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Overview of Numerical Methods

@ Gaussian process approximations:
@ Approximations of mean and covariance equations.
o Gaussian assumed density approximations.
o Statistical linearization.
@ Numerical simulation of SDEs:
o |t6—Taylor series.
o Euler-Maruyama method and Milstein’s method.
@ Stochastic Runge—Kutta.
@ Other methods (not covered on this lecture):

@ Approximations of higher order moments.
@ Approximations of Fokker—Planck—Kolmogorov PDE.
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Theoretical mean and covariance equations

@ Consider the stochastic differential equation (SDE)
dx = f(x, t) dt + L(x, t) d3.

@ The mean and covariance differential equations are

dm
— = E [f(x, 1)]
= Ef0x, 1) x —m)T] + E [ox - m) (1

+E [L(x, HaLT(x, t)}

@ Note that the expectations are w.r.t. p(x, t)!
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Gaussian process approximations [1/5]

@ The mean and covariance equations explicitly:
dm
G /f(x, ) p(x,t) dx
T = [t = mTpix. ) ax+ [ (x—m)fT(x ) p(x. 1) ax
- / L(x, 1) QLT(x, t) p(x, t) dx.

@ In Gaussian assumed density approximation we assume

p(x,t) ~ N(x|m(t),P(t)).
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Gaussian process approximations [2/5]

Gaussian process approximation |

Gaussian process approximation to SDE can be obtained by
integrating the following differential equations from the initial conditions
m(0) = E[x(0)] and P(0) = Cov[x(0)] to the target time ¢:

‘L_’;‘ :/f(x,t) N(x | m,P) dx
= [tx.0x—m)T Nexm,P) ax
+ [ ox-m) T 6 Nexm, P ax

+ / L(x,t)QLT(x, ) N(x | m,P) dx.
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Gaussian process approximations [3/5]

Gaussian process approximation | (cont.)
If we denote the Gaussian expectation as

Enlg(x)] = / g(x) N(x | m, P) dx

the mean and covariance equations can be written as

o = Enlf(x, 0]
. — Enl(x— m) ()] + Eni(x, ) (x — m)

+ En[L(x, 1) QLT(x, 1)].
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Gaussian process approximations [4/5]

Theorem

Letf(x,t) be differentiable with respect to x and let x ~ N(m, P). Then
the following identity holds:

/ £(x, ) (X — m)T N(x |m, P) dx
_ [/ F.(x, ) N(x |m, P) dx] P

where Fx(x, t) is the Jacobian matrix of f(x, t) with respect to x.
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Gaussian process approximations [5/5]

Gaussian process approximation Il

Gaussian process approximation to SDE can be obtained by
integrating the following differential equations from the initial conditions
m(0) = E[x(0)] and P(0) = Cov[x(0)] to the target time t:

T = Enlt(x. 1)

= P EWFu(x T + En[Fu(x, 0] P + Ex[L(x, ) QLT (x, 1]

where Ey[-] denotes the expectation with respect to x ~ N(m, P).
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Classical Linearization [1/2]

@ We need to compute following kind of Gaussian integrals:

Enlg(x, )] = / g(x, t) N(x | m, P) dx

@ We can borrow methods from filtering theory.
@ Linearize the drift f(x, t) around the mean m as follows:

f(x,t) ~ f(m, ) + Fx(m, t) (x — m),
@ Approximate the expectation of the diffusion part as

L(x,t) ~L(m,?).

Simo Sarkka (Aalto/TUT/LUT) Lecture 4: Numerical Solution of SDEs November 15, 2012



Classical Linearization [2/2]

Linearization approximation of SDE

Linearization based approximation to SDE can be obtained by
integrating the following differential equations from the initial conditions
m(0) = E[x(0)] and P(0) = Cov[x(0)] to the target time t:

dm

% — PEI(m, t) + Fx(m, t)P + L(m, £)QL"(m, t).

@ Used in extended Kalman filter (EKF).
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Cubature integration [1/3]

@ Gauss—Hermite cubatures:

/ f(x, 1) N(x|m,P) dx ~ > W (x"), ).
i

@ The sigma points (abscissas) x() and weights W() are
determined by the integration rule.

@ In multidimensional Gauss-Hermite integration, unscented
transform, and cubature integration we select:

x) =m+VPg,.

@ The matrix square root is defined by P = VPP (typically
Cholesky factorization).

@ The vectors &; are determined by the integration rule.
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Cubature integration [2/3]

@ In Gauss—Hermite integration the vectors and weights are
selected as cartesian products of 1d Gauss—Hermite integration.

@ Unscented transform uses:

& =0
€ — VA+ne; , I=1,....n
"\ —vV/A+ne_, , i=n+1,...,2n,

and WO = \/(n+ k), and W) =1/[2(n+ k)] fori=1,...,2n.
@ Cubature method (spherical 3rd degree):

¢ = vne; , i=1,...,n
"\ —vnei_, , i=n+1,...,2n,

and W) =1/(2n)fori=1,...,2n.
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Cubature integration [3/3]

Sigma-point approximation of SDE

Sigma-point based approximation to SDE can be obtained by
integrating the following differential equations from the initial conditions
m(0) = E[x(0)] and P(0) = Cov[x(0)] to the target time t:

dm ;
a z WO f(m + VP, t)
!

dP - T

a _ (i) el

i }i:w fm+ VP&, 1)¢] VP
+Y WO VP (m+VPE, )

+Y WOLm+ VP, QL (m+ VPE, 1),
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Taylor series of ODEs vs. It6-Taylor series of SDEs

@ Taylor series expansions (in time direction) are classical methods
for approximating solutions of deterministic ordinary differential
equations (ODEs).

@ Largely superseded by Runge—Kutta type of derivative free
methods (whose theory is based on Taylor series).

@ |t6-Taylor series can be used for approximating solutions of
SDEs—direct generalization of Taylor series for ODEs.

@ Stochastic Runge—Kutta methods are not as easy to use as their
deterministic counterparts

@ It is easier to understand It6-Taylor series by understanding Taylor
series (for ODEs) first.
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Taylor series of ODEs [1/5]

@ Consider the following ordinary differential equation (ODE):

d’;_(tt) =1(x(), 1), x(t) = given,

@ Integrating both sides gives
t
x(t) =x(f) + [ f(x(7),7) dr.
fo

@ If the function f is differentiable, we can also write t — f(x(t), ) as
the solution to the differential equation

df(x(t), 1) of
— 0 ((t +Zf(x(t ) 3 X(0):1).
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Taylor series of ODEs [2/5]

@ The integral form of this is

t
H(x(1), ) = F(x(tp), o)+ /t

of of
51 X(7),7) + ZI: fi(x(7),7) a_x,-(x(T)’ T)]
@ Let’s define the linear operator
+ Z 8x,
@ We can now rewrite the integral equation as

f(x(8), £) = f(x(1o), to) + tcf(x(T), 7) dr.

)
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Taylor series of ODEs [3/5]

@ By substituting this into the original integrated ODE gives

x(t) = x(fp) + tf(X(T),T) dr

)

t T
:x(t0)+/t [f(x(to),to)+/t LAX(7),7) dr] dr

t T
— xX(1o) + F(X(to), 1) (£ — to) +/ LAX(r), 7) dr dr.

to Jiy

@ The term Lf(x(?), t) solves the differential equation

d[Lf(x(t), )] 8[£f t) )] Zf 8[[,f(x(t) 1]
dt

(1), 1)

= L2f(x(1), t).
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Taylor series of ODEs [4/5]

@ In integral form this is

t
CAX(D), 1) = LEX(1), 1) + / C2H(x(7), 7) dr
fo
@ Substituting into the equation of x(t) then gives
x(t) = x(to) + f(x(to), 1) (t — to

)
/t/[/;f(x(to),to)+ tT,azf(x(T),T) dr] dr dr

= X(t0) +1(x(t0), 0) (t ~ ) + 5 LTX(10), 0) (¢~ o)?

t T T
+/ / £? f(x(7),7) dr dr dr
tJt, St
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Taylor series of ODEs [5/5]

@ If we continue this procedure ad infinitum, we obtain the following
Taylor series expansion for the solution of the ODE:

X(1) = X(ty) + F(x(t), 1) (¢ — &) + %L‘f(x(to), ) (t — 1)?

o+ %,cz f(x(t), o) (t— 1) + ...

where 5 5
= _— f
L=t 21: " %

@ The Taylor series for a given function x(t) can be obtained by
setting f(t) = dx(t)/dt.
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It6-Taylor series of SDEs [1/5]

@ Consider the following SDE
dx = f(x(t),t) dt + L(x(t),t) dB.

@ In integral form this is

t t
x(t) = x(fy) +/t f(x(7),7) dr +/t L(x(7),7) dB(7).
@ Applying It6 formula to f(x(t), t) gives

df(x(t), t) = % dt+> %Xtu)’t) fu(x(t), t) dt

N Z M [L(x(), ) dB(7)]u

82f(X(l‘) )

2 C Ox, OXy [L(x(t), ) QLT (X(t), t)]u dt
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It6-Taylor series of SDEs [2/5]

@ Similarly for L(x(t), f) we get via It6 formula:

aL(x(n), ) = 220D 4 579 (a(,? D x(t), 1) at

u

#3200, 480

u

2
22“"‘“ [L(x(t), 1) QLT(x(), t)]uv dt

OXy 0X
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It6-Taylor series of SDEs [3/5]

@ In integral form these can be written as

H(x(0).1) = 1(x(t0). ) + | af(x(” 7) 4r + /t Za'(x(” ) f(x(r), 7) dr

[ ‘9“"(” D L (x(r).7) a8l

0 u

/t Z ;(;(g))( .7) [L(x(7),7)Q LT(X(T) 7)]uv dr

L(x(1), t) = L(X(to), o) + W dT-i—/t Z%;;)’T)fu(x(ﬂx) dr

/t g T) D [L(x(r), 7) 4B

(]

/t Z ° Iéx aTx) ) (L (x(r), 1) QLT((r), )] dr
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It6-Taylor series of SDEs [4/5]

@ Let’s define operators

H?
fo- ey Ly P

0
Lsvg= Z gLuv, v=1,....n
@ Then we can conveniently write
f(x(1), 1) = f(x(t), o) + c,f dT+Z cﬁ AX(7), 7) dBy(7)

L(x(1), t) = L(x(t), 1) + LtL dT+Z Lﬁv ,7) dBy(7)
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It6-Taylor series of SDEs [5/5]

@ If we now substitute these into equation of x(t), we get
x(t) = x(to) + f(x(t), 1) (t — 1) + L(x(h), 1) (B(1) — B(bo))

t pr ¢ oo
# [ e drdr 3 [ [ LA (x(r).7) a5 (0)

[ [ etixen) o ap) + X [ [ Laxiom) asito) agto)

v

@ This can be seen to have the form

X(t) = x(to) + f(x(%), to) (t — to) + L(x(%), ©o) (B(t) — B(lo)) + ¥(1)

@ r(t) is a remainder term.
@ By neglecting the remainder we get the Euler—Maruyma method.
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Euler—Maruyama method

Euler-Maruyama method

Draw Xq ~ p(Xo) and divide time [0, t] interval into K steps of length
At. At each step k do the following:

@ Draw random variable A3, from the distribution (where tx = k At)

AB, ~N(0,QAb).

@ Compute

X(t1) = X(t) + F(X(t), t) At + L(X(t). tc) ABk-
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Order of convergence

@ Strong order of convergence ~:
E[|x(tn) — X(th)]] < KAt
@ Weak order of convergence a:
|Elg(x(t))] — Elg(X(ta))] | < K At?,

for any function g.

® Euler—-Maruyama method has strong order v = 1/2 and weak
order a = 1.

@ The reason for v = 1/2 is the following term in the remainder:

t T
> /t /t LgyL(X(7),7) dBv(7) dB(7).
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Milstein’s method [1/4]

@ If we now expand the problematic term using 1t6 formula, we get
X(t) = x(to) + f(x(fo), bo) (t — o) + L(x(%). to) (B(t) — B(t))
t pr
37 L5 L(X(t), ) / / d8,(r) dB(r) + remainder.
v fh Jho

@ Notice the iterated It6 integral appearing in the equation:

/to t /to " dBy(r) dB(7).

@ Computation of general iterated It6 integrals is non-trivial.
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Milstein’s method [2/4]

Milstein’s method

Draw Xq ~ p(Xp), and at each step k do the following:
@ Jointly draw the following:

ABk = B(tk+1) — B(t)
sxvi= [ [ o) a8
@ Compute
R(terq) = K(te) + FX(t), t) At + LX(t), te) ABx

>

AXv,k'

) g—;(ﬁ(tk), tie) Lo (R(t). t)
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Milstein’s method [3/4]

@ The strong and weak orders of the above method are both 1.

@ The difficulty is in drawing the iterated stochastic integral jointly
with the Brownian motion.

@ If the noise is additive, that is, L(x, t) = L(f) then Milstein’s
algorithm reduces to Euler—-Maruyama.

@ Thus in additive noise case, the strong order of Euler—-Maruyama
is 1 as well.

@ In scalar case we can compute the iterated stochastic integral:

/t | 48 573 = 5[50~ B0)? ~ (¢~ )
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Milstein’s method [4/4]

Scalar Milstein’s method

Draw Xg ~ p(Xp), and at each step k do the following:
@ Draw random variable Ajk from the distribution (where t, = k At)

ABy ~ N(0,g At).

@ Compute
K(ticer) = X(t) + F(X(t), t) At + L(x(t). t) Ay
F 2O (R(10), 1) L), 1) (A — g A1)
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Higher Order Methods

@ By taking more terms into the expansion, can form methods of
arbitrary order.

@ The high order iterated It6 integrals will be increasingly hard to
simulate.

@ However, if L does not depend on the state, we can get up to
strong order 1.5 without any iterated integrals.

@ For that purpose we need to expand the following terms using the
It6 formula (see the lecture notes):

LA(x(1), 1)
Lg A(x(1), 1).
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Strong Order 1.5 Ité—Taylor Method

Strong Order 1.5 It6—Taylor Method

When L and Q are constant, we get the following algorithm. Draw
Xo ~ p(Xg), and at each step k do the following:

@ Draw random variables A¢, and A3, from the joint distribution
A\ N[ (O QAB/3 QA2
AB, 0)°\Qarr/2  Qat ) )

(t

@ Compute

X(ticr1) = X(t) + F(X(t), t) At + L ABy + ax +vakAc:k

1 o2f ;
Z 8xu t3 — DXy DXy LQL

bv,k = Z 8—xu Luv
u
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Stochastic Runge-Kutta methods

@ Stochastic versions of Runge—Kutta methods are not as simple as
in the case of deterministic equations.

@ In practice, stochastic Runge—Kutta methods can be derived, for
example, by replacing the closed form derivatives in the Milstein’s
method with finite differences

@ We still cannot get rid of the iterated It integral occurring in
Milstein’s method.

@ Stochastic Runge—Kutta methods cannot be derived as simple
extensions of the deterministic Runge—Kutta methods.

@ A number of stochastic Runge—Kutta methods have also been
presented by Kloeden et al. (1994); Kloeden and Platen (1999) as
well as by RéBler (2006).
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@ Gaussian process approximations of SDEs can be formed by
assuming Gaussianity in the mean and covariance equations.

@ The resulting equations can be numerically solved using
linearization or cubature integration (sigma-point methods).

@ It6—Taylor series is a stochastic counterpart of Taylor series for
ODEs.

@ With first order truncation of It6—Taylor series we get
Euler—Maruyama method.

@ Including additional stochastic term leads to Milstein’s method.

@ Computation of iterated It6 integrals is hard and needed for
implementing the methods.

@ In additive noise case we get a simple 1.5 strong order method.

@ Stochastic Runge—Kutta methods also include the same iterated
[t6 integrals.

@ Stochastic Runge—Kutta methods are not simple extensions of
deterministic Runge—Kutta methods.
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