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Definition and Notation of Gaussian Processes in
Regression

Gaussian process regression:
GPs are used as non-parametric prior models for "learning"
input-output Rd 7→ Rm mappings in form y = f(x).
A set of noisy training samples D = {(x1,y1), . . . , (xn,yn)} given.
The values of function f(x) at measurement points and test points
are of interest.

Gaussian process (GP) or Gaussian field is a random function
f(x), such that all finite-dimensional distributions
p(f(x1), . . . , f(xn)) are Gaussian.
Note that x is the input – not the state! And f(•) is not the drift! –
BEWARE of the notation!
GP can be defined in terms of mean and covariance functions:

m(x) = E[f(x)]

K(x,x′) = E[(f(x)−m(x)) (f(x′)−m(x′))T].
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Definition and Notation of Gaussian Processes in
Regression (cont.)

The joint distribution of an arbitrary collection of random variables
f(x1), . . . , f(xn) is then given asf(x1)

...
f(xn)

 ∼ N


m(x1)

...
m(xn)

 ,

K(x1,x1) . . . K(x1,xn)
...

. . .
K(xn,x1) K(xn,xn)




Temporal Gaussian process (GP) is a temporal random function
f(t), such that joint distribution of f(t1), . . . , f(tn) is always Gaussian
Note that on this course we have denoted these as x(t)!
In this case the input is the time t and thus our regressor functions
have the form y = f(t).
Mean and covariance functions have the form:

m(t) = E[f(t)]

K(t , t ′) = E[(f(t)−m(t)) (f(t ′)−m(t ′))T].
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Gaussian Process Regression [1/5]

Gaussian process regression considers predicting the value of an
unknown function (y and x are scalar for illustration)

y = f (x)

at a certain test point (y∗, x∗) based on a finite number of training
samples (yj , xj) observed from it.
To keep the notation less confusing, let’s replace x with t :

y = f (t).

In classic regression, we postulates parametric form of f (t ;θ) and
estimate the parameters θ.
In GP regression, we instead assume that f (t) is a sample from a
Gaussian process with a given covariance function K (t , t ′), e.g.,

K (t , t ′) = s2 exp
(
− 1

2`2
||t − t ′||2

)
,
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Gaussian Process Regression [2/5]

Let’s denote the vector of observed points as y = (y1, . . . , yn), and
test point as y∗.
Gaussian process assumption implies that their joint distribution is(

y
y∗

)
= N

((
0
0

)
,

(
K(t1:m, t1:m) KT (t∗, t1:m)
K(t∗, t1:m) K (t∗, t∗)

))
where

K(t1:m, t1:m) = [K (ti , tj )] is the joint covariance of observed points,
K (t∗, t∗) is the (co)variance of the test point,
K(t∗, t1:m) = [K (t∗, tj )] is the cross covariance.

By using the computation rules of Gaussian distributions we get

E[y∗ |y] = K(t∗, t1:m) K−1(t1:m, t1:m) y

Var[y∗ |y] = K (t∗, t∗)− K(t∗, t1:m) K−1(t1:m, t1:m) KT (t∗, t1:m).

These equations can be used for interpolating the value of
y∗ = f (t∗) at any test point t∗.
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Gaussian Process Regression [3/5]

In practice, the measurements usually have noise:

yk = f (tk ) + ek , ek ∼ N(0, σ2).

We want to estimate the value of the “clean” function f (t∗) at a test
point t∗.
Due to the Gaussian process assumption we now get(

y
f (t∗)

)
= N

((
0
0

)
,

(
K(t1:m, t1:m) + σ2I KT (t∗, t1:m)

K(t∗, t1:m) K (t∗, t∗)

))
The conditional mean and variance are given as

E[f (t∗) |y] = K(t∗, t1:m) (K(t1:m, t1:m) + σ2I)−1 y
Var[f (t∗) |y] = K (t∗, t∗)

− K(t∗, t1:m) (K(t1:m, t1:m) + σ2I)−1 KT (t∗, t1:m).

These are the Gaussian process regression equations in their
typical form - scalar special cases though.
Simo Särkkä (Aalto) Lecture 6: State-Space GP Regression November 28, 2013 8 / 40



Gaussian Process Regression [4/5]
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Gaussian Process Regression [5/5]

The GP-regression has cubic computational complexity O(m3) in
the number of measurements.
This results from the inversion of the m ×m matrix:

E[f (t∗) |y] = K(t∗, t1:m) (K(t1:m, t1:m) + σ2I)−1 y
Var[f (t∗) |y] = K (t∗, t∗)

− K(t∗, t1:m) (K(t1:m, t1:m) + σ2I)−1 KT (t∗, t1:m).

In practice, we use Cholesky factorization and do not invert
explicitly – but still the O(m3) problem remains.
Various sparse, reduced-rank, and related approximations have
been developed for this purpose.
Here we study another method – we reduce GP regression into
Kalman filtering/smoothing problem which has linear O(m)
complexity – in time direction.
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Representations of Temporal Gaussian Processes
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Representations of Temporal Gaussian Processes

Example: Ornstein-Uhlenbeck process – path representation as a
stochastic differential equation (SDE):

df (t)
dt

= −λ f (t) + w(t).

where w(t) is a white noise process.
The mean and covariance functions:

m(t) = 0
k(t , t ′) = exp(−λ|t − t ′|)

Spectral density:

S(ω) =
2λ

ω2 + λ2

Ornstein-Uhlenbeck process f (t) is Markovian in the sense that
given f (t) the past {f (s), s < t} does not affect the distribution of
the future {f (s′), s′ > t}.
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State Space Form of Linear Time-Invariant SDEs

Consider a Nth order LTI SDE of the form

dN f
dtN + aN−1

dN−1f
dtN−1 + · · ·+ a0f = w(t).

If we define f = (f , . . . ,dN−1f/dtN−1), we get a state space model:

df
dt

=


0 1

. . . . . .
0 1

−a0 −a1 . . . −aN−1


︸ ︷︷ ︸

F

f +


0
...
0
1


︸ ︷︷ ︸

L

w(t)

f (t) =
(
1 0 · · · 0

)︸ ︷︷ ︸
H

f.

The vector process f(t) is now time-Markovian although f (t) is not.
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Spectra of Linear Time-Invariant SDEs

By taking the Fourier transform of the LTI SDE, we can derive the
spectral density which has the form:

S(ω) =
(constant)

(polynomial in ω2)
It turns out that we can also do this conversion to the other
direction:

With certain parameter values, the Matérn has the form:

S(ω) ∝ (λ2 + ω2)−(p+1).

Many non-rational spectral densities can be approximated, e.g.:

S(ω) = σ2
√
π

κ
exp

(
−ω

2

4κ

)
≈ (const)

N!/0!(4κ)N + · · ·+ ω2N

For the conversion of a rational spectral density to a Markovian
(state-space) model, we can use the classical spectral
factorization –
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Converting Covariance Functions to State Space
Models

Spectral factorization finds rational stable transfer function

G(i ω) =
bm (i ω)M + · · ·+ b1 (i ω) + b0

(i ω)N + · · ·+ a1 (i ω) + a0

such that
S(ω) = G(i ω) qc G(−i ω).

The procedure practice:
Compute the roots of the numerator and denominator polynomials.
Construct the numerator and denominator polynomials of the
transfer function G(i ω) from the positive-imaginary-part roots only.

The SDE is then the inverse Fourier transform of

F (i ω) = G(i ω) W (i ω).

Can be further converted into a state space model –
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Converting Covariance Functions to State Space
Models (cont.)

We have a Fourier-domain system with white noise input:

F (i ω) =

(
bM (i ω)M + · · ·+ b1 (i ω) + b0

(i ω)N + · · ·+ a1 (i ω) + a0

)
W (i ω).

A standard conversion from transfer function form into state-space
form (see control engineering literature), e.g.,

df
dt

=


0 1

. . . . . .
0 1

−a0 −a1 . . . −aN−1


︸ ︷︷ ︸

F

f +


0
...
0
1


︸ ︷︷ ︸

L

w(t)

f (t) =
(
b0 b1 · · · bM 0 · · · 0

)︸ ︷︷ ︸
H

f.
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Application to Gaussian Process Regression

Consider a Gaussian process regression problem of the form

f (x) ∼ GP(0, k(x , x ′))

yi = f (xi) + ei , ei ∼ N(0, σ2
noise).

Renaming x into time t gives:

f (t) ∼ GP(0, k(t , t ′))

yi = f (ti) + ei , ei ∼ N(0, σ2
noise).

We can can now convert this to state estimation problem:

df(t)
dt

= F f(t) + L w(t)

yi = H f(ti) + ei .

The GP-regression solution p(f (t∗) | y1, . . . , ym) can now be
computed with Kalman filter and RTS smoother!
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Example: Matérn Covariance Function

Example (1D Matérn covariance function)
1D Matérn family is (τ = |t − t ′|):

k(τ) = σ2 21−ν

Γ(ν)

(√
2ν

τ

l

)ν
Kν
(√

2ν
τ

l

)
,

where ν, σ, l > 0 are the smoothness, magnitude and length scale
parameters, and Kν(·) the modified Bessel function.
For example, when ν = 5/2, we get

df(t)
dt

=

 0 1 0
0 0 1
−λ3 −3λ2 −3λ

 f(t) +

0
0
1

 w(t).
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Inference in Practice

Conventional GP regression:
1 Evaluate the covariance function at the training and test set points.
2 Use GP regression formulas to compute the posterior process

statistics.
3 Use the mean function as the prediction.

State-space GP regression:
1 Form the state space model.
2 Run Kalman filter through the measurement sequence.
3 Run RTS smoother through the filter results.
4 Use the smoother mean function as the prediction.

With both GP regression and state-space formulation we have the
corresponding parameter estimation methods – see, e.g.,
Rasmussen & Williams (2006) and Särkkä (2013), respectively.
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State-Space GP Regression Demo

Simo Särkkä (Aalto) Lecture 6: State-Space GP Regression November 28, 2013 21 / 40



State-Space GP Regression Demo

Simo Särkkä (Aalto) Lecture 6: State-Space GP Regression November 28, 2013 21 / 40



State-Space GP Regression Demo

Simo Särkkä (Aalto) Lecture 6: State-Space GP Regression November 28, 2013 21 / 40



State-Space GP Regression Demo

Simo Särkkä (Aalto) Lecture 6: State-Space GP Regression November 28, 2013 21 / 40



State-Space GP Regression Demo

Simo Särkkä (Aalto) Lecture 6: State-Space GP Regression November 28, 2013 21 / 40



State-Space GP Regression Demo
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State-Space GP Regression Demo (cont.)

Comparison of GP regression (L) and RTS smoother (R) results
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The Basic Idea of State-Space Representation of
LFMs

A latent force model (LFM) is of the form
dxf (t)

dt
= g(xf (t)) + u(t),

where u(t) is the latent force.
We measure the system at discrete instants of time:

yk = xf (tk ) + rk

Let’s now model u(t) as a Gaussian process of Matern type

K (τ) = σ2 21−ν

Γ(ν)

(√
2ν

τ

l

)ν
Kν
(√

2ν
τ

l

)
Recall that if, for example, ν = 1/2 then the GP can be expressed
as the solution of the stochastic differential equation (SDE)

du(t)
dt

= −λu(t) + w(t)
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The Basic Idea of State-Space Representation (cont.)

If we define x = (xf ,u), we get a two-dimensional SDE

dx
dt

=

(
g(x1(t)) + x2(t)
−λ x2(t)

)
︸ ︷︷ ︸

a(x)

+

(
0
1

)
︸︷︷︸

L

w(t)

We can now rewrite the measurement model as

yk =
(
1 0

)︸ ︷︷ ︸
H

x(tk ) + rk

Thus the result is a model of the generic form

dx
dt

= a(x) + L w(t)

yk = H x(tk ) + rk .

This model can now be efficiently tackled with non-linear Kalman
filtering and smoothing.
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Recall: State Space Model for a Car [1/2]

The dynamics of the car in 2d
(x1, x2) are given by Newton’s law:

F(t) = m a(t),

where a(t) is the acceleration, m is
the mass of the car, and F(t) is a
vector of (unknown) forces acting
the car.

We model F(t)/m as a 2-dimensional white noise process:

d2x1/dt2 = w1(t)

d2x2/dt2 = w2(t).
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Recall: State Space Model for a Car [2/2]

If we define x3(t) = dx1/dt , x4(t) = dx2/dt , then the model can be
written as a first order system of differential equations:

d
dt


x1
x2
x3
x4

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

F


x1
x2
x3
x4

+


0 0
0 0
1 0
0 1


︸ ︷︷ ︸

L

(
w1
w2

)
.

In shorter matrix form:

dx
dt

= F x + L w.
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Measurement Model for a Car

(y1, y2)

Assume that the position of the car
(x1, x2) is measured and the
measurements are corrupted by
Gaussian measurement noise
e1,k ,e2,k :

y1,k = x1(tk ) + e1,k

y2,k = x2(tk ) + e2,k .

The measurement model can be now written as

yk = H x(tk ) + ek , H =

(
1 0 0 0
0 1 0 0

)
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Model for Car Tracking

The dynamic and measurement models of the car now form a
linear Gaussian state-space model:

dx
dt

= F x + L w

yk = H x(tk ) + rk ,

In this case it is possible to solve the transition density explicitly:

p(x(tk ) |x(tk−1)) = N(x(tk ) |Ak−1 x(tk−1),Qk−1)

where Ak−1 and Qk−1 can be expressed in terms of the matrix
exponential function (see yesterday’s lecture).
Thus we can actually write this as a discrete-time model:

xk = Ak−1 xk−1 + qk−1

yk = H xk + rk ,

where qk−1 ∼ N(0,Qk−1).
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Latent Force Model for a Car

We can also start from a latent force model

d2x1/dt2 = u(t)

d2x2/dt2 = v(t),

where u and v are, say, Matern 3/2 processes.
In state-space form this leads to

du(t)
dt

=

(
0 1
−λ2 −2λ

)
u(t) +

(
0
1

)
wu(t), j = 1,2

where u(t) = (u(t), du(t)/ dt).
We can also have both white noises and latent forces:

d2x1/dt2 = u(t) + w1(t)

d2x2/dt2 = v(t) + w2(t).
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Latent Force Model for a Car (cont.)
Now we get

d

dt



x1
x2
x3
x4
u1
v1
u2
v2


=



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −λ2 0 −2λ 0
0 0 0 0 0 −λ2 0 −2λ


︸ ︷︷ ︸

F



x1
x2
x3
x4
u1
v1
u2
v2


+



0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

L


w1
w2
wu
wv



yk =

(
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

)


x1
x2
x3
x4
u1
u2
v1
v2


+ ek ,

But this is just a linear Gaussian state-space model:

dx
dt

= F x + L w

yk = H x(tk ) + rk ,
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From Temporal to Spatio-Temporal Processes

The temporal vector-valued process becomes an infinite-dimensional
function (Hilbert space) -valued process:

f(t) =

f1(t)
...

fn(t)

→
f (x1, t)

...
f (xn, t)

→ f (x, t), x ∈ Rd .
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Representations of Spatio-Temporal Gaussian
Processes

Moment representation in terms of mean and covariance function

m(x, t) = E[f(x, t)]

K(x,x′; t , t ′) = E[(f(x, t)−m(x, t)) (f(x′, t ′)−m(x′, t ′))T ].

Spectral representation in terms of spectral density function

S(ωx , ωt ) = f̃(i ωx , i ωt ) f̃T (−i ωx ,−i ωt ).

As an infinite-dimensional state space model or stochastic
evolution equation:

∂f(x, t)
∂t

= F f(x, t) + L w(x, t).
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Infinite-Dimensional Kalman Filtering and Smoothing

Infinite-dimensional state-space model with operators F and Hi :

∂f(x, t)
∂t

= F f(x, t) + L w(x, t)

yi = Hi f(x, ti) + ei

We can use the infinite-dimensional Kalman filter and RTS
smoother – scale linearly in time dimension.
We can approximate with PDE methods such as basis function
expansions, FEM, finite-differences, spectral methods, etc.
If F and Hi are “diagonal” in the sense that they only involve
point-wise evaluation in x, we get a finite-dimensional algorithm.

Diagonal F corresponds to a separable model.
The evaluation operator Hi in GP regression and Kriging is
diagonal.
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Conversion of Spatio-Temporal Covariance into
Infinite-Dimensional State Space Model

We can convert spatio-temporal covariance functions into
state-space models as follows:

1 First compute the spectral density S(ωx , ωt ) by Fourier transforming
the covariance function K (x, t).

2 Form rational approximation in variable iωt :

S(ωx , ωt ) =
q(iωx )

b0(iωx ) + b1(iωx ) (iωt ) + · · ·+ (iωt )N .

3 Form the corresponding Fourier domain SDE (via the spectral
factorization again):

∂N f̃ (ωx , t)
∂tN + aN−1(iωx )

∂N−1 f̃ (ωx , t)
∂tN−1 + · · ·

+ a0(iωx ) f̃ (ωx , t) = w̃(ωx , t).
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Conversion of Spatio-Temporal Covariance into
Infinite-Dimensional State Space Model (cont.)

. . . conversion method continues . . .
4 By converting this to state space form and by taking spatial inverse

Fourier transform, we get the stochastic evolution equation

∂f(x, t)
∂t

=


0 1

. . . . . .
0 1

−A0 −A1 . . . −AN−1


︸ ︷︷ ︸

F

f(x, t) +


0
...
0
1


︸ ︷︷ ︸

L

w(x, t)

where Aj are pseudo-differential operators.

We can now use infinite-dimensional Kalman filter and RTS
smoother for efficient estimation of the “state” f(·, t).
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Example: 2D Matérn Covariance Function

Example (2D Matérn covariance function)
The multidimensional Matérn covariance function is the following
(r = ||ξ − ξ′||, for ξ = (x1, x2, . . . , xd−1, t) ∈ Rd ):

k(r) = σ2 21−ν

Γ(ν)

(√
2ν

r
l

)ν
Kν
(√

2ν
r
l

)
.

For example, if ν = 1 and d = 2, we get the following:

∂f(x , t)
∂t

=

(
0 1

∂2/∂x2 − λ2 −2
√
λ2 − ∂2/∂x2

)
f(x , t)+

(
0
1

)
w(x , t).

x

t
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Summary

In Gaussian process (GP) regression we put a Gaussian process
prior on the regressor functions f (t).
The value of the function f (t∗) at a test point t∗ is predicted by
conditioning the process on the training set.
GP regression has a problematic cubic O(m3) complexity in the
number of measurements m.
We can often convert a GP regression problem into a Kalman
filtering/smoothing problem which has linear O(m) time
complexity.
But – this is possible only in time-direction.
Latent force models with GP forces can also be converted into
Kalman filtering/smoothing problems.
In space-time models we need to use infinite-dimensional Kalman
filters and smoothers.
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