5]

By substituting this into the original integrated ODE gives

x(t) = x(t0) +

∫ t

t0

f(x(τ), τ) dτ

= x(t0) +

∫ t

t0

[f(x(t0), t0) +

∫ τ

t0

L f(x(τ), τ) dτ ] dτ

= x(t0) + f(x(t0), t0) (t − t0) +

∫ t

t0

∫ τ

t0

L f(x(τ), τ) dτ dτ.

The term L f(x(t), t) solves the differential equation

d[L f(x(t), t)]

dt
=

∂[L f(x(t), t)]

∂t
+

∑

i

fi(x(t), t)
∂[L f(x(t), t)]

∂xi

= L2 f(x(t), t).
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Taylor series of ODEs [4/5]

In integral form this is

L f(x(t), t) = L f(x(t0), t0) +

∫ t

t0

L2 f(x(τ), τ) dτ.

Substituting into the equation of x(t) then gives

x(t) = x(t0) + f(x(t0), t) (t − t0)

+

∫ t

t0

∫ τ

t0

[L f(x(t0), t0) +

∫ τ

t0

L2 f(x(τ), τ) dτ ] dτ dτ

= x(t0) + f(x(t0), t0) (t − t0) +
1

2
L f(x(t0), t0) (t − t0)

2

+

∫ t

t0

∫ τ

t0

∫ τ

t0

L2 f(x(τ), τ) dτ dτ dτ
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Taylor series of ODEs [5/5]

If we continue this procedure ad infinitum, we obtain the following

Taylor series expansion for the solution of the ODE:

x(t) = x(t0) + f(x(t0), t0) (t − t0) +
1

2!
L f(x(t0), t0) (t − t0)

2

+
1

3!
L2 f(x(t0), t0) (t − t0)

3 + . . .

where

L =
∂

∂t
+

∑

i

fi
∂

∂xi

The Taylor series for a given function x(t) can be obtained by

setting f(t) = dx(t)/dt .
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Itô-Taylor series of SDEs [1/5]

Consider the following SDE

dx = f(x(t), t) dt + L(x(t), t) dβ.

In integral form this is

x(t) = x(t0) +

∫ t

t0

f(x(τ), τ) dτ +

∫ t

t0

L(x(τ), τ) dβ(τ).

Applying Itô formula to f(x(t), t) gives

df(x(t), t) =
∂f(x(t), t)

∂t
dt +

∑

u

∂f(x(t), t)

∂xu
fu(x(t), t) dt

+
∑

u

∂f(x(t), t)

∂xu
[L(x(t), t) dβ(τ)]u

+
1

2

∑

uv

∂2f(x(t), t)

∂xu ∂xv
[L(x(t), t)Q LT(x(t), t)]uv dt
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Itô-Taylor series of SDEs [2/5]

Similarly for L(x(t), t) we get via Itô formula:

dL(x(t), t) =
∂L(x(t), t)

∂t
dt +

∑

u

∂L(x(t), t)

∂xu
fu(x(t), t) dt

+
∑

u

∂L(x(t), t)

∂xu
[L(x(t), t) dβ(τ)]u

+
1

2

∑

uv

∂2L(x(t), t)

∂xu ∂xv
[L(x(t), t)Q LT(x(t), t)]uv dt
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Itô-Taylor series of SDEs [3/5]

In integral form these can be written as

f(x(t), t) = f(x(t0), t0) +

∫ t

t0

∂f(x(τ ), τ )

∂t
dτ +

∫ t

t0

∑
u

∂f(x(τ ), τ )

∂xu
fu(x(τ ), τ ) dτ

+

∫ t

t0

∑
u

∂f(x(τ ), τ )

∂xu
[L(x(τ ), τ ) dβ(τ )]u

+

∫ t

t0

1

2

∑
uv

∂2f(x(τ ), τ )

∂xu ∂xv
[L(x(τ ), τ )Q L

T(x(τ ), τ )]uv dτ

L(x(t), t) = L(x(t0), t0) +

∫ t

t0

∂L(x(τ ), τ )

∂t
dτ +

∫ t

t0

∑
u

∂L(x(τ ), τ )

∂xu
fu(x(τ ), τ ) dτ

+

∫ t

t0

∑
u

∂L(x(τ ), τ )

∂xu
[L(x(τ ), τ ) dβ(τ )]u

+

∫ t

t0

1

2

∑
uv

∂2L(x(τ ), τ )

∂xu ∂xv
[L(x(τ ), τ )Q L

T(x(τ ), τ )]uv dτ
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Itô-Taylor series of SDEs [4/5]

Let’s define operators

Lt g =
∂g

∂t
+

∑

u

∂g

∂xu
fu +

1

2

∑

uv

∂2g

∂xu ∂xv
[L Q LT]uv

Lβ,v g =
∑

u

∂g

∂xu
Luv , v = 1, . . . ,n.

Then we can conveniently write

f(x(t), t) = f(x(t0), t0) +

∫ t

t0

Lt f(x(τ), τ) dτ +
∑

v

∫ t

t0

Lβ,v f(x(τ), τ) dβv (τ)

L(x(t), t) = L(x(t0), t0) +

∫ t

t0

Lt L(x(τ), τ) dτ +
∑

v

∫ t

t0

Lβ,v L(x(τ), τ) dβv(τ)
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Itô-Taylor series of SDEs [5/5]

If we now substitute these into equation of x(t), we get

x(t) = x(t0) + f(x(t0), t0) (t − t0) + L(x(t0), t0) (β(t)− β(t0))

+

∫ t

t0

∫ τ

t0

Lt f(x(τ), τ) dτ dτ +
∑

v

∫ t

t0

∫ τ

t0

Lβ,v f(x(τ), τ) dβv (τ) dτ

+

∫ t

t0

∫ τ

t0

Lt L(x(τ), τ) dτ dβ(τ) +
∑

v

∫ t

t0

∫ τ

t0

Lβ,v L(x(τ), τ) dβv(τ) dβ(τ).

This can be seen to have the form

x(t) = x(t0) + f(x(t0), t0) (t − t0) + L(x(t0), t0) (β(t)− β(t0)) + r(t)

r(t) is a remainder term.

By neglecting the remainder we get the Euler–Maruyma method.

Simo Särkkä (Aalto/TUT/LUT) Lecture 4: Numerical Solution of SDEs November 15, 2012 30 / 42



Euler–Maruyama method

Euler-Maruyama method

Draw x̂0 ∼ p(x0) and divide time [0, t] interval into K steps of length

∆t . At each step k do the following:

1 Draw random variable ∆βk from the distribution (where tk = k ∆t)

∆βk ∼ N(0,Q∆t).

2 Compute

x̂(tk+1) = x̂(tk ) + f(x̂(tk ), tk )∆t + L(x̂(tk ), tk )∆βk .
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Order of convergence

Strong order of convergence γ:

E [|x(tn)− x̂(tn)|] ≤ K ∆tγ

Weak order of convergence α:

|E [g(x(tn))]− E [g(x̂(tn))] | ≤ K ∆tα,

for any function g.

Euler–Maruyama method has strong order γ = 1/2 and weak

order α = 1.

The reason for γ = 1/2 is the following term in the remainder:

∑

v

∫ t

t0

∫ τ

t0

Lβ,vL(x(τ), τ) dβv (τ) dβ(τ).
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Milstein’s method [1/4]

If we now expand the problematic term using Itô formula, we get

x(t) = x(t0) + f(x(t0), t0) (t − t0) + L(x(t0), t0) (β(t)− β(t0))

+
∑

v

Lβ,vL(x(t0), t0)

∫ t

t0

∫ τ

t0

dβv (τ) dβ(τ) + remainder.

Notice the iterated Itô integral appearing in the equation:

∫ t

t0

∫ τ

t0

dβv (τ) dβ(τ).

Computation of general iterated Itô integrals is non-trivial.
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Milstein’s method [2/4]

Milstein’s method

Draw x̂0 ∼ p(x0), and at each step k do the following:

1 Jointly draw the following:

∆βk = β(tk+1)− β(tk )

∆χv ,k =

∫ tk+1

tk

∫ τ

tk

dβv (τ) dβ(τ).

2 Compute

x̂(tk+1) = x̂(tk ) + f(x̂(tk ), tk )∆t + L(x̂(tk ), tk )∆βk

+
∑

v

[

∑

u

∂L

∂xu
(x̂(tk ), tk )Luv (x̂(tk ), tk )

]

∆χv ,k .
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Milstein’s method [3/4]

The strong and weak orders of the above method are both 1.

The difficulty is in drawing the iterated stochastic integral jointly

with the Brownian motion.

If the noise is additive, that is, L(x, t) = L(t) then Milstein’s

algorithm reduces to Euler–Maruyama.

Thus in additive noise case, the strong order of Euler–Maruyama

is 1 as well.

In scalar case we can compute the iterated stochastic integral:

∫ t

t0

∫ τ

t0

dβ(τ) dβ(τ) =
1

2

[

(β(t) − β(t0))
2 − q (t − t0)

]

Simo Särkkä (Aalto/TUT/LUT) Lecture 4: Numerical Solution of SDEs November 15, 2012 35 / 42



Milstein’s method [4/4]

Scalar Milstein’s method

Draw x̂0 ∼ p(x0), and at each step k do the following:

1 Draw random variable ∆βk from the distribution (where tk = k ∆t)

∆βk ∼ N(0,q ∆t).

2 Compute

x̂(tk+1) = x̂(tk ) + f (x̂(tk ), tk )∆t + L(x(tk ), tk )∆βk

+
1

2

∂L

∂x
(x̂(tk ), tk )L(x̂(tk ), tk ) (∆β2

k − q ∆t).
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Higher Order Methods

By taking more terms into the expansion, can form methods of

arbitrary order.

The high order iterated Itô integrals will be increasingly hard to

simulate.

However, if L does not depend on the state, we can get up to

strong order 1.5 without any iterated integrals.

For that purpose we need to expand the following terms using the

Itô formula (see the lecture notes):

Lt f(x(t), t)

Lβ,v f(x(t), t).
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Strong Order 1.5 Itô–Taylor Method

Strong Order 1.5 Itô–Taylor Method

When L and Q are constant, we get the following algorithm. Draw

x̂0 ∼ p(x0), and at each step k do the following:

1 Draw random variables ∆ζk and ∆βk from the joint distribution

(

∆ζk

∆βk

)

∼ N

((

0
0

)

,

(

Q∆t3/3 Q∆t2/2

Q∆t2/2 Q∆t

))

.

2 Compute

x̂(tk+1) = x̂(tk ) + f(x̂(tk ), tk )∆t + L∆βk + ak
(t − t0)

2

2
+
∑

v

bv ,k ∆ζk

ak =
∂f

∂t
+
∑

u

∂f

∂xu
fu +

1

2

∑

uv

∂2f

∂xu ∂xv
[L Q LT]uv

bv ,k =
∑

u

∂f

∂xu
Luv .
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Stochastic Runge-Kutta methods

Stochastic versions of Runge–Kutta methods are not as simple as

in the case of deterministic equations.

In practice, stochastic Runge–Kutta methods can be derived, for

example, by replacing the closed form derivatives in the Milstein’s

method with finite differences

We still cannot get rid of the iterated Itô integral occurring in

Milstein’s method.

Stochastic Runge–Kutta methods cannot be derived as simple

extensions of the deterministic Runge–Kutta methods.

A number of stochastic Runge–Kutta methods have also been

presented by Kloeden et al. (1994); Kloeden and Platen (1999) as

well as by Rößler (2006).
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Summary

Gaussian process approximations of SDEs can be formed by

assuming Gaussianity in the mean and covariance equations.

The resulting equations can be numerically solved using

linearization or cubature integration (sigma-point methods).

Itô–Taylor series is a stochastic counterpart of Taylor series for

ODEs.

With first order truncation of Itô–Taylor series we get

Euler–Maruyama method.

Including additional stochastic term leads to Milstein’s method.

Computation of iterated Itô integrals is hard and needed for

implementing the methods.

In additive noise case we get a simple 1.5 strong order method.

Stochastic Runge–Kutta methods also include the same iterated

Itô integrals.

Stochastic Runge–Kutta methods are not simple extensions of

deterministic Runge–Kutta methods.
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