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0 Introduction

9 Stochastic processes in physics and engineering
9 Heuristic solutions of linear SDEs

e Fourier analysis of LTI SDEs

e Heuristic solutions of non-linear SDEs

@ Summary and demonstration
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What is a stochastic differential equation (SDE)?

@ At first, we have an ordinary differential equation (ODE):

dx
= f(x, t).
@ Then we add white noise to the right hand side:

dx

T = 10c.0) +w().

@ Generalize a bit by adding a multiplier matrix on the right:

dx
i f(x, t) + L(x, t)w(t).

@ Now we have a stochastic differential equation (SDE).
o f(x, t) is the drift function and L(x, t) is the dispersion matrix.
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White noise

White noise

@ w(ty) and w(tx) are independent if
t # b.

Q t+— w(t)is a Gaussian process with
the mean and covariance:

E[w(t)] =0
E[w(t)wT(s)] = d(t — s)Q.

@ Qs the spectral density of the process.
@ The sample path t — w(1) is discontinuous almost everywhere.

@ White noise is unbounded and it takes arbitrarily large positive and
negative values at any finite interval.
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What does a solution of SDE look like?

B(Y)

@ Left: Path of a Brownian motion which is solution to stochastic

differential equation
dx

d_t =]
@ Right. Evolution of probability density of Brownian motion.

w(t)
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What does a solution of SDE look like? (cont.)

081

06

04r

021

Mean solution
= = =95% quantiles
Realizations of SDE

Paths of stochastic spring model
d?x(t) dx(t)

de? dt

+ 2 x(t) = w(t).
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Einstein’s construction of Brownian motion

P(A)
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Langevin’s construction of Brownian motion
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Simo Sarkka (Aalto/TUT/LUT) Lecture 1: Pragmatic Introduction to SDEs October 25, 2012 10/34



Noisy RC-circuit
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Noisy Phase Locked Loop (PLL)

w(t)

=

=

-

=
O—
P

Asin()

Loop filter
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Car model for navigation

.
:
.

f(t)
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Noisy pendulum model
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Solutions of LTI SDEs

@ Linear time-invariant stochastic differential equation (LTI SDE):
dx(t)
dt

@ We can now take a “leap of faith” and solve this as if it was a
deterministic ODE:

@ Move Fx(t) to left and multiply by integrating factor exp(—F t):

=Fx(t)+Lw(t),  X(fo) ~ N(mgo,Po).

exp(—F 1) d);_go — exp(—F 1) Fx(t) = exp(—F t) Lw(1).
@ Reuwrite this as
dit [exp(—F t) x(t)] = exp(—F t) Lw(?).

© Integrate from f, to t:

exp(—F ) x() — exp(—F to) X(fo) = / ' exp(_F 1) Lw(r) dr.

fo
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Solutions of LTI SDEs (cont.)

@ Rearranging then gives the solution:

t
x(t) = exp(F (t — to))x(to)+/t exp(F (t —7))Lw(r) dr.

@ We have assumed that w(t) is an ordinary function, which it is not.

@ Here we are lucky, because for linear SDEs we get the right
solution, but generally not.

@ The source of the problem is the integral of a non-integrable
function on the right hand side.
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Mean and covariance of LTI SDEs

@ The mean can be computed by taking expectations:

t
E[x(t)] = E[exp(F (t — )) x(t)] + E [/t exp(F(t—7))Lw(7) d7':|

@ Recalling that E[x(fy)] = mg and E[w(t)] = 0 then gives the mean
m(t) = exp(F (t — f)) mo.
@ We also get the following covariance (see the exercises. .. ):
P() = E [(x(t) — m(1)) (x(t) — m)"]
=exp(Ft) Py exp(Fl‘)T

+ /texp(F(t— 7)) LQLT exp (F(t— 7)) dr.
0

Simo Sarkka (Aalto/TUT/LUT) Lecture 1: Pragmatic Introduction to SDEs October 25, 2012



Mean and covariance of LTI SDEs (cont.)

@ By differentiating the mean and covariance expression we can
derive the following differential equations for the mean and

covariance:
dm(t)
—ar Fm(t)
—dzgt) _FP(1)+ P()F" + LQLT.

@ For example, let’s consider the spring model:

()= (2 1) Gp)+ () o
— T T

dx(t)/dt F x L
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Mean and covariance of LTI SDEs (cont.)

The mean and covariance equations:
dm 0o 1\/m ‘
(&)-( D@
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Alternative derivation of mean and covariance

@ We can also attempt to derive mean and covariance equations
directly from

d);_(tt) =Fx(t) +Lw(t),  x(fy) ~ N(mg,Pg).

@ By taking expectations from both sides gives

E [d’c‘l(tf)] _ dEE‘t(t)] = E[Fx(t) + Lw(t)] = F E[x(1)].

@ This thus gives the correct mean differential equation

dm(t)
dt
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Alternative derivation of mean and covariance (cont.)

@ For the covariance we use

Cl%[(x-m) (X—m)T} = (d_t_d_t) (x—m)"

@ Substitute dx(t)/dt = Fx(t) + Lw(t) and take expectation:
SE o= m) (c—m)T| =F E [(x(t) - m(1)) (x(t) - m(2)"]
+E | (x(t) = m(1)) (x(t) - m(1))"| FT

@ This implies the covariance differential equation

%Y) =FP(t) + P(t)F.

@ But this solution is wrong!
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Alternative derivation of mean and covariance (cont.)

@ Our mistake was to assume

[ =m) e m] = (55 - SF) - m”

@ However, this result from basic calculus is not valid when x(t) is
stochastic.

@ The mean equation was ok, because its derivation did not involve
the usage of chain rule (or product rule) above.

@ But which results are right and which wrong?
@ We need to develop a whole new calculus to deal with this. . .
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Fourier domain solution of SDE

@ Consider the scalar SDE (Ornstein—Uhlenbeck process):
dx(t)

= () + w()

o Let’s take a formal Fourier transform (Warning: w(t) is not a
square-integrable function!):

(fw) X(iw) = =-AX(iw) + W(iw)
@ Solving for X(iw) gives
W(iw)
(fw)+ A
@ This can be seen to have the transfer function form
X(iw) = H(iw) W(iw)
where the transfer function is

X(iw) =
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Fourier domain solution of SDE (cont.)

@ By direct calculation we get
h(t) = 7 '[H(iw)] = exp(=At) u(),

where u(t) is the Heaviside step function.
@ The solution can be expressed as convolution, which thus gives

x(t) = h(t) = w(t)
= /oo exp(— A (t — 7)) u(t — 7) w(r) dr

—00

t
_ /O exp(—A (t — 7)) w(r) dr

provided that w(t) is assumed to be zero for t < 0.
@ Analogous derivation works for multidimensional LTI SDEs

d’;—(t” — Fx(t) + Lw(t)

Simo Sarkka (Aalto/TUT/LUT) Lecture 1: Pragmatic Introduction to SDEs October 25, 2012



Spectral densities and covariance functions

@ A useful quantity is the spectral density which is defined as
Sx(w) = [X(iw)|? = X(iw) X(—iw).

@ What makes it useful is that the stationary-state covariance
function is its inverse Fourier transform:

Cx(7) = EIX(t) x(t + 7)] = Z ' [Sx(w)]
@ For the Ornstein—Uhlenbeck process we get

(W(iw)? g

Sx(w) = l(iw) + A2~ w2+ 22’

and

C(r) = 5 exP(=Al7]).
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Spectral densities and covariance functions (cont.)

@ In multidimensional case we have (joint) spectral density matrix:
Sx(w) = X(iw) X (—iw),
@ The joint covariance matrix is its inverse Fourier transform
Cx(7) = 7 [Sx(w)]-
@ For general LTI SDEs

ax(t)

= Fx(t) + Lw(o),

we get

Sx(w) = (F— (i)D" LAQLT (F+ (iw))7T
Cx(7) = Z [(F- (iw))~ ' LQLT (F+ (iw))T].
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Problem with general solutions

@ We could now attempt to analyze non-linear SDEs of the form

C(‘l_’; — §(x, 1) + L(x, ) W(1)

@ We cannot solve the deterministic case—no possibility for a “leap
of faith”.

@ We don’t know how to derive the mean and covariance equations.

@ What we can do is to simulate by using Euler—Maruyama:

X(ter1) = X(t) + F(X(t), t) At + L(X(), t) Apk,

where Apjy is a Gaussian random variable with distribution
N(0,Q At).

@ Note that the variance is proportional to At, not the standard
derivation.
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Problem with general solutions (cont.)

@ Picard-Lindel6f theorem can be useful for analyzing existence
and uniqueness of ODE solutions. Let’s try that for
dx

5 = 1D+ Lx w(p)

@ The basic assumption in the theorem for the right hand side of the
differential equation were:

@ Continuity in both arguments.
@ Lipschitz continuity in the first argument.

@ But white noise is discontinuous everywhere!
@ We need a new existence theory for SDE solutions as well. . .
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@ Stochastic differential equation (SDE) is an ordinary differential
equation (ODE) with a stochastic driving force.

@ SDEs arise in various physics and engineering problems.

@ Solutions for linear SDEs can be (heuristically) derived in the
similar way as for deterministic ODEs.

@ We can also compute the mean and covariance of the solutions of
a linear SDE.

@ Fourier transform solutions to linear time-invariant (LTl) SDEs lead
to the useful concepts of spectral density and covariance function.

@ The heuristic treatment only works for some analysis of linear
SDEs, and for e.g. non-linear equations we need a new theory.

@ One way to approximate solution of SDE is to simulate trajectories
from it using the Euler—Maruyama method.
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Matlab demonstration

dx(t)

— = X+ w(D), x(0)=x,
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