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SDEs as white noise driven differential equations

@ During the last lecture we treated SDEs as white-noise driven
differential equations of the form
dx
rri f(x, t) + L(x, t)w(?),
@ For linear equations the approach worked ok.
@ But there is something strange going on:
@ The usage of chain rule of calculus led to wrong results.
@ With non-linear differential equations we were completely lost.
@ Picard-Lindel6f theorem did not work at all.
@ The source of all the problems is the everywhere discontinuous
white noise w(t).

@ So how should we really formulate SDEs?
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Equivalent integral equation

@ Integrating the differential equation from f; to t gives:

X(1) — X(tp) = /ttf(x(t), f) dt + /tt L(x(t), t) w(t) dt.

@ The first integral is just a normal Riemann/Lebesgue integral.
@ The second integral is the problematic one due to the white noise.

@ This integral cannot be defined as Riemann, Stieltjes or Lebesgue
integral as we shall see next.
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Attempt 1: Riemann integral

@ In the Riemannian sense the integral would be defined as

ttl-(X(t), Hw(t) dt = lim > L(X(t), t6) W(t) (ter1 — ),
0 k

where fop < i < ... <ty =tand t € [t, tkt1]-

@ Upper and lower sums are defined as the selections of #; such
that the integrand L(x(t;), t) w(Z;) has its maximum and
minimum values, respectively.

@ The Riemann integral exists if the upper and lower sums converge
to the same value.

@ Because white noise is discontinuous everywhere, the Riemann
integral does not exist.
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Attempt 2: Stieltjes integral

@ Stieltjes integral is more general than the Riemann integral.

@ In particular, it allows for discontinuous integrands.

@ We can interpret the increment w(t) dt as increment of another
process 3(t) such that

t t
L(x(t), yw(t) dt = [ L(x(1),t) dB(t).
fo )
@ It turns out that a suitable process for this purpose is the Brownian
motion —
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Brownian motion

Brownian motion

@ Gaussian increments:

ABk ~ N(0,QAL),

where ABy = B(t+1) — B(t) and
Aty = 1 — k.

@ Non-overlapping increments are
independent.

@ Qs the diffusion matrix of the Brownian motion.

@ Brownian motion t — (3(t) has discontinuous derivative
everywhere.

@ White noise can be considered as the formal derivative of
Brownian motion w(t) = d3(t)/dt.
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Attempt 2: Stieltjes integral (cont.)

@ Stieltjes integral is defined as a limit of the form
t
| L(x(0), 1) 48 = Jim 37 LOK(8), ) [B(tr1) — B(k)]
o k

where fo < i < ... < tpand t; € [t, k1]

@ The limit #; should be independent of the position on the interval
t; € [tk, tk+1].

@ But for integration with respect to Brownian motion this is not the
case.

@ Thus, Stieltjes integral definition does not work either.
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Attempt 3: Lebesgue integral

@ In Lebesgue integral we could interpret 3(t) to define a “stochastic
measure” via B((u, v)) = B(u) — B(v).

@ Essentially, this will also lead to the definition
t
| L(x(0),1) 48 = fim 37 L((8), ) [B(tr1) — B(k)]
o k

where fo < i < ... < tpand t; € [t, k1]
@ Again, the limit should be independent of the choice € [lx, tx1].
@ Also our “measure” is not really a sensible measure at all.
@ = Lebesgue integral does not work either.
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Attempt 4: It6 integral

@ The solution to the problem is the |t6 stochastic integral.
@ The idea is to fix the choice to #; = #, and define the integral as

/tt L(x(8).t) dB(1) = lim > " L(x(t), t) [B(tc+1) — B(t)]-
0 k

@ This It6 stochastic integral turns out to be a sensible definition of
the integral.

@ However, the resulting integral does not obey the computational
rules of ordinary calculus.

@ Instead of ordinary calculus we have It6 calculus.
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It6 stochastic differential equations

@ Consider the white noise driven ODE

dx
- f(x, t) + L(x, t)w(t).

@ This is actually defined as the It6 integral equation

t t
X(t) — X(tp) = /t H(x(1), 1) dt + /t L(X(t), 1) dB(0)

which should be true for arbitrary #, and t.
@ Settings the limits to t and t + dt, where dt is “small”, we get

dx = f(x, t) dt + L(x, f) dB.

@ This is the canonical form of an It6 SDE.
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Connection with white noise driven ODEs

@ Let’s formally divide by dt, which gives

C(‘i’; f(x, 1) + L(x, t)
@ Thus we can interpret d3/dt as white noise w.
@ Note that we cannot define more general equations
0 _ tx(t), wn). ),
because we cannot re-interpret this as an It6 integral equation.

@ White noise should not be thought as an entity as such, but it only
exists as the formal derivative of Brownian motion.

Simo Sarkka (Aalto/TUT/LUT) Lecture 2: 1t6 Calculus and SDEs November 1, 2012 14/34



Stochastic integral of Brownian motion

@ Consider the stochastic integral

/ ' B(t) ds(t)
0

where j3(t) is a standard Brownian motion (Q = 1).

@ Based on the ordinary calculus we would expect the result
32(t)/2—but it wrong.

@ If we select apartition0 =ty < ty <... < t, =t, we get

t
/0 B(t) dB(t) = imS" Bt [B(ts1) — At
k
_I|mZ[ 5(B(ti1) — Bt))?

+ 5(52(fk+1) - 52(fk))]
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Stochastic integral of Brownian motion (cont.)

@ We have

> 5(0 ) - 380 — —t

and

. 1 1
lim ; 5(B(te1) = F3(t)) — 552(0).
@ Thus we get the (slightly) unexpected result

t
/O A1) 4B(t) = —g t+ S82(0)

@ This is unexpected only if we believe in the chain rule:

dt [; Z(t)] (:l)t(x

@ But it is not true for a (It6) stochastic process x(t)!
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[t6 formula

It6 formula

Assume that x(t) is an Itd process, and consider arbitrary (scalar)

function ¢(x(t), t) of the process. Then the It6 differential of ¢, that is,
the 1t6 SDE for ¢ is given as

09 9o . 1 0?¢ o
d¢_ﬁdt+§i:a_)qu’+§%:(—ax,a)g dx; dx;

_ % dt + (Ve)T dx + %tr { (vv%) dx de} :

provided that the required partial derivatives exists, where the mixed
differentials are combined according to the rules

dx dt=0
dt d3 =0
dg dg" = Q dt.
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[t6 formula: derivation

@ Consider the Taylor series expansion:

IP(x, t) op(x,1)
— d”zi:iax,- dx;

92¢
+3 Z ( ) dx; dx; +
@ To the first order in dt and second order in dx we have
dp = ¢(x + dx, t + dt) — o(x, t)
_ 09(x, 1) 0p(x. 1) , 82d> o
N dt+zi: o ’+2Z axox ) 9

i

d(x +dx, t +dt) = ¢(x, t) +

@ In deterministic case we could ignore the second order and higher
order terms, because dx dx' would already be of the order df2.

@ In the stochastic case we know that dx dx' is potentially of the
order dt, because d3 d3" is of the same order.
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It6 formula: example 1

It6 differential of 32(t)/2

If we apply the 1t6 formula to ¢(x) = %xz(t), with x(t) = §(t), where
B(t) is a standard Brownian motion, we get

dp = 8 dB + = dp?

1
2
_BdB+Lat,
- 2

as expected.
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It6 formula: example 2

t6 differential of sin(w x)
Assume that x(t) is the solution to the scalar SDE:

dx = f(x) dt +dp,

where §(t) is a Brownian motion with diffusion constant g and w > 0.
The 1t6 differential of sin(w x(t)) is then

d[sin(x)] = w cos(w x) dx — %wz sin(w x) dx?

= w cos(w x) [f(x) dt +dB] — %aﬂ sin(w x) [f(x) dt + dg]?

= w cos(w x) [f(x) dt +dS] — %w2 sin(w x) g dt.
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Solutions of linear SDEs

@ Let’s consider the linear multidimensional time-varying SDE
dx = F(t)x dt + u(t) dt + L(t) dB

@ Let’s define a (deterministic) transition matrix W(t, fy) via the
properties

ow(r,t)/or = F(r)W(r,1t)

ow(r, t)/ot = —W(r, t)F(1)
W(r, t) =W(r,s)W(s,t)
W(t,7)=w (1 1)
w(t,t)=1.
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Solutions of linear SDEs (cont.)

@ Multiplying the above SDE with the integrating factor W(fy, t) and
rearranging gives

W(ty, t) dx — W(ty, t)F(t) x dt = W(ty, t)u(t) dt + W(ty, t) L(t) d3.
@ It6 formula gives
d[W(ty, t)X] = —W(t, ) C(t)x dt + W(t, ty) dx.
@ Thus the SDE can be rewritten as
d[W(ty, t)X] = W(ty, t)u(t) dt + W(lp, t)L(t) dB.

where the differential is a 1t6 differential.
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Solutions of linear SDEs (cont.)

@ Integration (in It6 sense) from f; to t gives
W(to, 1) x(t) — W(ty, fo) X(to)

t t
— [ Wty 1) u(r) dr + /t W(ty, 7)L(7) dB(r).

)

@ Rearranging gives the full solution

t t
x(t) = W(t, ) x(ty) +/t W(t,T)u(r) dr +/t W(t,7)L(7r) dB(7).
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Solutions of linear LTI SDEs

@ Let’s consider LTI SDE
dx =Fx dt+ L dg.
@ The transition matrix now reduces to the matrix exponential:
W(t, o) =exp(F(t— 1))

=1+F(t—f) +

F2(t— )  F(t—t)°
o] + 3] + ...

@ The solution simplifies to
t
x(1) = exp (F (1 — 1)) X(t) +/t exp (F (t — 7)) L dB(r).

@ Corresponds to replacing w(r) dr with d3(7) in the heuristic
solution.
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Solutions of linear LTI SDEs

Solution of Ornstein—Uhlenbeck equation

The complete solution to the scalar SDE

dx = —Ax dt+dg, x(0) = xo,

where A > 0 is a given constant and ()
is a Brownian motion is

x(t) =exp(—At)xo

4 /Otexp(—)\(t— 7)) dB(7).
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Non-linear SDEs

@ There is no general solution method for non-linear SDEs
dx = f(x, t) dt + L(x, t) d3.

@ Sometimes we can use transformation/other methods from
deterministic setting and replace chain rule with 1t6 formula.

@ However, we can still use the Euler—-Maruyama method presented
last time:

X(ter1) = X(t) + F(X(t), t) At + L(X(), t) Apk,

where Agg ~ N(0,QAY).

@ The method might now look more natural, because Ap is just a
finite increment of Brownian motion.
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Existence and uniqueness of solutions

@ The existence and uniqueness conditions for SDE solutions can
be proved via stochastic Picard iteration:

$o(t) = Xo

t t
Pnir(f) = Xo + /t Hop(r),7) dr + /t L(¢n(r),7) dB(r).

@ The iteration converges and thus the SDE has unique strong
solution provided that the following are met:
@ Functions f and L grow at most linearly in x.
@ Functions f and L are Lipschitz continuous in x.
@ A strong solution means a solution x for a given 8 — strong
uniqueness implies that the whole path is unique.

@ We can also have a weak solution which is some pair (%, 3) which
solves the SDE.

@ Weak unigueness means that the distribution is unique.
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Stratonovich calculus

@ The symmetrized stochastic integral or the Stratonovich integral
can be defined as follows:

. L(x(t),) 0 dB(t) = lim Z L(x(t), ) [B(ter1) — B(t)].
where t; = (i + t)/2 is the midpoint.
@ Recall that in It6 integral we had the starting point t; = .
@ Now the It6 formula reduces to the rule from ordinary calculus.
@ Stratonovich integral is not a martingale which makes its
theoretical analysis harder.

@ Smooth approximations to white noise converge to the
Stratonovich integral.
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Stratonovich calculus (cont.)

Conversion of Stratonovich SDE into 1t6 SDE

The following SDE in Stratonovich sense
dx = f(x, t) dt + L(x,t) od3,
is equivalent to the following SDE in It6 sense
dx = f(x, t) dt + L(x, t) dg,

where ] oLi(x)
7 _ 1 i X
e = s ) 2 " OXk

ij(X)
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@ White noise formulation of SDEs had some problems with chain
rule, non-linearities and solution existence.

@ We can reduce the problem into existence of integral of a
stochastic process.

@ The integral cannot be defined as Riemann, Stieltjes or Lebesgue
integral.

@ It can be defined as an It6 stochastic integral.

@ Given the defition, we can define 1t6 stochastic differential
equations.

@ In It6 stochastic calculus, the chain rule is replaced with [t6
formula.

@ For linear SDEs we can obtain a general solution.

@ Existence and uniqueness can be derived analogously to the
deterministic case.

@ Stratonovich calculus is an alternative stochastic calculus.

Simo Sarkka (Aalto/TUT/LUT) Lecture 2: It6 Calculus and SDEs November 1, 2012



	Introduction
	Stochastic integral of Itô
	Itô formula
	Solutions of linear SDEs
	Non-linear SDE, solution existence, etc.
	Summary

