Exercise Round 3 (15.11.2012).

Exercise 1. (Fokker–Planck–Kolmogorov (FKP) equation)

A) Write down the FKP for

$$dx = \tanh(x) dt + d\beta, \qquad x(0) = 0, \tag{1}$$

where $\beta(t)$ is a standard Brownian motion, and check that the following solves it:

$$p(x,t) = \frac{1}{\sqrt{2\pi t}} \cosh(x) \exp\left(-\frac{1}{2}t\right) \exp\left(-\frac{1}{2t}x^2\right).$$

B) Plot the evolution of the probability density at times $t \in [0, 5]$.

C) Simulate 1000 trajectories from the SDE using Euler-Maruyama method and check that the histogram matches the correct density at time t = 5.

Exercise 2. (Numerical solution of FPK)

Use finite-differences method to solve the FPK for the Equation (1). For simplicity, you can select a finite range $x \in [-L, L]$ and use the Diriclet boundary conditions p(-L, t) = p(L, t) = 0.

A) Divide the range to n grid points and let h = 1/(n + 1). On the grid, approximate the partial derivatives of p(x,t) via

$$\frac{\frac{\partial p(x,t)}{\partial x}}{\frac{\partial p(x,t)}{\partial x^2}} \approx \frac{p(x+h,t) - p(x-h,t)}{2h}$$

$$\frac{\frac{\partial^2 p(x,t)}{\partial x^2}}{\frac{p(x+h,t) - 2p(x,t) + p(x-h,t)}{h^2}}.$$
(2)

B) Let $\mathbf{p}(t) = (p(h,t) \ p(2h,t) \ \cdots \ p(nh,t))^{\mathsf{T}}$ and from the above, form an equation of the form

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \mathbf{F}\,\mathbf{p}.\tag{3}$$

C) Solve the above equation using (1) backward Euler (2) by numerical computation of $\exp(\mathbf{F} t)$ and by (3) forward Euler. Check that the results match the solution in the previous exercise.

Applied Stochastic Differential Equations

Exercise 3. (Langevin's physical Brownian motion) Consider the Langevin's model of Brownian motion

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -c \,\frac{\mathrm{d}x}{\mathrm{d}t} + w, \qquad x(0) = (\mathrm{d}x/\mathrm{d}t)(0) = 0, \tag{4}$$

where $c = 6 \pi \eta r$ and the white noise w(t) has some spectral density q.

A) Interpret the above model as Itô SDE and write it as a two-dimensional statespace form SDE.

B) Write down the differential equations for the elements of the mean $\mathbf{m}(t)$ and covariance $\mathbf{P}(t)$. Conclude that the mean is zero and find the closed form solutions for the elements $P_{11}(t)$, $P_{12}(t)$, $P_{21}(t)$, and $P_{22}(t)$ of the covariance matrix $\mathbf{P}(t)$. *Hint:* start by solving $P_{22}(t)$, then use it to find the solutions for $P_{12}(t) = P_{21}(t)$, and finally solve $P_{11}(t)$.

C) Find the limiting solution $P_{22}(t)$ when $t \to \infty$ and use the following to determine the diffusion coefficient (spectral density) q:

$$m \ge \left[\left(\frac{\mathrm{d}x}{\mathrm{d}t} \right)^2 \right] = \frac{RT}{N}.$$
(5)

D) Plot the solution $P_{11}(t)$ and conclude that asympthotically approaches a straight line. Compute the asymptotic solution $P_{11}(t)$ when $t \to \infty$, and conclude that it approximately gives Langevin's result.